Advanced Complexity

TD $n^{\circ}5$

Charlie Jacomme

October 11, 2017

Exercise 1: P-choice

A language L is said P-peek $(L \in \mathsf{P}p)$ if there is a function $f : \{0,1\}^* \times 0, 1^* \to \{0,1\}^*$ computable in polynomial time such that $\forall x, y \in \{0,1\}^*$:

 $- f(x,y) \in \{x,y\}$

— if $x \in L$ or $y \in L$ then $f(x, y) \in L$

f is called the peeking function for L.

- 1. Show that $\mathsf{P}\subseteq\mathsf{P}p$
- 2. Show that $\mathsf{P}p$ is closed under complementary
- 3. Show that if there exist L NP-hard in Pp, then P = NP
- 4. Let $r \in [0,1]$ a real number, we define L_r as the set of words $b = b_1...b_n \in \{0,1\}^*$ such that $0, b_1...b_n \leq r$. Show that $L_r \in \mathsf{P}p$
- 5. Deduce that there exist a non-recursive language in $\mathsf{P}p$

Solution:

- 1. Let there be $A \in \mathsf{P}$. We set f(x, y) = x if $x \in A$, and f(x, y) = y otherwise.
- 2. Let there be $A \in \mathsf{P}p$ through f. Then, define f'(x,y) = y if f(x,y) = x and f'(x,y) = x otherwise. f' is then a peeking function for A^c :
 - if $x \in A^c$ and $y \in A^c$, then $f'(x, y) = y \in A^c$
 - if $x \in A^c$ and $y \in A$, then f(x, y) = y and $f'(x, y) = x \in A^c$
 - if $x \in A$ and $y \in A^c$, then f(x, y) = x and $f'(x, y) = y \in A^c$ contains a language which is undecidable.
- 3. Let there be $A \in \mathsf{P}p$ through f and g a reduction from SAT to A. Here is a polynomial algorithm for SAT on input ϕ with n variables, where we denote ϕ_0 (resp. ϕ_1) the formula ϕ in which the first variable is set to 0 (resp. 1).

For i from 1 to n do if $f(g(\phi_0),g(\phi_1))=g(\phi_0)$ then $\phi\leftarrow\phi_0$ else $\phi\leftarrow\phi_1$ Accept iff $\phi=\top$

- 4. f(x,y) = min(x,y) is a valid selection function for L_r
- 5. Pp is not countable as it contains L_r for any $r \in [0, 1]$. Thus, Pp contains a language which is not decidable.

Exercise 2: Complete problems for levels of PH

Show that the following problem is Σ_k^P -complete (under polynomial time reductions).

- $\Sigma_k \text{QBF} : \bullet \text{ INPUT} : A \text{ quantified boolean formula } \psi := \exists X_1 \forall X_2 \exists ... Q_k X_k \phi(X_1, ..., X_k), \text{ where } X_1, ... X_k \text{ are } k \text{ disjoint sets of variables, } Q_k \text{ is the quantifier } \forall \text{ if } k \text{ is even, and the quantifier } \exists \text{ if } k \text{ is odd, } \phi \text{ is a boolean formula over variables } X_1 \cup \cdots \cup X_k;$
- QUESTION : is the input formula true?

Define a similar problem $\Pi_k QBF$ such that $\Pi_k QBF$ is Π_k^P -complete.

Solution:

- If we are given some $X_1, ..., X_k$, we can check in polynomial time if $\phi(X_1, ..., X_k)$ is true. Thus, it is in Σ_k^P .
- Let there be $A \in \Sigma_k^P$. A can be expressed as follows :

$$x \in A \Leftrightarrow \exists y_1 \in \{0,1\}^{p|(x)|} \forall y_2 \in \{0,1\}^{p|(x)|} ... Q_k y_k \in \{0,1\}^{p|(x)|} (x,y_1,...,y_k) \in B$$

with $B \in P$.

Let us assume that $Q_k = \exists$, the other case can be done in a similar fashion. Now, $\exists y_k \in \{0,1\}^{p|(x)|}(x, y_1, ..., y_k) \in B$ is in NP, so by Cook's theorem, we have ϕ such that :

$$\exists y_k \in \{0,1\}^{p|(x)|}(x, y_1, ..., y_k) \in B \Leftrightarrow \exists z, \phi_{x,y_1,...,y_{k-1}}(z)$$

By inspecting Cook's proof, we can modify ϕ such that the input tape $x, y_1, ..., y_{k-1}$ appear as variables in ϕ . We thus have

$$\exists y_k \in \{0,1\}^{p|(x)|} (x, y_1, ..., y_k) \in B \Leftrightarrow \exists z, \phi(x, y_1, ..., y_{k-1}, z)$$

And finally :

 $x \in A \Leftrightarrow \exists y_1, \forall y_2, \dots \forall y_{k-1} \exists z, \phi(x, y_1, \dots, y_{k-1}, z)$

Exercise 3: Oracle machines

Let O be a language. A Turing machine with oracle O is a Turing machine with a special additional read/write tape, called the oracle tape, and three special states : $q_{query}, q_{yes}, q_{no}$. Whenever the machine enters the state q_{query} , with some word w written on the oracle tape, it moves in one step to the state q_{yes} or q_{no} depending on whether $w \in O$.

