Advanced Complexity
TD n®5

Charlie Jacomme

October 11, 2017

Exercise 1: Unary Languages
1. Prove that if a unary language is NP-complete, then P = NP.
Hint : consider a reduction from SAT to this unary language and exhibit a polynomial
time recursive algorithm for SAT

2. Prove that if every unary language in NP is actually in P, then EXP = NEXP.

Solution:

1. Suppose we have a unary language U NP-complete. We then have a reduction R
from SAT to U. R(¢) is computed in polynomial time, so we have p such that
|R(¢)| < p(|¢|)- Basically, we can then use the self reducibility of SAT, but by cutting
some recursions branching by using the fact that R(¢) = R(¢) if and only if ¢ and
¢ are both satisfiable or both un-satisfiable. We will write ¢(t) where t € {0,1}* to
consider partial evaluation of ¢ where we substituted x; with the truth value of ¢;.

This yields the algorithm, where n is the number of variables in ¢ :

Initialise hash table H
Sat (@)
if It|l = n then return ’yes’ if ¢(¢) has no clauses,
else return ’no’
Otherwise, if R(¢(t)) € H, then return H(R(¢(t)))
Otherwise, return ’yes’ if either Sat(¢(t0)) or Sat(p(tl)).
return no otherwise
In both case, set H(R(¢(t)) to the answer

There will be at most p(n) different possibles values for the R(¢(¢)) (U is unary),
so there will be at most p(n) recursive call of the functions. And in every recursive

call, we make a computation of R in time p(n). So our algorithms runs in O(p?(n))
wich is in P. Thus SAT € P, and P = NP.

2. For a language L decided in time T'(n), we define Lyqq = {1(9”’10T(‘z|)),x € L}. Let
L € NEXP recognized by N in time T'(n) exponential. We build N’ € NP which
recognizes Lpqq :

— On input 1™, check the well-formdness to obtain (z,10Y) =m

— Simulate N on z for at most y step

— Either return the result of IV , or reject in case of time out.

N’ does recognizes Lpqq, and it runs in polynomial times for the first step, and then
y step for the second, with y being part of the input. Thus, N’ € NP. But then by
assumption, L € P, and we have M a DTM which recognizes L,qq in polynomial
time. We thus simply construct M’ which is in exponential time, which given x
computes 1@10700) 514 then simulate M with this input, and we are done.

Exercise 2: On the existence of one-way functions
A one-way function is a bijection f from k-bit intergers to k-bit intergers such that f is

computable in polynomial time, but f~! is not. Prove that if there exists one-way functions,
then

A={(z,y) | f~'(z) <y} € (NP N coNP)\P

Solution:

— A € NP : guess a number ¢, check that f(c) = x,i.e ¢ = f~!(z), and finally, that
c<y.

— A€ coNP & {(z,y) | f~!(x) >=y} € NP, which we solve as previously

— A€ P = f~! computable in polynomial time

Exercise 3: Prime Numbers
1. Show that UNARY-PRIME = {1" | n is a prime number } is in P.
2. Show that PRIME = {p|p is a prime number encoded in binary } is in coNP.

3. We want to prove that PRIME is in NP. Use the following characterization of prime numbers
to formulate a non-deterministic algorithm runing in polynomial time.

A number p is prime if and only if there exists a € [2,p — 1] such that :
(a) a?~! = 1[p], and

—1
(b) for all ¢ prime divisor of p — 1, a’T Z 1[p|

To prove that your algorithm runs in polynomial time, you can admit that all common
arithmetical operations on Z/pZ can be performed in polynomial time.

Solution:
1. For every i < n, we test if i|n
2. We guess the two factors

3. We guess the a, and then make O(p) modulo exponentiation.

Exercise 4: Some P-complete problems
Show the following problems to be P-complete :

1. — INPUT : A set X, a binary operator * defined on X, a subset S C X and x € X
— QULESTION : Does x belongs to the closure of S with respect to *?

Hint : for the hardness, reduce from Monotone Circuit Value

2. — INPUT : G a context-free grammar, and w a word
— QUESTION : w € L(G)?

Hint : for the hardness, reduce from the previous problem

Solution:

1. The problem is in P as we can easily saturate until a fix point is reached. To show
the hardness, we reduce Monotone Circuit Value, with gates with maximum two
inputs. We are given a circuit C' = (V, E, label), and we define :

X = {22zl x eV}

S = {292 € X Alabel(z) =L} U {z!|z € X Alabel(z) = T}

oixyl = N f (a,t) € B, (y,t) € E,label(t) = A
tVI if (z,t) € E, (y,t) € E,label(t) = V
undefined otherwise

Finally, we have :

v(x) = a < z* € Closure(S)(a € {0,1}

Page 2

2. CKY is in polynomial time. For the hardness, we reduce from the previous problem.
We are given (X, S, z,) and we define G = (V, T, S, P) and w € T* in the following
way : w is the empty string, the set of variables V' = X, there is only one terminal
symbol, T'= {a}, the initial variable is S = {z}, and the set of production is :

P={z—yz:yxz=z}U{zx —e:x €S}
We then have :

x € Closure(S) < € can be generated from x in G

Page 3

