Advanced Complexity

TD $n^{\circ}5$

Charlie Jacomme

October 11, 2017

Exercise 1: P-choice

A language L is said P-peek $(L \in \mathsf{P}p)$ if there is a function $f : \{0,1\}^* \times 0, 1^* \to \{0,1\}^*$ computable in polynomial time such that $\forall x, y \in \{0,1\}^*$:

- $f(x,y) \in \{x,y\}$
- if $x \in L$ or $y \in L$ then $f(x, y) \in L$
- f is called the peeking function for L.
- 1. Show that $\mathsf{P} \subseteq \mathsf{P}p$
- 2. Show that $\mathsf{P}p$ is closed under complementary
- 3. Show that if there exist L NP-hard in Pp, then P = NP
- 4. Let $r \in [0,1]$ a real number, we define L_r as the set of words $b = b_1...b_n \in \{0,1\}^*$ such that $0, b_1...b_n \leq r$. Show that $L_r \in \mathsf{P}p$
- 5. Deduce that there exist a non-recursive language in $\mathsf{P}p$

Exercise 2: Complete problems for levels of PH

Show that the following problem is Σ_k^P -complete (under polynomial time reductions).

- $\Sigma_k QBF : \bullet \text{ INPUT} : A \text{ quantified boolean formula } \psi := \exists X_1 \forall X_2 \exists ... Q_k X_k \phi(X_1, ..., X_k), \text{ where } W \in \mathcal{A}_k$
 - $X_1, ... X_k$ are k disjoint sets of variables, Q_k is the quantifier \forall if k is even, and the quantifier \exists if k is odd, ϕ is a boolean formula over variables $X_1 \cup \cdots \cup X_k$;
- QUESTION : is the input formula true?

Define a similar problem $\Pi_k QBF$ such that $\Pi_k QBF$ is Π_k^P -complete.

Exercise 3: Oracle machines

Let O be a language. A Turing machine with oracle O is a Turing machine with a special additional read/write tape, called the oracle tape, and three special states : $q_{query}, q_{yes}, q_{no}$. Whenever the machine enters the state q_{query} , with some word w written on the oracle tape, it moves in one step to the state q_{yes} or q_{no} depending on whether $w \in O$.

We denote by P^O (resp. NP^O) the class of languages decided in polynomial time by a deterministic (resp. non-deterministic) Turing machine with Oracle O. Given a complexity class \mathcal{C} , we define $\mathsf{P}^{\mathcal{C}} = \bigcup_{O \in \mathcal{C}} \mathsf{P}^O$ (and similarly for NP).

- 1. Prove that for any C-complete language L, $\mathsf{P}^{\mathcal{C}} = \mathsf{P}^{L}$ and $\mathsf{N}\mathsf{P}^{\mathcal{C}} = \mathsf{N}\mathsf{P}^{L}$.
- 2. Show that for any language L, $\mathsf{P}^L = \mathsf{P}^{\bar{L}}$ and $\mathsf{N}\mathsf{P}^L = \mathsf{N}\mathsf{P}^{\bar{L}}$.
- 3. Prove that if $NP = P^{SAT}$ then NP = coNP.

Exercise 4: Collapse of PH

- 1. Prove that if $\Sigma_k^P = \Sigma_{k+1}^P$ for some $k \ge 0$ then $\mathsf{PH} = \Sigma_k^P$. (Remark that this is implied by $\mathsf{P} = \mathsf{NP}$).
- 2. Show that if $\Sigma_k^P = \prod_k^P$ for some k then $\mathsf{PH} = \Sigma_k^P$ (*i.e.* PH collapses).
- 3. Show that if PH = PSPACE then PH collapses.
- 4. Do you think there is a polynomial time procedure to convert any QBF formula into a QBF formula with at most 10 variables?

Exercise 5: Relativization

Show that there is an oracle O such that $\mathsf{P}^O = \mathsf{N}\mathsf{P}^O$.