
Advanced Complexity

TD n
◦
2 : SPACE and NL

Charlie Jacomme

September 20, 2017

Exercise 1 : Warm up

Show that the following problems are NL-complete :

1. Deciding if a non-deterministic automaton A accepts a word w.

2. Deciding if a directed graph is strongly connected is NL-complete.

3. Deciding if a directed graph has a cycle.

Solution:

1. The problem is in NL as we can simply guess the path in the automaton corres-

ponding to the word and arrive in an accepting state. To be in logspace, we do

not however guess the whole path at once, but guess transition by transition while

keeping a counter to the current state. Given a graph G, a starting node and an

ending node, we label all the edges with the lettre ε in order to create an automaton

A, with initial state (resp. �nal) the starting (resp. ending) node. Now, REACH is

equivalent to whether A accepts ε, we thus reduced REACH to our problem, which

is then NL-complete.

2. The problem is in co−NL (=NL), as we can simply guess two nodes and check that

they are not connected. We once again reduce REACH, so we are given (G, s, t). We

construct G′ by copying G, and for every node i, we add an edge from i to s, and
one from t to i. This reduction is logspace as we only need one counter for the loop

on the nodes. And �nally, G' is strongly connected if and only if there is a path from

s to t.

3. The problem is in NL, given G we guess an edge (x, y) of the cycle and run REACH
on (G, x, y). We, one last time, reduce REACH. Given (G, s, t), we may create G′

by �rst adding an edge between t and s, creating a cycle inside G′ if s and t are
connected in G. This is not enough, because G may have other cycles and the

equivalence would not hold. Thus, we must �rst eliminate all the cycles in G. Let

m be the number of nodes in G. We create m copies of G, which can be seen as m

levels. For every edge from i to j in G, we draw an edge from node i at each level

to node j at the next level. Additionally, we draw an edge from each node i at each
level to node i at the next level. We call s′ the s of the �rst level, and t′ the t of the
last level. Now, there is a path from s to t in G if and only if there is path from s′

to t′ in G′. Moreover, in G′ path are only "going up" into the levels, so there cannot

be any circle. Thus if we add an edge from t′ to s′, we now have that there is a path

from s to t in G if and only if there is a cycle in G′.

Exercise 2 : Restrictions of the SAT problem

1. Let 3-SAT be the restriction of SAT to clauses consisting of at most three literals (called 3-
clauses). In other words, the input is a �nite set S of 3-clauses, and the question is whether

S is satis�able. Show that 3-SAT is NP-complete for logspace reductions (assuming SAT

is).

1

2. Let 2-SAT be the restriction of SAT to clauses consisting of at most two literals (called

2-clauses). Show that 2-SAT is in P, using proofs by resolution.

3. Show that 2-UNSAT (i.e, the unsatis�ability of a set of 2-clauses) is NL-complete.

4. Conclude that 2-SAT is NL-complete.

Solution:

1. First, the problem is in NP as a sub case of SAT. We now must be able to transform

any instance of SAT into an instance of 3-SAT. The idea is that we can replace a

clause L1 ∨ L2 ∨ C (C non empty) by the clauses L1 ∨ L2 ∨ x and ¬x ∨ C with x

fresh. Indeed, if L1 ∨ L2 ∨ C can be satis�ed, then either L1 ∨ L2 can be satis�ed,

and then ¬x ∨ C with x set to false, either L1 ∨ L2 cannot be satis�ed, thus C can

and we can set x to true. Conversely, if both clauses are true , if x is true then C is

true, and if C is false, L1 or L2 is true. We do this for all the clauses in the formula,

and it yields a 3-SAT formula with the same satis�ability. To conclude, we show that

this transformation can be done in log space. We �rst read the input to obtain the

number of variables N, and write N+1 on a tape B. Then, we treat each clauses one
after the other, by writing the �rst variable to a tape B1, the second to a tape B2

and the third to B3. If the clause if over, we write it down directly on the output,

if it is not, we write B1 ∨ B2 ∨ z where z is obtained from B. Then, we write 6= z,
on B1, increment B, and the following variable goes to B2, et caetera et caetera.

This requires 3 logspace tapes for the variables. The counter in B will not exceed

N + n/2 = O(n) (with n the number of literal, we at most create one fresh variable

for every two literals), so B is also logspace.

