Exercise 1: P-choice
A language \(L \) is said \(P \)-peek \((L \in Pp)\) if there is a function \(f : \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}^* \) computable in polynomial time such that \(\forall x, y \in \{0,1\}^* : \)
- \(f(x, y) \in \{x, y\} \)
- if \(x \in L \) or \(y \in L \) then \(f(x, y) \in L \)

\(f \) is called the peeking function for \(L \).

1. Show that \(P \subseteq Pp \)
2. Show that \(Pp \) is closed under complementary
3. Show that if there exist \(L \) \(NP \)-hard in \(Pp \), then \(P = NP \)
4. Let \(r \in [0, 1] \) a real number, we define \(L_r \) as the set of words \(b = b_1...b_n \in \{0,1\}^* \) such that \(0, b_1...b_n \leq r \). Show that \(L_r \in Pp \)
5. Deduce that there exist a non-recursive language in \(Pp \)

Solution:
1. Let there be \(A \in P \). We set \(f(x, y) = x \) if \(x \in A \), and \(f(x, y) = y \) otherwise.
2. Let there be \(A \in Pp \) through \(f \). Then, define \(f'(x, y) = y \) if \(f(x, y) = x \) and \(f'(x, y) = x \) otherwise. \(f' \) is then a peeking function for \(A^c \):
 - if \(x \in A^c \) and \(y \in A^c \), then \(f'(x, y) = y \in A^c \)
 - if \(x \in A^c \) and \(y \in A \), then \(f(x, y) = y \) and \(f'(x, y) = x \in A^c \)
 - if \(x \in A \) and \(y \in A^c \), then \(f(x, y) = x \) and \(f'(x, y) = y \in A^c \) contains a language which is undecidable.
3. Let there be \(A \in Pp \) through \(f \) and \(g \) a reduction from \(SAT \) to \(A \). Here is a polynomial algorithm for \(SAT \) on input \(\phi \) with \(n \) variables, where we denote \(\phi_0 \) (resp. \(\phi_1 \)) the formula \(\phi \) in which the first variable is set to 0 (resp. 1).

 For \(i \) from 1 to \(n \) do
 if \(f(g(\phi_0), g(\phi_1)) = g(\phi_0) \) then \(\phi \leftarrow \phi_0 \)
 else \(\phi \leftarrow \phi_1 \)
 Accept iff \(\phi = \top \)

4. \(f(x, y) = \min(x, y) \) is a valid selection function for \(L_r \)
5. \(Pp \) is not countable as it contains \(L_r \) for any \(r \in [0, 1] \). Thus, \(Pp \) contains a language which is not decidable.

Exercise 2: Complete problems for levels of \(PH \)
Show that the following problem is \(\Sigma_k^p \)-complete (under polynomial time reductions).
\(\Sigma_k^{QBF} : \)
- INPUT: A quantified boolean formula \(\psi := \exists X_1 \forall X_2 \exists...Q_k X_k \phi(X_1, ..., X_k) \), where \(X_1, ...X_k \) are \(k \) disjoint sets of variables, \(Q_k \) is the quantifier \(\forall \) if \(k \) is even, and the quantifier \(\exists \) if \(k \) is odd, \(\phi \) is a boolean formula over variables \(X_1 \cup ... \cup X_k \);
- QUESTION: is the input formula true?
Define a similar problem $\Pi_k \text{QBF}$ such that $\Pi_k \text{QBF}$ is Π_k^P-complete.

Solution:

- If we are given some $X_1, ..., X_k$, we can check in polynomial time if $\phi(X_1, ..., X_k)$ is true. Thus, it is in Σ_k^P.
- Let there be $A \in \Sigma_k^P$. A can be expressed as follows:

 $$x \in A \iff \exists y_1 \in \{0,1\}^{p(x)} \forall y_2 \in \{0,1\}^{q(x)} Q_k y_k \in \{0,1\}^{p(x)}(x, y_1, ..., y_k) \in B$$

 with $B \in P$.

Let us assume that $Q_k = \exists$, the other case can be done in a similar fashion. Now, $
\exists y_k \in \{0,1\}^{p(x)}(x, y_1, ..., y_k) \in B$ is in NP, so by Cook’s theorem, we have ϕ such that:

$$\exists y_k \in \{0,1\}^{p(x)}(x, y_1, ..., y_k) \in B \iff \exists z, \phi(x, y_1, ..., y_k, z)$$

By inspecting Cook’s proof, we can modify ϕ such that the input tape $x, y_1, ..., y_{k-1}$ appear as variables in ϕ. We thus have

$$\exists y_k \in \{0,1\}^{p(x)}(x, y_1, ..., y_k) \in B \iff \exists z, \phi(x, y_1, ..., y_{k-1}, z)$$

And finally:

$$x \in A \iff \exists y_1, \forall y_2, \forall y_{k-1} \exists z, \phi(x, y_1, ..., y_{k-1}, z)$$

Exercise 3: Oracle machines

Let O be a language. A Turing machine with oracle O is a Turing machine with a special additional read/write tape, called the oracle tape, and three special states: $q_{\text{query}}, q_{\text{yes}}, q_{\text{no}}$. Whenever the machine enters the state q_{query}, with some word w written on the oracle tape, it moves in one step to the state q_{yes} or q_{no} depending on whether $w \in O$.

