
Advanced Complexity

TD n
◦
4

Charlie Jacomme

October 04, 2017

Exercise 1 : Language theory

Show that the following problems are PSPACE-complete :

1. NFA Universality :
� INPUT : a non-deterministic automaton A over alphabet Σ
� QUESTION : L(A) = Σ∗ ?
Bonus : what is the complexity of this problem for a DFA?

2. NFA Equivalence
� INPUT : two non-deterministic automata A1 and A2 over the same alphabet Σ
� QUESTION : L(A1) = L(A2)
Bonus : what is the complexity of this problem for a DFA?

3. DFA Intersection Vacuity :
� INPUT : deterministic automata A1, . . . , Am for some m
� QUESTION :

⋂m
i=1 L(Ai) = ∅ ?

Solution:

1. The converse problem is in NP, and PSPACE is stable by complement (remark that

there will be a word not accepted of polynomial size in the size of the automaton if

there is a word not accepted). For the hardness, supposeM is a TM with polynomial

space bound p(n), and w is an input to M of length n. We will show how to take

M and w, and write down, in polynomial time, a regular expression E that is Σ∗ if
and only if M does not accept w (PSPACE is closed under complementation).

Considering that a run ofM can be written by writing the sequence of con�gurations

(of length p(n) with the blank symbols) separated by a #.Then, we construct E =
F + G + H where F ,G and H respectively de�ne the runs that do not start right,

move right, or �nish right :

� H : �nishes wrong. M fails to accept if the sequence has no accepting state.

Thus, let H = (Σ−Qf)∗, where Qf is the set of accepting states of M .

� F : Starts wrong. Any string in which the �rst p(n) + 2 symbols are not #, q0
(the start state), w, and p(n) − n blanks, is not the beginning of an accepting

computation, and so should be in L(E). We can write F as the sum of the terms :

� (Σ− {#})Σ∗, i.e., all strings that do not begin with #.

� Σ(Σ− q0)Σ∗, i.e., all strings that do not have q0 as their second symbol.

� Σi+1(Σ− ai)Σ∗, where ai is the ith position of w.

� Σi(Σ−B)Σ∗, for all n+ 3 ≤ i ≤ p(n) + 1.
� (Σ + ε)p(n)+1. This term covers all strings that are shorter than p(n) + 2

symbols, and therefore cannot have an initial state, regardless of the symbols

found there.

� G : moves wrong. We need to capture all strings that have some point at which

symbols separated by distance roughly p(n) do not re�ect a move of M. The idea

is similar to that used in Cook's theorem . Each position of a con�guration is

determined by the symbol at that position in the previous con�guration and the

1

two neighboring positions. Thus, G is the sum of terms (Σ∗)UVW (Σp(n))X(Σ∗),
where U, V,W,X are four symbols of Σ such that if UVW were three consecutive

symbols of a con�guration of M , then X would not be the symbol in the same

position as V in the next ID. For example, if none of U, V,W are a state, then

X could be any symbol but V .
We can indeed compute those formulae in polynomial time, and if M accepts,

E 6= Σ∗, and if M rejects, there is no accepting run and E = Σ∗

Bonus : For a DFA, we check if a non acceptable state can be reached, it is NL.

2. We can guess a word (letter by letter, because its size is bounded by 2|Q1|+|Q2| which
is accepted by one and not the other, we use the power set construction on the �y

for the second one, and so the co problem is NP and the problem is PSPACE. We

can also build the two minimal automata by exhaustive search and check if they are

indeed equal, which is also PSPACE. For the hardness, we are given an automaton

A. We simply construct B such that L(B) = Σ∗ , and then :

L(A) = Σ∗ ⇔ L(A) = L(B)

Bonus : For a DFA, the minimization is in O(n× log(log(n))) where n is the number

of state with the Hopcroft algorithm.

3. As for the previous one we guess a word which invalidate the problem. For the

hardness we are given A. For the hardness, we can use the same proof as in the �rst

one, but instead of making a global E, we build all the corresponding deterministic

Ai and check the universality of the union. Beware, for the moves wrong regexp, we

can easily produce a NFA detecting a wrong formation, but with determinism, we

need p(n) DFA, one for each position where the mistake might be.

Exercise 2 : Did you get padding ?

Show that if P = PSPACE, then EXPTIME = EXPSPACE.

Solution:

We assume that PSPACE ⊂ P . Let L1 be accepted by M1 ∈ EXPSPACE, with M1 deciding

in p(2n) space, where p is a polynomial function. We de�ne

L2 = {(x, 12|x|)|M1 accepts x in space p(|x|+ 2|x|)}

L2 is accepted by M2 which simulates M1 and rejects if it uses too much space. Clearly,

M2 is in PSPACE ⊆ P . So we have M3 which accepts L2 in polynomial time. We can then

build M4 which on input x produces (x, 12
|x|

) and simulates M3. M4 recognizes L1, and

M4 ∈ EXPTIME. We do have EXPSPACE ⊆ EXPSPACE.

Exercise 3 : Too fast !

Show that ATIME(log n) 6= L.

Solution:

When considering ATIME(log n), we do not even have the time to read the full input. So

any language which is in L and needs for the input to be completely read will yield the

result. For instance, one may use the palindromes language, or 0n on a two letter alphabet,

or 02k on a one letter alphabet.

Exercise 4 : Direct application

Show that EXPSPACE = AEXPTIME.
Hint : You may use that if f is space-constructible, then :

SPACE(poly(f(n)) = ATIME(poly(f(n)))

Page 2

Solution:

We set f(n) = 2n, then :

SPACE(2p(n)) ⊆ SPACE(poly(2p(n)) = ATIME(poly(2p(n))) ⊆ AEXPTIME

As p is arbitrary, then EXPSPACE ⊆ AEXPTIME. And conversely :

ATIME(2p(n)) ⊆ ATIME(poly(2p(n)) = SPACE(poly(2p(n))) ⊆ EXPSPACE

Exercise 5 : Closure under morphisms

Given a �nite alphabet Σ, a function f : Σ∗ → Σ∗ is a morphism if f(Σ) ⊆ Σ and for all

a = a1 · · · an ∈ Σ∗, f(a) = f(a1) · · · f(an) (f is uniquely determined by the value it takes on

Σ).

1. Show that NP is closed under morphisms, that is : for any language L ∈ NP, and any

morphism f on the alphabet of L, f(L) ∈ NP.

2. Show that if P is closed under morphisms, then P = NP.

Solution:

1. If we are given L andM a NTM recognizing L, then we can buildM ′ which on inputs
f(a) guesses a1, ..., an ∈ Σn such that f(a) = f(a1)...f(an) and �nally simulates M
on a1...an.M

′ is a NTM in polynomial time which recognizes f(L). Thus f(L) ∈ NP.

2. SAT is in NP, and in particular, with the certi�cate de�nition, we know that

L = {(φ, u)|u is a correct valuation of φ}

is in P. We may consider an alphabet such that the symbols for φ and u are disjoints,
and then, we may consider the morphism f such that f(φ) = φ and f(u) = 0|n|. We

have f(L) = SAT , L ∈ P , and by hypothesis, P is closed under morphism. Thus,

SAT ∈ P , and with the Cook-Levin theorem, P = NP.

Page 3

