1. **Exercise 1: Language theory**
 Show that the following problems are PSPACE-complete:

 1. **NFA Universality**
 - **INPUT**: a non-deterministic automaton A over alphabet Σ
 - **QUESTION**: $L(A) = \Sigma^*$?
 - **Bonus**: what is the complexity of this problem for a DFA?

 2. **NFA Equivalence**
 - **INPUT**: two non-deterministic automata A_1 and A_2 over the same alphabet Σ
 - **QUESTION**: $L(A_1) = L(A_2)$
 - **Bonus**: what is the complexity of this problem for a DFA?

 3. **DFA Intersection Vacuity**
 - **INPUT**: deterministic automata A_1, \ldots, A_m for some m
 - **QUESTION**: $\bigcap_{i=1}^m L(A_i) = \emptyset$?

 Exercise 2: Did you get padding?
 Show that if $P = \text{PSPACE}$, then $\text{EXPTIME} = \text{EXPSPACE}$.

 Exercise 3: Too fast!
 Show that $\text{ATIME}(\log n) \neq L$.

 Exercise 4: Direct application
 Show that $\text{EXPSPACE} = \text{AEXPTIME}$.
 Hint: You may use that if f is space-constructible, then:

 $$\text{SPACE}(\text{poly}(f(n))) = \text{ATIME}(\text{poly}(f(n)))$$

 Exercise 5: Closure under morphisms
 Given a finite alphabet Σ, a function $f : \Sigma^* \rightarrow \Sigma^*$ is a morphism if $f(\Sigma) \subseteq \Sigma$ and for all $a = a_1 \cdots a_n \in \Sigma^*$, $f(a) = f(a_1) \cdots f(a_n)$ (f is uniquely determined by the value it takes on Σ).

 1. Show that NP is closed under morphisms, that is: for any language $L \in \text{NP}$, and any morphism f on the alphabet of L, $f(L) \in \text{NP}$.

 2. Show that if P is closed under morphisms, then $P = \text{NP}$.