Rewriting Techniques, 4: dependency pairs, argument filtering

05–12–2019

Exercise 1:

Definition 1 (Weakly monotone algebra). A *weakly monotone* \(F \)-algebra \((A, >, \geq)\) consists of a non-empty \(F \)-algebra \(A \) together with a proper order \(> \) and a preorder \(\geq \) on the carrier \(A \) of \(A \) such that \(> \cdot \geq \subseteq > \) or \(\geq \cdot > \subseteq > \), and every algebra operation is monotone with respect to \(\geq \) in all coordinates, i.e., if \(f \in F \) has arity \(n \geq 1 \), for all \(a_1, \ldots, a_n, b \in A \) and \(i \in [1, n] \) with \(a_i \geq b \) then

\[
R(A(a_1, \ldots, a_i, \ldots, a_n)) \geq R(A(a_1, \ldots, b, \ldots, a_n))
\]

A monotone algebra \((A, >, \geq)\) is said *well-founded* if \(> \) is so.

Prove that if \((A, >, \geq)\) is a well-founded weakly monotone algebra then \((A, >, \geq)\) is a reduction pair.

Exercise 2:

(a) Let \(R \) be a rewrite system and such that each defined symbol has positive arity. Prove that if every cycle \(C \) of the dependency graph of \(R \) has a simple projection \(\pi \) such that \(\pi(C) \subseteq \geq \) and \(\pi(C) \cap \triangleright \neq \emptyset \), where \(\pi(C) = \left\{(\pi(s), \pi(t)) \mid (s, t) \in C \right\} \) and \(\geq \) is the subterm relation, then \(R \) terminates.

Consider the following rewriting system:

\[
\begin{align*}
m(1) & \rightarrow 1 \\
m(a(x, y)) & \rightarrow a(s(x), m(y)) \\
q(0, 0) & \rightarrow a(0, 1) \\
q(s(x), s(y)) & \rightarrow m(q(x, y)) \\
q(0, 0) & \rightarrow 1 \\
q(0, s(y)) & \rightarrow a(0, q(s(0), s(y)))
\end{align*}
\]

(b) Compute the marked dependency pairs and the dependency graph approximation.

(c) Prove the termination of the rewrite system by finding a suitable simple projection that satisfied the constraints in question 1.

An *argument filter* \((AF\) for short) for a signature \(F \) is a mapping \(\pi \) that associates with every \(n \)-ary function symbol an argument position \(i \in [1, n] \) or a (possibly empty) list \([i_1, \ldots, i_m]\) of argument positions with \(1 \leq i_1 < \cdots < i_m \leq n \).

The signature \(F_\pi \) consists of all function symbols \(f \) such that \(\pi(f) \) is some list \([i_1, \ldots, i_m]\), where in \(F_\pi \) the arity of \(f \) is \(m \). Every argument filter \(\pi \) induces a mapping from \(T(F, \text{Var}) \) to \(T(F_\pi, \text{Var}) \), also denoted by \(\pi \):

\[
\pi(t) = \begin{cases}
 t & \text{if } t \text{ is a variable} \\
 \pi(t_i) & \text{if } t = f(t_1 \ldots t_n) \text{ and } \pi(f) = i \\
 f(\pi(t_{i_1}) \ldots \pi(t_{i_m})) & \text{if } t = f(t_1 \ldots t_n) \text{ and } \pi(f) = [i_1, \ldots, i_m]
\end{cases}
\]

Exercise 3:

Let \(R \) be the following TRS,

\[
\begin{align*}
0 - y & \rightarrow 0 \\
x - 0 & \rightarrow x \\
s \cdot s \cdot y & \rightarrow x - y \\
0 & \rightarrow 0 \\
s \cdot s \cdot y & \rightarrow (x - y) \cdot s \cdot y
\end{align*}
\]
(a) Give dependency pairs of R.
(b) Find a weakly monotone polynomial interpretation on \mathbb{N} to prove termination of R.
(c) Find an argument filter to prove termination using LPO with empty precedence.

Exercise 4:
Consider the rewriting system R:

\[
\begin{align*}
0 \leq y & \rightarrow \text{true} & x - 0 & \rightarrow x & \text{gcd } 0 \ y & \rightarrow y \\
(s \ x) \leq 0 & \rightarrow \text{false} & x - (s \ y) & \rightarrow p \ (x-y) & \text{gcd } (s \ x) \ 0 & \rightarrow s \ x \\
s \ x \leq s \ y & \rightarrow x \leq y & p \ (s \ x) & \rightarrow x & \text{gcd } (s \ x) \ (s \ y) & \rightarrow \text{if } (y \leq x) \ (s \ x) \ (s \ y) \\
\text{if true } (s \ x) \ (s \ y) & \rightarrow \text{gcd } (x-y) \ (s \ y) & \text{if false } (s \ x) \ (s \ y) & \rightarrow \text{gcd } (y-x) \ (s \ x)
\end{align*}
\]

(a) Compute the dependency pairs of R.
(b) How many different argument filters does $R \cup \text{DP}(R)$ admit?
(c) Prove the termination of R.

For next week: critical pairs, KB completion

Exercise 5:
Compute the critical pairs of the following rewrite systems. Which one are locally confluent?

(a) $s(p(s(y))) \rightarrow y, s(p(x)) \rightarrow p(s(x))$
(b) $0 + y \rightarrow y, x + 0 \rightarrow x, s(w) + z \rightarrow s(w + z), v + s(k) \rightarrow s(v + k)$
(c) $a(x, x) \rightarrow 0, a(y, p(y)) \rightarrow 1$
(d) $a(a(x, y), z) \rightarrow a(x, a(y, z)), a(w, 1) \rightarrow w$

Exercise 6:
Is the TRS consisting of the rewriting rules

\[
\begin{align*}
0 + x & \rightarrow x & \text{gcd } x \ 0 & \rightarrow x & \text{gcd } (x + y) \ x & \rightarrow \text{gcd } x \ y \\
s \ x + y & \rightarrow s \ (x + y) & \text{gcd } 0 \ x & \rightarrow x & \text{gcd } x \ (x + y) & \rightarrow \text{gcd } x \ y
\end{align*}
\]

confluent?

Exercise 7:
Complete the ES consisting of the equation $(x \cdot y) \cdot (y \cdot z) \approx y$ (of central groupoids).