We denote by P^O (resp. NP^O) the class of languages decided in polynomial time by a deterministic (resp. non-deterministic) Turing machine with Oracle O. Given a complexity class \mathcal{C} , we define $\mathsf{P}^{\mathcal{C}} = \bigcup_{O \in \mathcal{C}} \mathsf{P}^O$ (and similarly for NP).

- 1. Prove that for any C-complete language L, $\mathsf{P}^{C} = \mathsf{P}^{L}$ and $\mathsf{N}\mathsf{P}^{C} = \mathsf{N}\mathsf{P}^{L}$.
- 2. Show that for any language L, $\mathsf{P}^L = \mathsf{P}^{\bar{L}}$ and $\mathsf{N}\mathsf{P}^L = \mathsf{N}\mathsf{P}^{\bar{L}}$.
- 3. Prove that if $NP = P^{SAT}$ then NP = coNP.

Solution:

- 1. We do the proof for NP. Let $B \in NP^{\mathcal{C}}$, we have N a polynomial NTM for B with an oracle $C, C \in \mathcal{C}$. We also have a polynomial reduction f such that $: x \in \mathcal{C} \Leftrightarrow f(x) \in A$. We build N' for B with oracle A, by simulating N and replacing a call $u \in C$? with a call $f(u) \in A$?. f is polynomial, so we are still in NP, which concludes the proof.
- 2. We simply have to swap the states q_{yes} and q_{no} in the computation.
- 3. P^{SAT} is a deterministic class, so it is closed by complementation, so if $\mathsf{NP} = \mathsf{P}^{SAT}$, $\mathsf{coNP} = \mathsf{NP}$
- 4.

Exercise 4: Collapse of PH

- 1. Prove that if $\Sigma_k^P = \Sigma_{k+1}^P$ for some $k \ge 0$ then $\mathsf{PH} = \Sigma_k^P$. (Remark that this is implied by $\mathsf{P} = \mathsf{NP}$).
- 2. Show that if $\Sigma_k^P = \prod_k^P$ for some k then $\mathsf{PH} = \Sigma_k^P$ (*i.e.* PH collapses).
- 3. Show that if PH = PSPACE then PH collapses.
- 4. Do you think there is a polynomial time procedure to convert any QBF formula into a QBF formula with at most 10 variables?

Solution:

- 1. We assume that $\Sigma_k^P = \Sigma_{k+1}^P$ for some $k \ge 0$, we prove by induction that $\forall t \ge k, \Sigma_k^P = \Sigma_j^P$, For j = i, it is directly correcT. For $j > i, \Sigma_j^P = \mathsf{NP}^{\Sigma_{j-1}^P} = \mathsf{NP}^{\Sigma_i^P}$ by induction, and thus $\Sigma_j^P = \Sigma_{i+1}^P$. By hypothesis, we then have $\Sigma_j^P = \Sigma_i^P$
- 2. With the previous question, we just have to prove that $\Sigma_k^P = \Sigma_{k+1}^P$. Let there be $A \in \Sigma_{k+1}^P$. A can be expressed as follows :

$$x \in A \Leftrightarrow \exists y_1 \in \{0,1\}^{p|(x)|} \forall \dots Q_{k+1} y_{k+1} \in \{0,1\}^{p|(x)|} (x, y_1, \dots, y_{k+1}) \in B$$

with $B \in \mathsf{P}$.

On input, (x, y_1) , decide if $\forall y_2 \in \{0, 1\}^{p|(x)|} \dots Q_{k+1}y_{k+1} \in \{0, 1\}^{p|(x)|}(x, y_1, \dots, y_{k+1}) \in B$ is a problem in $\prod_k^P = \Sigma_k^P$. We can thus rewrite it as, with $C \in \mathsf{P}$:

$$\exists y_2 \in \{0,1\}^{p|(x)|} \dots \overline{Q}_{k+1} y_{k+1} \in \{0,1\}^{p|(x)|} (x, y_1, \dots, y_{k+1}) \in C$$

Finally :

$$x \in A \Leftrightarrow \exists y_1, y_2 \in \{0, 1\}^{p|(x)|} \forall ... \overline{Q}_{k+1} y_{k+1} \in \{0, 1\}^{p|(x)|} (x, y_1, ..., y_{k+1}) \in B$$

with $B \in \mathsf{P}$. And this is the expression of a problem in Σ_k^P . Finally, $\Sigma_k^P = \Sigma_{k+1}^P$.

- 3. If $\mathsf{PH} = \mathsf{PSPACE}$, then QBF is in Σ_k^P for some k. But QBF is a complete problem for PSPACE , and thus PH. Let there be $B \in \mathsf{PH}$, it can be reduced to $QBF \in \Sigma_k^P$, so $B \in \Sigma_k^P$, and $\mathsf{PH} = \Sigma_k^P$
- 4. It is unlikely that PH collapses, and the statement would imply the previous question.

Exercise 5: Relativization

Show that there is an oracle O such that $\mathsf{P}^O = \mathsf{N}\mathsf{P}^O$.

Solution:

We have $\mathsf{PSPACE} \subseteq \mathsf{NP}^{\mathsf{PSPACE}}$, we must show the converse. Let there be N a polynomial NTM with oracle $A \in \mathsf{PSPACE}$. We can simulate N in PSPACE on input x by :

- enumerate all possible path of $N^A(x)$
- For each of them, compute the oracle calls
- accept if one of the path accepts.

Each path is in polynomial size, thus the enumeration is, and the oracle calls are PSPACE. We do have $NP^{PSPACE} \subseteq PSPACE$.