We denote by P^O (resp. NP^O) the class of languages decided in polynomial time by a deterministic (resp. non-deterministic) Turing machine with Oracle O. Given a complexity class C, we define $P^C = \bigcup_{C \subseteq C} P^O$ (and similarly for NP).

1. Prove that for any C-complete language L, $P^C = P^L$ and $\text{NP}^C = \text{NP}^L$.
2. Show that for any language L, $P^L = P^L$ and $\text{NP}^L = \text{NP}^L$.
3. Prove that if $\text{NP} = P^{\text{SAT}}$ then $\text{NP} = \text{coNP}$.

Solution:

1. We do the proof for NP. Let $B \in \text{NP}^C$, we have N a polynomial NTM for B with an oracle C, $C \in C$. We also have a polynomial reduction f such that: $x \in C \iff f(x) \in A$. We build N' for B with oracle A, by simulating N and replacing a call $u \in C$ with a call $f(u) \in A$? f is polynomial, so we are still in NP, which concludes the proof.

2. We simply have to swap the states q_{yes} and q_{no} in the computation.

3. P^{SAT} is a deterministic class, so it is closed by complementation, so if $\text{NP} = P^{\text{SAT}}$, $\text{coNP} = \text{NP}$

4.

Exercise 4: Collapse of PH

1. Prove that if $\Sigma_k^P = \Sigma_{k+1}^P$ for some $k \geq 0$ then $\text{PH} = \Sigma_k^P$. (Remark that this is implied by $P = \text{NP}$).

2. Show that if $\Sigma_k^P = \Pi_k^P$ for some k then $\text{PH} = \Sigma_k^P$ (i.e. PH collapses).

3. Show that if $\text{PH} = \text{PSPACE}$ then PH collapses.

4. Do you think there is a polynomial time procedure to convert any QBF formula into a QBF formula with at most 10 variables?
Solution:

1. We assume that $\Sigma^P_k = \Sigma^P_{k+1}$ for some $k \geq 0$, we prove by induction that $\forall t \geq k, \Sigma^P_k = \Sigma^P_j$, for $j = i$, it is directly correct. For $j > i$, $\Sigma^P_j = \text{NP}^\Sigma^P_{j-1} = \text{NP}^\Sigma^P_i$ by induction, and thus $\Sigma^P_j = \Sigma^P_{i+1}$. By hypothesis, we then have $\Sigma^P_j = \Sigma^P_i$.

2. With the previous question, we just have to prove that $\Sigma^P_k = \Sigma^P_{k+1}$.

Let there be $A \in \Sigma^P_{k+1}$. A can be expressed as follows:

$$x \in A \iff \exists y_1 \in \{0, 1\}^{p(x)} \forall y_2 \in \{0, 1\}^{p(x)} \forall y_{k+1} \in \{0, 1\}^{p(x)} (x, y_1, ..., y_{k+1}) \in B$$

with $B \in \mathbb{P}$. On input (x, y_1), decide if $\forall y_2 \in \{0, 1\}^{p(x)} \forall y_{k+1} \in \{0, 1\}^{p(x)} (x, y_1, ..., y_{k+1}) \in B$ is a problem in $\Pi^P_k = \Sigma^P_k$. We can thus rewrite it as, with $C \in \mathbb{P}$:

$$\exists y_2 \in \{0, 1\}^{p(x)} \forall y_{k+1} \in \{0, 1\}^{p(x)} (x, y_1, ..., y_{k+1}) \in C$$

Finally:

$$x \in A \iff \exists y_2, y_{k+1} \in \{0, 1\}^{p(x)} \forall y_{k+1} \in \{0, 1\}^{p(x)} (x, y_1, ..., y_{k+1}) \in B$$

with $B \in \mathbb{P}$. And this is the expression of a problem in Σ^P_k. Finally, $\Sigma^P_k = \Sigma^P_{k+1}$.

3. If $\text{PH} = \text{PSPACE}$, then QBF is in Σ^P_k for some k. But QBF is a complete problem for PSPACE, and thus PH. Let there be $B \in \text{PH}$, it can be reduced to $QBF \in \Sigma^P_k$, so $B \in \Sigma^P_k$, and $\text{PH} = \Sigma^P_k$.

4. It is unlikely that PH collapses, and the statement would imply the previous question.

Exercise 5: Relativization

Show that there is an oracle O such that $\text{P}^O = \text{NP}^O$.

Solution:

We have $\text{PSPACE} \subseteq \text{NP}^{\text{PSPACE}}$, we must show the converse. Let there be N a polynomial NTM with oracle $A \in \text{PSPACE}$. We can simulate N in PSPACE on input x by:

- enumerate all possible path of $N^A(x)$
- For each of them, compute the oracle calls
- accept if one of the path accepts.

Each path is in polynomial size, thus the enumeration is, and the oracle calls are PSPACE. We do have $\text{NP}^{\text{PSPACE}} \subseteq \text{PSPACE}$.