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Monte Carlo tree search compared to A∗ in airspace configuration
decision problem

Gabriel Hondet, Benoît Viry

May 21, 2018

Abstract
Dynamic airspace configuration is a highly combi-
natorial partitioning problem. Since exact meth-
ods tend to be overwhelmed by the complexity of
such problems, a stochastic approach is here con-
sidered. This paper presents the Monte Carlo tree
search algorithm using UCT search and adapted to
one player games. The application of the algorithm
to the airspace partitioning problem is then detailed.
Finally the Monte Carlo tree search is compared to
the A∗.

Notations
• 𝑚: elementary module;
• 𝑆: air traffic control sector, group of modules;
• 𝑃 : partition of the airspace, group of sectors;
• 𝑡: current time;
• 𝐶(𝑃 , 𝑡): cost of a given partition 𝑃 at time 𝑡;
• 𝐶𝑡𝑟(𝑃1, 𝑃2): cost of transition between partitions

𝑃1 and 𝑃2;
• 𝜋 = [𝑃1, … , 𝑃𝑛]: a sequence of partitions (called

path in the tree search algorithms);
• 𝑓(𝜋): cost associated to sequence of partitions

𝜋;
• 𝒩: the set of nodes;
• 𝑢, 𝑣 ∈ 𝒩2: nodes
• ℎ∶ 𝒩 → ℝ+: heuristic estimating the cost from

a node 𝑢 to a final node;
• 𝜇𝑣: mean value of outcomes of simulations run

through or from a node 𝑣;
• 𝑇𝑣: number of simulations run through or from

a node 𝑣;
• 𝑓𝑖𝑟𝑠𝑡(ℓ): returns the first element of ℓ.

I Introduction
The airspace is divided into sectors, themselves di-
vided into elementary modules. Each sector is man-
aged by a controller working position composed of
two controllers. During the day, sectors are split
and merged to be able to manage the varying traffic.
Splitting creates smaller sectors and is therefore used
when traffic gets too dense. On the opposite, merging
sectors allows fewer controllers to manage the same
airspace, and is therefore used when traffic becomes
sparse.

Currently, configuration is mainly decided on the
fly by the chief officer. This decision is based on
the actual workload on each position. In this ap-
proach, future workload estimation is based on the
controller’s feelings and it therefore lacks a work-
load prediction tool. This papers aims at providing
a method predicting the airspace configuration.

Several methods have been considered to solve the
dynamic airspace configuration problem, for instance
via genetic algorithms in [13], constraint local search
in [11], integer linear programming in [14] or dynamic
programming in [3].

In this paper, a temporal sequence of configura-
tions is considered, as in [14] or [13]. Two costs
are considered to create the sequence, namely the
cost associated to each configuration and a transition
cost. The former is based on the workload estimated
for one sector given by a simple model. More com-

1
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plex models might be used such as a neural network
(see [10]).

The sequence of configurations is extracted from a
tree. The resulting sequence will therefore be a path
from the root to a leaf of this tree. This problem is
highly combinatorial (partitioning of the airspace).
Since stochastic tree search algorithms, combined
with deep neural networks have proved themselves
worthy by outranking the best human player of one
of the most highly combinatorial game which is the
game of Go, the Monte Carlo tree search [4] algo-
rithm is used in this paper to fulfill the previously
mentioned task.

II Previous related works
The dynamic airspace configuration problem requires
a model of the airspace. In [13] or [14] the airspace
is modelled via a graph. In those graphs, vertices
represent elementary modules and an edge links two
adjacent modules. In [14], to be able to produce a
sequence of configurations, the graph is time depen-
dent. An other way to model the problem is to use a
constrained set of configurations as in [3]. This way
any configuration will match specified requirements,
which can be qualified as hard constraints.

In most cases the cost of a configuration is based
on the workload. Each approach seems to give their
own representation of the workload. For instance, [2]
determined workload density proportionally to the
time spent by aircraft in each sector. A simpler ver-
sion [13] only uses the number of aircraft. On the
other hand, more complex methods, involving many
more inputs are also available. For instance, [10] used
several indicators, such as sector volume, or vertical
incoming flows in the next 15 and 60 minutes. Those
indicators as inputs to a neural network forecasting
the workload.

