Probabilistic Aspects of Computer Science: Exercise 4

Exercise 1 Given a PFA $\mathcal{A} = (\mathcal{Q}, q_s, \mathcal{Q}_f, \delta)$ on Σ and a word $u \in \Sigma^*$, show that

$$\mu_{\mathcal{A},u}^{acc} = \delta_u(q_s, \mathcal{Q}_f).$$

Exercise 2 For any PFA A and a cut-point $x \in [0,1]$, there is a PFA \mathcal{B} and a $y \in [0,1]$ such that $\mathcal{L}_{\leq x}(\mathcal{A}) = \mathcal{L}_{\geq y}(\mathcal{B})$ and $\mathcal{L}_{\leq x}(\mathcal{A}) = \mathcal{L}_{\geq y}(\mathcal{B})$.

Exercise 3 Let $\Sigma = \{0,1\}$. Consider the PFA $\mathcal{A} = (Q, q_s, Q_f, \delta)$ where $\mathcal{Q} = (q_s, q_a, q_r), \ \mathcal{Q}_f = q_a \text{ and } \delta \text{ is defined as follows:}$

$$\begin{split} \bullet \delta(q_s, 0, q_s) &= \delta(q_s, 0, q_r) = \frac{1}{2} \\ \bullet \delta(q_a, 0, q_a) &= \delta(q_a, 1, q_a) = \frac{1}{2} \\ \end{split} \\ \bullet \delta(q_a, 0, q_a) &= \delta(q_a, 1, q_a) = \frac{1}{2} \\ \bullet \delta(q_r, 0, q_r) &= \delta(q_r, 1, q_r) = \frac{1}{2} \\ \bullet \delta(q_r, 0, q_r) &= \delta(q_r, 1, q_r) = \frac{1}{2} \\ \end{split}$$

Compute $\mathcal{L}_{>1/2}(\mathcal{A})$. Is it regular?

Exercise 4 Let $\mathcal{A} = (\mathcal{Q}, q_s, \mathcal{Q}_f, \delta)$ be a PFA defined over four states $\mathcal{Q} = \{1, 2, 3, 4\}$ and on alphabet $\Sigma = \{a, b\}$. Let $q_s = \{1\}$ and $Q_f = \{3\}$ be the initial and final steps respectively. Transitions are defined by the following matrices:

$ \left(\begin{array}{c} 0\\ 0\\ \frac{1}{2} \end{array}\right) $	$\frac{\frac{3}{4}}{\frac{1}{2}}$	$\frac{1}{4}$ 0 0	$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$	and	$ \left(\begin{array}{c} 0\\ 0\\ 0 \end{array}\right) $	$\begin{array}{c}1\\\frac{1}{2}\\0\end{array}$	$\begin{array}{c} 0\\ \frac{1}{2}\\ 0 \end{array}$	$\left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right)$
$\begin{pmatrix} \frac{1}{2} \\ 0 \end{pmatrix}$	$\frac{1}{2}$	$0\\0$	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$		$\left(\begin{array}{c} 0\\ 0\end{array}\right)$	$0\\0$	$0\\0$	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$

Compute the distribution $\mu^{acc}_{\mathcal{A},ab}$