
Advanced Complexity

TD n
◦
1 : SPACE and NL

Charlie Jacomme

September 13, 2017

Exercise 1 : Graph representation and why it does not matter

Let Σ = {0, 1, ; , •}, n ∈ N and V = [0, n− 1]. We consider the following two representations

of a directed graph G = (V,E) by a word in Σ∗ :
� By its adjency matrix : m0,0m0,1 . . .m0,n−1 • · · · • mn−1,0 . . .mn−1,n−1, where for all

i, j ∈ [0, n− 1], mi,j is equal to 1 if (i, j) ∈ E, 0 otherwise.

� By its adjency list : k00; . . . ; k0m1
• · · · • kn−10 ; . . . ; kn−1mn−1

, where for all i, [ki0, . . . , k
i
mi

] is the
list of neighbors of vertex i, written in binary, in increasing order.

1. Describe a logarithmic space bounded deterministic Turing machine which takes as input

the graph G, represented by adjacency lists, and returns the adjacency matrix represen-

tation of G.

2. Conversely, describe a logarithmic space bounded deterministic Turing machine taking

as input a graph G, represented by its adjacency matrix , and computing the adjacency

list representation of G.

Therefore, the complexity of the problem REACH seen in class does not depend on the repre-

sentation of the graph.

Solution:

We �rst need to be able to implement a binary counter, which can be done by using an

empty tape B. To increment, we read B left to right, replacing 1s by 0s and stopping at the

�rst 0, replacing it by a 1. If we reach the end of B, we add a 1. Then, we reset the head

to the start of the tape, and the incrementation is over.

1. Using a counter, we can obtain the binary writing of N in reverse order by counting

the number of • in the input tape. Now, M just have to read the adjency list, and

write a 1 at position N × i+ j for every j found in the list Li, and O's everywhere

else. M can do this by using a counter i incremented when encountering •, and by

collecting all the bits she sees between two " ;" in a tape j. To move to position

N × i + j, we �nally need two other counters iO and jO, writing at every step a

0 and a 1 at the �nal one.. Thus, if we reuse B, we only need 4 counters of size

log2(N).

2. M initiate two counters i and j and loops between i = 0 to N − 1 and j = 0 to

N − 1, which is done by incrementing the counters and comparing to N (we can

compute N as previously). For each (i, j) M checks the value at N × i+ j (with two

counters as previously), and if it is a 1 M writes j on the output tape followed by a

" ;". Each times M increment i, she writes a • on the output tape. This uses a space

of 5log2(N), and the size of the entry is n = N2, we do have 5log2(N) = O(logn).
We conclude using the speed up theorem.

Exercise 2 : Inclusions of complexity classes

De�nition 1 A function f : N → N is said to be space-constructible if there exists a

deterministic Turing machine that computes f(|x|) in O(f(|x|)) space given x as input.

1

Show that for a space-constructible function,

NSPACE(f(n)) ⊆ DTIME(2O(f(n)))

Solution:

We have a Turing MachineM running in space f(n), with states Q, k tapes and an alphabet
Γ, with f space constructible.

� With n = |x|, the number of a con�guration of M on input x is inferior, with β a

constant, to

|Q| × (βf(n))k × |Γ|βkf(n)

The size of the con�guration graph is thus in 2O(f(n)).

� In order to decide if x is accepted by M , we just have to use a breadth �rst search

algorithm on the graph to check whether Cinitial and Caccept are connected. This

algorithm is polynomial in the size of the graph, so we �nally do have a time com-

plexity in 2O(f(n)).

Exercise 3 : Restrictions in the de�nition of SPACE(f(n)), and why they do not matter

In the course, we restricted our attention to Turing machines that always halt, and whose

computations are space-bounded on every input. In particular, remember that SPACE(f(n))
is de�ned as the class of languages L for which there exists some deterministic Turing machine

M that always halts (i.e. on every input), whose computations are f(n) space-bounded (on

every input), such that M decides L.

Now, consider the following two classes of languages :
� SPACE′(f(n)) is the class of languages L such that there exists a deterministic Turing

machine M , running in space bounded by f(n), such that M accepts x i� x ∈ L. Note
that if x /∈ L, M may not terminate.

� SPACE′′(f(n)) is the class of languages L such that there exists a deterministic Turing

machine M such that M accepts x using space bounded by f(n) i� x ∈ L (M may use

more space and not even halt when x /∈ L).