Other soft constraints appear to be relevant to have
a better model of the problem. For instance in [13]
and [2] a coordination cost is defined. It represents
the surplus of work added by flights travelling from
one sector to an other. The shape of the resulting
sector is considered, as the simpler is the shape, the
easier it is to manage. Complex shapes are therefore

avoided, thanks to the notion of compactness in [11]
and balconies in [13]. To smooth the transition be-
tween two configurations, the work associated with
the reallocation of one or more modules is evaluated.
This transition cost is included in the cost function
being minimised (in [2]).

In this paper, each partition scheme is based upon
the number of aircraft in each elementary module and
the cost of transition from the previous partitioning.
The set of available parititions can be computed from
the set of elementary modules and a context which
contains all available ATC sectors.

The Monte Carlo tree search algorithm has been
widely used in two-player games. Only three years af-
ter its apparition in 1990, Brügmann applies it to the
Go game in [5]. While the Monte-Carlo tree search
is still extensively used in two-player games (and es-
pecially the Go game), its adaptation to one player
game has been worked on. Auer et al. propose an
upper confidence bound formula in [8] which appears
to be more efficient for one player games. The intro-
duced formula uses the standard deviation of the out-
come of the simulations. The latter article also uses
the rapid action value estimation (RAVE) technique
to quicken the convergence of the algorithm. RAVE
uses the “all moves as first” heuristic, in which all
moves1 seen during simulations are considered as a
first move. This allows the algorithm to update more
statistics in one simulation. Gelly et al. use in [9]
the RAVE technique coupled with several heuristics.
The heuristics bias the initialisaton of a node in the
search tree, pre filling its statistics using prior knowl-
edge of the problem.

III Algorithm
The task of building an optimal sequence of parti-
tions (lowering as much as possible the workload of
each controller) is fulfilled by a stochastic tree search
method, namely the Monte Carlo tree search. To as-
sess the quality of the results, an exact method (here
A∗) is used.

1a move is informally considered as a decision taken regard-
ing which state to choose while descending the search tree
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III.A Monte Carlo tree search
III.A.1 Overview

Monte-Carlo is a best-first search method using
stochastic simulations. The algorithm is based on
the computation of the reward expectancy of paths
which is estimated through Monte-Carlo simulations.
The algorithm actually uses two trees, an underlying
tree associated to the model (e.g. a game tree) and
a search tree. The latter is built incrementally, each
step being composed of four phases, namely

1. selection (or tree walk): choosing successively
most promising nodes from the search tree,

2. expansion: adding new nodes to the search tree,
3. simulation (or random walk): choosing succes-

sively nodes from the model tree, from the ex-
panded node to a leaf,

4. backpropagation (or backup): applying the re-
sult of the simulation to the previously selected
nodes of the search tree (phases 1 and 2).

Those phases are repeated until a stopping criterion
(e.g. memory or time) is reached, resulting in algo-
rithm 1 where the tree policy aggregates phases 1 and
2 to create a new node of the search tree and the de-
fault policy gives an evaluation of the newly added
node.

Algorithm 1 General MCTS [4]
procedure MctsSearchTree(𝑣0)

while within computational budget do
𝜋 ← TreePolicy(𝑣0)
𝑣 ← 𝑓𝑖𝑟𝑠𝑡(𝜋)
Δ ← DefaultPolicy(𝑣)
Backup(𝜋, Δ)

end while
end procedure

III.A.2 Extending the search tree

Selection (algorithm 2) The aim of the selection
is to build a path from the root of the search tree
by choosing successively the most promising2 node.
Given a node 𝑢 that has previously been selected, the

2i.e. possibly leading to the best evaluation

best node – according to a tree policy – among the
children of 𝑢 is chosen. This type of problem can be
solved by bandits methods. Those methods consist
in, given a bandit in front of several slot machines
(multi armed bandit), deciding which machine will
bring the highest reward knowing the past results.
The objective of bandits methods is thus to maximise
the reward and minimise the regret of not playing the
best machine.

