
Advanced Complexity

TD n
◦
3

Charlie Jacomme

September 27, 2017

Exercise 1 : Space hierarchy theorem

Using a diagonal argument, prove that for two space-constructible functions f and g such
that f(n) = o(g(n)) (and as always f, g ≥ log) we have SPACE(f(n)) (SPACE(g(n)).

Solution:

We de�ne a language which can be recognized using space O(g(n)) but not in f(n).

L = {(M,w)|M reject w using space ≤ g(|(M,w)| and|Γ| = 4}

Where Γis the alphabet of the Turing Machine
� We show that L ∈ SPACE(g(n)) by constructing the corresponding TM. This is

where we need the fact that the alphabet is bounded. Indeed, we want to construct
one �xed machine that recognizes L for any TM M , and if we allow M to have
an arbitrary size of alphabet, the �xed machine might need a lot of space in order
to represent the alphabet of M , and it might go over O(g(n)). On an input x, we
compute g(x) and mark down an end of tape marker at position f(x), so that we
reject if we use to much space. If x is not of the form (M,w), we reject, else we
simulate M on w for at most |Q| × 4g(x) × n steps. If we go over the timeout, we
reject. Else, if w is accepted, we reject, and if w is rejected, we accept. This can be
done in SPACE(O(g(n))), and we conclude with the speed up theorem.

� Show that L 6∈ SPACE(f(n)). Let's assume there is a machine M ′ recognizing L in
space f(n). We can create from M ′ a machine M ′′ which will recognize L in space
O(f(n)) and with an alphabet of size 4. For a su�ciently long w, M ′′ uses less than
g(|(M ′′, w)|) space on input M ′′. If (M ′′, w) ∈ L, M ′′ must both accept and reject
(M ′′, w). The other case is also a contradiction, thus there cannot be a machine
recognizing L in space f(n).

Exercise 2 : Polylogarithmic space

Let polyL = ∪k∈NSPACE(logk(n)). Show that polyL 6= P.

Solution:

P has a complete problem under logarithmic space many-one reductions but polyL does
not due to the space hierarchy theorem. The space hierarchy theorem guarantees that
DSPACE(logk(n)) DSPACE(logk+1(n)) for all integers k > 0. If polyL had a complete
problem, call it A, it would be an element of DSPACE(logk(n)) for some integer k > 0. Sup-
pose problem B is an element of DSPACE(logk+1(n)) DSPACE(logk(n)). The assumption
that A is complete implies the following O(logk(n)) space algorithm for B : reduce B to A
in logarithmic space, then decide A in O(logk(n)) space. This implies that B is an element
of DSPACE(logk(n)) and we have a contradiction.

Exercise 3 : Padding argument

1. Show that if DSPACE(nc) ⊆ NP for some c > 0, then PSPACE ⊆ NP.

2. Deduce that DSPACE(nc) 6= NP.

1

Solution:

1. Assume DSPACE(nc) ⊆ NP and let there be L ∈ PSPACE. For some k, we have

L ∈ DSPACE(nk). Then, L̃ = {(x, 1xk/c
)|x ∈ L} ∈ DSPACE(nc) ⊆ NP. Thus L̃ ∈

NP . As we can reduce L to L̃ by transforming x into (x, 1x
k/c

) in logspace, we do
have that L ∈ NP . This is true for any L, so it yields the result.

2. Assume DSPACE(nc) = NP, then PSPACE = NP = DSPACE(nc) which is a
contradiction to the space hierarchy theorem.

Exercise 4 : My very �rst PSPACE-complete problem

Show that the following problem is PSPACE-complete (not assuming anything about QBF) :
� INPUT : a Turing Machine M and a word w and a number t written in unary
� QUESTION : does M accepts w within space t ?

Solution:

� The problem is PSPACE : given an input (M,w, t), we can build M ′ which simulates
M on w and rejects ifM uses more than t cells, and returns the result ofM otherwise.
As t is part of the input, we are e�ectively in PSPACE.

� Hardness : Let L be a language and M a TM which recognizes L in PSPACE.
M ∈ PSPACE, so there is a polynomial p which can bound the size of the runs of
M . So on input w, we have that w ∈ L i� M accepts w within space 1p(|w|), and
as we can construct 1p(|w|) in logspace, we have an e�ective reduction from L to our
problem.

Exercise 5 : PSPACE and games

The Geography game is played as follow :
� The game starts with a given name of a city, for instance Cachan ;
� the �rst player gives the name of a city whose �rst letter coincides with the last letter of

the previous city, for instance Nice ;
� the second player gives then another city name, always starting with the last letter of the

previous city, for instance Evry ;
� the �rst player plays again, and so on � with the restriction that no player is allowed to

give the name of a city already used in the game ;
� the loser is the �rst player who does not �nd a new city name to continue.
This game can be described using a directed graph whose vertices represent cities and where
an edge (X,Y) means that the last letter of the city X is the same as the �rst letter of the
city Y . This graph has also a vertex marked as the initial vertex of the game (the initial city).
Each player choses a vertex of the graph, the �rst player choses �rst, and the two players
alternate their moves. At each move, the sequence of vertices chosen by the two players must
form a simple path in the graph, starting from the distinguished initial vertex.

Player 1 wins the game if, after some number of moves, Player 2 has no valid move (that is
no move that forms a simple path with the sequence of previous moves).

GEOGRAPHY is the following problem :
� INPUT : a directed graph G and an initial vertex s.
� QUESTION : is the player 1 sure to win the game on G starting at s ?
Show that GEOGRAPHY is PSPACE-complete by :

1. Showing that GEOGRAPHY is PSPACE

2. That the satis�ability of a QSAT formula of the form ∃x1∀x2 . . . ∃xn
∧

(Ci) where Ci is
a clause can be expressed as a GEOGRAPHY instance.

Solution:

1. Actually, any such game can be solved in PSPACE. Given the input, we run a recur-
sive algorithm win(G, (s1, ...sk)) which says if, given the graph G and the previous

Page 2

moves (s1, ...sk) the player has a winning strategy. We de�ne :

win(G, (s1, ...sk)) :=
∨

sk→s∈G,s 6=si

¬win(G, (s1, ..., sk, s))

At every recursive call we only add one node to the recursion stack, thus the size of
the recursive stack is at most the size of the graph, we do are in |G|.

2. The �gure gives an example for
∃x∀y∃z.(¬y∨ z)∧ (x∨¬z) Each variable
is replaced by a diamond-like "choice-
gadget" and all those gadgets are put
sequentially. Any path in the graph will
pick a valuation for the variables. The ∃
variables are made to be chosen at player
1 turn, and ∀ at player 2 turn. Then, at
the end of the valuation, we add a node
for every clause. Intuitively, the player
2 is allowed to chose a clause that he
thinks might be false according to the
valuation. Finally, from every clause, we
have an edge from this node to the in-
verse of the litteral in the clause. Thus, if
the clause is satis�ed by the valuation, we
have for instance x in the clause and x set
to true, then player 1 can take the path
which leads to ¬x and block player 2. If
the formula is satis�able, player 1 will
always be able to make the good choices,
and if it is not, the player 2 may block
him. We do have a reduction, which is in
logspace.

'

Page 3