1. Show that for a space-constructible function f = Ω(logn), SPACE′(f(n)) = SPACE(f(n))

2. Show that for a space-constructible function f = Ω(logn), SPACE′′(f(n)) = SPACE(f(n))

Solution:

1. First, SPACE(f(n)) ⊆ SPACE′(f(n)). Conversely, let there be M as speci�ed, with

a = |Γ|,M terminates in times O(af(n)) or does not terminate (she cannot run more

than the number of possible con�gurations). We construct M0 from M by adding a

counter B (basically, a timeout) incremented by 1 at every steps of M . B is written

in base a, and as soon as B takes more bit than necessary to write the number of

possible con�gurations, we reject (the maximum size of B can be set in space f(n)

because f(n) is space constructible). This uses O((fn)) space, we conclude with the

speed-up theorem.

2. First, SPACE(f(n)) ⊆ SPACE′′(f(n)). Conversely, we want to force M to only use

space f(n) on every input. We construct M0, which starts by writting f(n) 0 on

a tape B (f(n) space constructible). M0 also contains the tapes of M , and copy B

those tapes, adding a special symbol #at the end of each of them.M0 then simulates

M , but rejecting if she go over of #. If x is in L, M runs in space f(n) and M0

accepts. If x /∈ L M0 cannot accept x. So M0 accepts x i� x ∈ L, and M0 runs in

O(f(n)) space, so M0 ∈ SPACE′(O(f(n))) ⊆ SPACE(f(n)).

Exercise 4 : Dyck's language �

Let A be the language of balanced parentheses � that is the language generated by the

grammar S → (S)|SS|ε. Show that A ∈ L.

Page 2

� What about the language B of balanced parentheses of two types ? that is the language

generated by the grammar S → (S)|[S]|SS|ε

Solution:

� Read the input from left to right. Maintain a counter on the worktape with initial

value zero, and increment or decrement it when reading '(' or ')' respectively. Reject

if the counter ever becomes negative, and accept if the counter is zero at the end of

the input. Since the counter can never exceed the input length n, it is a log2(n)-bit
number. More generally, any language which can be recognized by a one-counter

machine or a machine with any constant number of counters is in L.
� Let us call say that each symbol has a type, either round or square, and say that

each symbol is a left or right bracket regardless of type. Each left bracket has a

right bracket which is its partner, and our goal is to check that every left bracket's

partner is of the same type. To �nd its partner we use a counter as in question 1

above. First, we check that the word is in the bracket language of question 1 if we

ignore round vs. square, so that every left bracket has a right partner. Then, to check

that partners match, we use the following pseudocode :

i = 1

do until i exceeds the length of the input {

move i-1 steps from the left end of the input

read the input symbol a // a = w(i)

if a is a left bracket {

c = 1

do until c = 0 { // find w(i) partner

move right and read the next input symbol b

if b is a left bracket, increment c

if b is a right bracket, decrement c

}

if a and b are of different types, reject

}

}
accept

Exercise 5 : NL alternative de�nition

A Turing machine with certi�cate tape, called a veri�er, is a deterministic Turing machine

with an extra read-only input tape called the certi�cate tape, which moreover is read once

(i.e. the head on that tape can either remain on the same cell or move right, but never move

left).

De�ne NLcertif to be the class of languages L such that there exists a polynomial p : N→ N
and a Turing machine with certi�cate tape M that runs in logarithmic space such that :

x ∈ L i� ∃u, |u| ≤ p(|x|) and M accepts on input (x, u)

1. Show that NLcertif = NL

2. What complexity class do you obtain if you remove the read-once constraint in the de�-

nition of a machine with certi�cation tape ?

Solution:

1. NLcertif ⊆ NL ? Let there be A in NLcertif . If M is a veri�er for A, we can simulate

the run of M on A by guessing the next bit of u on every right step of M , and

accepting if and only if M accept. This runs in logarithmic space, �rst because M
do, and secondly because we only need to remember one bit of u at a time, because

u is read only once from left to right.

NL ⊆ NLcertif ? Le there be A in NL, x an input, and M a non deterministic

Turing Machine running in logarithmic space and recognizing A. A run of M can

Page 3

be characterized by all its non deterministic choices done its execution tree, which

we can encode in a word y over {0, 1}∗ of size p(|x|) (the running time of M(x) is

polynomial). We can then construct a veri�er V which takes as input x and y and

simulates M over x along y, which is a deterministic run which requires logarithmic

space.

2. We call the knew class NL′certif .
NL′certif ⊆ NP ? Let there be A in NL′certif , we build M in NP . First, M guesses

the certi�cates, which is polynomial in size so it takes polynomial time and space.

And then, M runs A on (x,u), which takes logarithmic space, so it takes polynomial

time.

NP ⊆ NL′certif ? As 3SAT is NP-complete for logarithmic space reductions, we just

have to show that a certi�cate for 3SAT can be veri�ed in logarithmic space. As a

certi�cate for φ(x1, . . . , xn) we give the valuation (a1, . . . , an) which should satisfy

φ. To check the certi�cate, we evaluate φ(a1, . . . , an), checking that all the clauses

are true, which can be done in logarithmic space.

Page 4