The bandit problem has been applied to MCTS via
the Upper Confidence Tree algorithm in [12] using
the UCB1 equation 1. Let 𝑢 be the node from which
a child 𝑣 must be selected to go deeper in the tree,
𝑇𝑢 the number of simulations carried out from node
𝑢 (which includes any simulation from nodes in any
subtree of 𝑢) and 𝛽 a chosen constant. The selected
child 𝑣 is the one maximising the UCB1 equation

𝜇𝑣 + 2𝛽√2 𝑙𝑜𝑔 𝑇𝑢
𝑇𝑣

(1)

While the previous equation is well suited for two
players games, it can be tweaked to improve its effi-
ciency in one player games or sequencing problems.
An alternative using the standard deviation 𝜎𝑣 of the
outcome of the previous simulations involving node
𝑣 is proposed in [8] called the UCB1-tuned equation

𝜇𝑣 + 𝛽
√√√
⎷

𝑙𝑜𝑔 𝑇𝑢
𝑇𝑣

𝑚𝑖𝑛 (1
4, 𝜎2𝑣 + √2 𝑙𝑜𝑔 𝑇𝑢

𝑇𝑣
) (2)

Exploration exploitation trade-off The con-
stant 𝛽 answers to the exploration-exploitation
dilemma. In the UCB1 equations 1 and 2, the right
hand term increases the UCB value of less explored
nodes to consider them as still promising. A high 𝛽
value will therefore make the algorithm prone to try
unvisited nodes while a low value will consider almost
exclusively the results obtained so far, even if other
paths are better but unexplored.

Expansion (algorithm 3) If the selected node has
one or more unvisited children, the selection stops
and one of them is added to the search tree randomly,
the latter being thus expanded by this new node.
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Algorithm 2 UCT algorithm
function TreePolicy(𝜋)

𝑣 ← 𝑓𝑖𝑟𝑠𝑡(𝜋)
if 𝑣 is terminal then

return 𝜋
else

if 𝑣 is not fully expanded then
return Expand(𝑣) ∪𝜋

else
𝑓 ← BestChild(𝑣)
return TreePolicy(𝑓 ∪ 𝜋)

end if
end if

end function
function BestChild(𝑣)

return 𝑎𝑟𝑔𝑚𝑎𝑥{UCB(𝑣′)|𝑣′ children of 𝑣}
end function

Algorithm 3 Expansion
function Expand(𝑢)

ℓ ← {𝑣|𝑣 children of 𝑢, 𝑇𝑣 = 0}
return random element from ℓ

end function

III.A.3 Simulation and backpropagation

The two steps described in this paragraph aim to
guess the reward that can be expected from a path
including a given node.

Simulation Once a node has been expanded, ran-
dom nodes are chosen successively until a terminal
state is found. The cost of the resulting path, from
the root to the node is then evaluated and backprop-
agated to all the ancestors of the expanded node.

Heuristic One might want to bias the random-
ness while choosing nodes. This would imply using a
heuristic which has to be able to discriminate a node
between its siblings.

Backpropagation The backpropagation consists
in updating the values required to carry out the tree
policy. The values must be updated incrementally
since the backpropagation function has the current
value of the parameters and the result of the simu-
lation as parameters. Thus, for UCB1 equation, the
expected reward (mean) and the total count are up-
dated this way

Algorithm 4 UCB1 backpropagation
procedure Backpropagate(𝑢, 𝑟)

𝛿 ← 𝑟 − 𝜇𝑢
𝜇𝑢 ← 𝜇𝑢 + 𝛿

𝑇𝑢+1
𝑇𝑢 ← 𝑇𝑢 + 1

end procedure

For the UCB1-tuned, the standard deviation has
to be computed. It results in algorithm 5 which in-
troduces the value 𝑚2(𝑢) associated to a node 𝑢 to
compute the standard deviation via the formula

𝜎2
𝑢 = 𝑚2(𝑢)

𝑇𝑢
. (3)

III.B Sequence building
Once the stopping criterium mentioned in III.A.1 is
matched, the sequence of states can be extracted from
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Algorithm 5 UCB1-tuned backpropagation
procedure Backpropagate(𝑢, 𝑟)

𝛿 ← 𝑟 − 𝜇𝑢
𝜇𝑢 ← 𝜇𝑢 + 𝛿

𝑇𝑢+1
𝛿′ ← 𝑟 − 𝜇𝑢
𝑚2(𝑢) ← 𝑚2(𝑢) + 𝛿𝛿′

𝑇𝑢 ← 𝑇𝑢 + 1
end procedure

the search tree.

III.B.1 Choosing nodes

To build the final sequence, nodes are chosen accord-
ing to a criterion. Chaslot et al. in [6] propose several
methods to select nodes,

• max-child: select the child with highest mean
reward;

• robust child: select the most visited root child;
• secure child: select the child maximising a lower

confidence bound.