2. From the formula S, we construct a graph G where the nodes are all the variables

in S and their negation. For every clause L ∨ L′ we create an edge from ¬L to L′

and one from ¬L′ to L. If there is an empty clause, we immediately conclude that S

is not satis�able. Else, if there is a path from x to ¬x and one from ¬x to x, then S

is insatis�able. Indeed, an edge represent an implication, which must be true in any

model of S, and thus x and ¬x would need to gave the same value in any model of

S.

If there is no such path, with x1, ..., xn the variables of G, we de�ne by induction on

1 ≤ i ≤ n the valuation of xi and a graph Gi as follow : G0 = G, and for 1 ≤ i ≤ n,
if there is a path from ¬xi to xi in Gi−1 then we set xi to true and Gi?Gi−1. Else,
xi is false and Gi is Gi−1 with an edge between xi to ¬xi. By induction, we now

show that Gi never contains a path going through a variable and its negation. It is

true for G0 by hypothesis, and when Gi = Gi−1 it is obvious. Else Gi is Gi−1 with
an edge between xi to ¬xi, knowing that there is no cycle containing xi and ¬xi. If
there was a j such that there was a cycle containing xj and ¬xj , it would need to

use the new arc, and if we assume that the cycle is minimal, then by removing the

new arc we obtain a path from ¬xi to xi in Gi−1 which is a contradiction.

Using this construction, we now show that the valuation satis�es S. Considering the

construction, for every i there is either a path from xi to ¬xi or the inverse, but

not both at the same time. And the second case occurs when xi is set to false, so

the �rst one occurs when xi is set to true. Thus, for a litteral L, L is set to true if

and only if there is a path from L to ¬L, and respectively to false. For each edges

(L,L′) of G, if L was true and L' false, then we would have a path in Gn from ¬L
to L and one from L′ to ¬L, which yields a path π from ¬L to ¬L′ groing through
L. But by construction, when (L,L′) is an arc of G, so is (¬L′,¬L), which is then

in Gn. With π and this edge, we then have a cycle in Gn passing through L and ¬L
which is a contradiction. Thus, for every edges (L,L′) of G , the implication L⇒ L′

is satis�ed, i.e all the clauses of S are satis�ed.

3. We can produce G in lospace, so the unsatis�ability reduces to �nding a cycle contai-

ning an x and an ¬x. It is in NL by guessing x and calling REACH(x,¬x) and

Page 2

REACH(¬x, x). For the completness, we reduce REACH and are given (G, s, t).
For every edge (u, v), we create the clause ¬u ∨ v and then we create the clauses

s and ¬t. We obtain a set S of clauses. If REACH(G, s, t), then the path yelds an

implication from s to t, so t must be true but we have ¬t, S is unsatis�able. Else,

we set all the variables accessible from s to true, and the others to false. s and ¬t
are veri�ed, and u ⇒ v also as v is accessible from s if u is, i.e, we obtain a model

for S, which is then satis�able.

4. 2− SAT is in co− NL, and so in NL. Moreover, for any language L ∈ NL, L ∈ NL.
So L can be reduced to the the negation of 2-SAT (it is NL-complete). And then,

this logspace reduction is a logspace reduction from L to 2-SAT.

Exercise 3 : Space hierarchy theorem

Using a diagonal argument, prove that for two space-constructible functions f and g such

that f(n) = o(g(n)) (and as always f, g ≥ log) we have SPACE(f(n)) (SPACE(g(n)).

Solution:

We de�ne a language which can be recognized in O(f(n)) but not in g(n).

L = {(M,w)|M reject (M,w) using space ≤ f(|(M,w)|}

� We show that L ∈ SPACE(f(n)) by constructing the corresponding TM. On an

input x, we compute f(x) and mark down an end of tape marker at position f(x),

so that we reject if we use to much space. If x is not of the form (M,w), we reject,
else we simulate M on w for at most 2f(x) steps. If we go over the timeout, we reject.
Else, if w is accepted, we reject, and if w is rejected, we accept.

� Show that L 6∈ SPACE(f(n)). Let's assume there is a machine M' recognizing L in

space f(n). For a su�ciently long w, M' uses less than f(|(M ′, w)|) space on input

M'. If (M ′, w) ∈ L, M' must both accept and reject (M ′, w). The other case is also
a contradiction, thus it is impossible.

Page 3

