Homework on rewriting theory

Frédéric Blanqui (INRIA)

(strict) deadline: 5 November 2020 at 08:30

evaluation criteria: correctness, presentation and precision

Let \mathcal{F}_1 and \mathcal{F}_2 be two disjoint signatures (i.e. $\mathcal{F}_1 \cap \mathcal{F}_2 = \emptyset$), \mathcal{V} be a set of variables disjoint from \mathcal{F}_1 and \mathcal{F}_2, \mathcal{R}_1 be a set of rewrite rules on \mathcal{F}_1 such that $\rightarrow_1 = \rightarrow_{\mathcal{R}_1}$ terminates on $\mathcal{T}_1 = \mathcal{T}(\mathcal{F}_1, \mathcal{V})$, and \mathcal{R}_2 be a set of rewrite rules on \mathcal{F}_2 such that $\rightarrow_2 = \rightarrow_{\mathcal{R}_2}$ terminates on $\mathcal{T}_2 = \mathcal{T}(\mathcal{F}_2, \mathcal{V})$. Then, let \rightarrow be the rewrite relation on $\mathcal{T} = \mathcal{T}(\mathcal{F}_1 \cup \mathcal{F}_2, \mathcal{V})$ generated by $\mathcal{R}_1 \cup \mathcal{R}_2$. We are going to study sufficient conditions for the termination of \rightarrow.

To this end, we will use the following notions.

A (multi-holes) context is a term of $C = \mathcal{T}(\mathcal{F} \cup \{\Box\}, \mathcal{V})$ where \Box, the empty context, is a new constant of arity 0. If C is a context and p_1, \ldots, p_n are the positions of the occurrences of \Box in C from left to right, then $C[t_1, \ldots, t_n]$ denotes the term of \mathcal{T} obtained by replacing the i-th occurrence of \Box by t_i for every i in $\{1, \ldots, n\}$.

A symbol is of color $k \in \{1, 2\}$ if it belongs to \mathcal{F}_k. A non-empty context non-reduced to a variable is of color k if it belongs to $C_k = \mathcal{T}(\mathcal{F}_k \cup \{\Box\}, \mathcal{V})$. The opposite color of k, written \overline{k}, is 2 if $k = 1$, and 1 if $k = 2$.

Every element of \mathcal{T} is of the form $C[t_1, \ldots, t_n]$ with C a variable or a non-empty context of color k and every t_i headed by a symbol of color \overline{k}. C is called the cap of t and is denoted by $\text{cap}(t)$. The terms t_1, \ldots, t_n are called the aliens of t. Their multiset is denoted by $\text{aliens}(t)$.

Exercise 1 (2 points) Let \rightarrow_h be the restriction of \rightarrow to homogeneous terms, that is, the relation such that $t \rightarrow_h u$ iff $t \rightarrow u$ and both t and u belong to $\mathcal{T}_1 \cup \mathcal{T}_2$. Prove that \rightarrow_h terminates.

Exercise 2 (3 points) The rank of a term $t \in \mathcal{T}$, $\text{rk}(t)$, is the maximum number of color layers in t: $\text{rk}(t) = 1 + \sup_{a \in \text{aliens}(t)} \text{rk}(a)$. Prove that the rank cannot increase by reduction: if $t \rightarrow u$, then $\text{rk}(t) \geq \text{rk}(u)$.

Hint 1: Look how evolve cap(t) and aliens(t) when $t \rightarrow u$.

Hint 2: Proceed by induction on $\text{rk}(t)$.

Exercise 3 (4 points) A rewrite rule $l \rightarrow r$ is collapsing if r is a variable. Prove that \rightarrow terminates if both \mathcal{R}_1 and \mathcal{R}_2 are non-collapsing.

Hint: Look how cap(t) and aliens(t) evolve when $t \rightarrow u$, and devise a lexicographic combination of well-founded relations to prove the termination of every term $t \in \mathcal{T}$.

Exercise 4 (4 points) Given a term t, we define $S(t)$ to be the multiset made of t, the aliens of t, the aliens of the aliens of t, ..., $S(t) = \Sigma_{i \geq 1} S_i(t)$ where $S_1(t) = \{t\}$ and, for all $i \geq 1$, $S_{i+1}(t) = \Sigma_{a \in \text{aliens}(t)} S_i(a)$.
A rewrite rule $l \rightarrow r$ is duplicating if some variable has more occurrences in r than it has in l. Prove that \rightarrow terminates if both R_1 and R_2 are non-duplicating.

Hint: Look how $rk(t)$ and $S(t)$ evolve when $t \rightarrow u$, and devise a lexicographic combination of well-founded relations to prove the termination of every term.

Exercise 5 (3 points) Assume that R_1 is non-collapsing and non-duplicating.

Let $\| t \| = \begin{cases} 0 & \text{if } t \in V \\ \sum_{a \in \text{aliens}(t)} \| a \| & \text{if } \text{cap}(t) \in \mathcal{T}_1 \\ 1 + \sup_{a \in \text{aliens}(t)} \| a \| & \text{if } \text{cap}(t) \in \mathcal{T}_2 \end{cases}$

Prove that $\| t \| \geq \| u \|$ whenever $t \rightarrow u$.

A reduction $t \rightarrow u$ is destructive at level 1 if it is done in $\text{cap}(t)$ and t and u have different colors. It is destructive at level 2 if it is a destructive reduction at level 1 in some alien of t.

Observe that, if the reduction is destructive at level 1 or 2, then $\| t \| > \| u \|$.

Exercise 6 (4 points) Prove that \rightarrow terminates if R_1 is non-collapsing and non-duplicating.