III.B.2 Iterative pathfinding

The path is built iteratively by calling successive
Monte Carlo tree searches. Say an MCTS has been
called on a node 𝑢. Once a stopping criterium is
matched, a node 𝑣 among the ones reachable from 𝑢
is selected via one of the previously mentioned poli-
cies. Then the MCTS algorithm is called back with
node 𝑣 as the root node. The final path is composed
of the successive roots. The algorithm is described
in 6.

III.C A∗

To evaluate the exactness of the paths given by the
MCTS algoithm, the A∗ algorithm is used. A∗ is an
exact best first search pathfinding algorithm which
uses a heuristic function to guide its search. The al-
gorithm is given in 7 where 𝑢0 is the initial state, 𝑇
the set of terminal nodes, ℎ a heuristic function es-
timating the cost from a state 𝑢 given as argument
to a final state, 𝑘 ∶ 𝒩2 → ℝ. The function 𝑓𝑖𝑟𝑠𝑡(𝐺)

Algorithm 6 Path building. The NextNode (here
max-child) function is one among those in III.B.1.

function MctsSearch(𝑢0, 𝑛)
𝑢 ← 𝑢0
𝜋 ← {𝑢}
for 𝑖 = 1 to 𝑛 do

MctsSearchTree(𝑢)
𝑢 ←NextNode(𝑢)
𝜋 ← 𝜋 ∪ {𝑢}

end for
return 𝜋

end function
function NextNode(𝑢)

return 𝑎𝑟𝑔𝑚𝑎𝑥{𝜇𝑣|𝑣 children of 𝑢}
end function

returns the first element of 𝐺 and 𝑓−insert(𝐺, 𝑣) in-
serts 𝑣 in 𝐺 ordering first by 𝑓 increasing then by 𝑔
decreasing.

Heuristic To be sure to have the optimal solution,
the heuristic ℎ has to be minimal i.e. let ℎ∗ be the
optimal heuristic (the one giving the true distance
from a node to a final state), then for any node 𝑢,
ℎ(𝑢) ≤ ℎ∗(𝑢).

III.D Theoretical performances
In this paper, a high branching factor problem is con-
sidered.

Let 𝐻 be the height of the tree, 𝐾 the branching
factor. Then, the complexity of the A∗ is expected to
be, in the worst case, exponential in 𝐻 (see [1]).

Since the Monte carlo tree is a stochastic method,
one must wait for a satisfactorily converging solution
rather than the exact solution. It has however been
proven in [12] that the bias of the expected payoff
tends to zero.

IV Model
In this section, we discuss the model established to
approach this configuration problem. First we define
a structure for a controlled sector and all possible
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Algorithm 7 A∗ algorithm [1]
procedure A∗(𝑢0)

𝐺 ← 𝑢0; 𝐷 ← ∅; 𝑔(𝑢0) ← 0; 𝑓(𝑢0) ← 0
father(𝑢0) ← ∅
while 𝐺 ≠ ∅ do

𝑢 ← 𝑓𝑖𝑟𝑠𝑡(𝐺); 𝐺 ← 𝐺\{𝑢}
𝐷 ← 𝐷 ∪ {𝑢}
if 𝑢 ∈ 𝑇 then

return father
end if
for 𝑣 in childen of 𝑢 do

if 𝑣 ∉ 𝐷 ∪ 𝐺 or [𝑔(𝑣) > 𝑔(𝑢) + 𝑘(𝑢, 𝑣)]
then

𝑔(𝑣) ← 𝑔(𝑢) + 𝑘(𝑢, 𝑣)
𝑓(𝑣) ← 𝑔(𝑣) + ℎ(𝑣)
father(𝑣) ← 𝑢
𝑓−insert(𝐺, 𝑣)

end if
end for

end while
end procedure

transitions through time. Then a workload model is
defined. And finally we define a cost per partition
and a cost function aimed to be minimized.

IV.A State
IV.A.1 Time step

Since the overall goal is to compute a temporal se-
quence of partitions over a day, the day has to be
sampled. In the model tree, a timestep separates a
node from its children. Practically, a timestep is one
minute.

IV.A.2 Partitions

In the configuration problem, the airspace needs to be
divided into sectors. Each sector represents an area
controlled by two controllers and is composed of one
or more elementary modules. A partition 𝑃 is a set
of non-overlapping sectors covering all the airspace.

A sector is a group of elementary modules, but in
practice only a collection of sectors are allowed in this

model. This collection is referred to as the context.
It is the list of operation ATC sectors actually used
in ATC centres.

