
Advanced Complexity

TD n
◦
5

Charlie Jacomme

October 11, 2017

Exercise 1 : Unary Languages

1. Prove that if a unary language is NP-complete, then P = NP.
Hint : consider a reduction from SAT to this unary language and exhibit a polynomial

time recursive algorithm for SAT

2. Prove that if every unary language in NP is actually in P, then EXP = NEXP.

Solution:

1. Suppose we have a unary language U NP-complete. We then have a reduction R
from SAT to U . R(φ) is computed in polynomial time, so we have p such that

|R(φ)| ≤ p(|φ|). Basically, we can then use the self reducibility of SAT, but by cutting
some recursions branching by using the fact that R(φ) = R(ψ) if and only if φ and

ψ are both satis�able or both un-satis�able. We will write φ(t) where t ∈ {0, 1}∗ to
consider partial evaluation of φ where we substituted xi with the truth value of ti.

This yields the algorithm, where n is the number of variables in φ :

Initialise hash table H

Sat(φ)
if |t| = n then return 'yes ' if φ(t) has no clauses ,

else return 'no'

Otherwise , if R(φ(t)) ∈ H, then return H(R(φ(t)))
Otherwise , return 'yes ' if either Sat(φ(t0)) or Sat(φ(t1)).

return no otherwise

In both case , set H(R(φ(t)) to the answer

There will be at most p(n) di�erent possibles values for the R(φ(t)) (U is unary),

so there will be at most p(n) recursive call of the functions. And in every recursive

call, we make a computation of R in time p(n). So our algorithms runs in O(p2(n))
wich is in P. Thus SAT ∈ P , and P = NP.

2. For a language L decided in time T (n), we de�ne Lpad = {1(x,10T (|x|)), x ∈ L}. Let
L ∈ NEXP recognized by N in time T (n) exponential. We build N ′ ∈ NP which

recognizes Lpad :

� On input 1m, check the well-formdness to obtain (x, 10y) = m
� Simulate N on x for at most y step
� Either return the result of N , or reject in case of time out.

N ′ does recognizes Lpad, and it runs in polynomial times for the �rst step, and then

y step for the second, with y being part of the input. Thus, N ′ ∈ NP. But then by

assumption, L ∈ P , and we have M a DTM which recognizes Lpad in polynomial

time. We thus simply construct M ′ which is in exponential time, which given x
computes 1(x,10

T (|x|)) and then simulate M with this input, and we are done.

Exercise 2 : On the existence of one-way functions

A one-way function is a bijection f from k-bit intergers to k-bit intergers such that f is

1

computable in polynomial time, but f−1 is not. Prove that if there exists one-way functions,
then

A = {(x, y) | f−1(x) < y} ∈ (NP ∩ coNP)\P

Solution:

� A ∈ NP : guess a number c, check that f(c) = x,i.e c = f−1(x), and �nally, that

c < y.
� A ∈ coNP⇔ {(x, y) | f−1(x) >= y} ∈ NP , which we solve as previously

� A ∈ P ⇒ f−1 computable in polynomial time

Exercise 3 : Prime Numbers

1. Show that UNARY-PRIME = {1n | n is a prime number } is in P.

2. Show that PRIME = {p|p is a prime number encoded in binary } is in coNP.

3. We want to prove that PRIME is in NP. Use the following characterization of prime numbers
to formulate a non-deterministic algorithm runing in polynomial time.

A number p is prime if and only if there exists a ∈ [2, p− 1] such that :

(a) ap−1 ≡ 1[p], and

(b) for all q prime divisor of p− 1, a
p−1
q 6≡ 1[p]

To prove that your algorithm runs in polynomial time, you can admit that all common

arithmetical operations on Z/pZ can be performed in polynomial time.

Solution:

1. For every i < n, we test if i|n
2. We guess the two factors

3. We guess the a, and then make O(p) modulo exponentiation.

Exercise 4 : Some P-complete problems

Show the following problems to be P-complete :

1. � INPUT : A set X, a binary operator ∗ de�ned on X, a subset S ⊂ X and x ∈ X
� QUESTION : Does x belongs to the closure of S with respect to ∗ ?
Hint : for the hardness, reduce from Monotone Circuit Value

2. � INPUT : G a context-free grammar, and w a word

� QUESTION : w ∈ L(G) ?
Hint : for the hardness, reduce from the previous problem

Solution:

1. The problem is in P as we can easily saturate until a �x point is reached. To show

the hardness, we reduce Monotone Circuit Value, with gates with maximum two

inputs. We are given a circuit C = (V,E, label), and we de�ne :

X = {x0, x1|x ∈ V }

S = {x0|x ∈ X ∧ label(x) =⊥} ∪ {x1|x ∈ X ∧ label(x) = >}

xi ∗ yj := ti∧j if (x, t) ∈ E, (y, t) ∈ E, label(t) = ∧
ti∨j if (x, t) ∈ E, (y, t) ∈ E, label(t) = ∨
unde�ned otherwise

Finally, we have :

v(x) = a⇔ xa ∈ Closure(S)(a ∈ {0, 1}

Page 2

2. CKY is in polynomial time. For the hardness, we reduce from the previous problem.

We are given (X,S, x, ∗) and we de�ne G = (V, T, S, P) and w ∈ T ∗ in the following

way : w is the empty string, the set of variables V = X, there is only one terminal

symbol, T = {a}, the initial variable is S = {x}, and the set of production is :

P := {x→ yz : y ∗ z = x} ∪ {x→ ε : x ∈ S}

We then have :

x ∈ Closure(S)⇔ ε can be generated from x in G

Page 3