IV.A.3 Transitions

During the day, and with the evolution of the traf-
fic, the workload (rigorously defined in IV.B) varies.
To help controllers to maintain a homogeneous level
of workload, the airspace partitioning needs to be
adapted through successive transitions starting from
an inital partition. This maneuver requires either co-
ordination or the opening of a new position and hence
increases controller’s workload. This is the reason
why a full reconfiguration isn’t feasible, and only a
subset of all available transitions can be operated.

In the model considered here, three transitions are
possible namely a merge, a transfer or a split. For
an airspace composed of three modules 𝐴, 𝐵, and 𝐶,
those actions represent:

• merge: {{𝐴, 𝐵}, {𝐶}} → {{𝐴, 𝐵, 𝐶}}

• split: {{𝐴, 𝐵, 𝐶}} → {{𝐴, 𝐵}, {𝐶}}

• transfer: {{𝐴, 𝐵}, {𝐶}} → {{𝐴}, {𝐵, 𝐶}}

Each transition is composed of at most one merge,
split or transfer; more would result in too complex
reconfigurations.

Tree translation

In the tree used in the algorithm exposed earlier, each
node has an embedded state. Considering a node 𝑢,
its children are the elements of the set of nodes having
as states the possible transitions from the state of
𝑢. Going down in the tree by selecting nodes is then
equivalent to moving forward through time, each step
in the tree being a time step.

IV.B Workload
Let us now precise the model established to evaluate a
workload metric. The workload depends on external
criteria such as sector and traffic complexity or hu-
man factors (e.g. controller health or stress). In the
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model assumed here, the workload felt by a controller
is directly and only related to the traffic complexity.

The simplest approch considers only the number of
aircraft per sector 𝑁aircraft. We define two arbitary
thresholds, namely 𝑡ℎlow and 𝑡ℎhigh, defining three
zones where the workload is low (resp. normal and
high) if 𝑁aircraft < 𝑡ℎlow (resp. 𝑡ℎlow ≤ 𝑁aircraft ≤
𝑡ℎhigh and 𝑡ℎhigh < 𝑁aircraft). Those workload levels
are translated to probabilities 𝑝low, 𝑝normal and 𝑝high,
where 𝑝low(𝑆) is the probability that the sector 𝑆
is underloaded (resp. balanced and overloaded). In
short, for a sector 𝑆 at time 𝑡 and 𝑁aircraft:

𝑝𝑆,𝑡
low = 𝟙[0,𝑡ℎlow[(𝑁aircraft)

𝑝𝑆,𝑡
normal = 𝟙[𝑡ℎlow,𝑡ℎhigh](𝑁aircraft)
𝑝𝑆,𝑡

high = 𝟙]𝑡ℎlow,∞[(𝑁aircraft)
(4)

where 𝟙 is the indicator function defined by:

𝟙𝐼(𝑥) = {1 if 𝑥 ∈ 𝐼
0 otherwise

(5)

This expression of the workload, expressed in terms
of probabilities, allows us to use a more complex
model for the workload such as a neural network
(see [10]). This method learns the probabilities 𝑝low,
𝑝normal and 𝑝high based on parameters including traf-
fic complexity and the complexity of the sector (e.g.
airspace volume).

IV.C Partition cost and cost function
IV.C.1 Partition cost

In order to evaluate a given partition 𝑃 at time 𝑡, a
cost 𝐶(𝑃 , 𝑡) needs to be defined. In this paper, this
cost depends on the workload in each sector. The
definitions given in [7] are used to represent a high
(respectively normal and low) cost for partition 𝑃 :

𝑐+(𝑃 , 𝑡) = ∑
𝑆∈𝑃𝑡

𝛿ℎ(𝑆, 𝑡) ⋅ 𝑝𝑆,𝑡
high ⋅ |𝑆|2

𝑐=(𝑃 , 𝑡) = ( ∑
𝑆∈𝑃𝑡

𝛿𝑛(𝑆, 𝑡) ⋅ 𝑝𝑆
𝑛𝑜𝑟𝑚 ⋅ |𝑆|−2)

−1

𝑐−(𝑃 , 𝑡) = ∑
𝑆∈𝑃𝑡

𝛿𝑙(𝑆, 𝑡) ⋅ 𝑝𝑆,𝑡
low ⋅ |𝑆|−2

(6)

with 𝛿ℎ(𝑃 , 𝑡) (resp. 𝛿𝑛(𝑃𝑡) and 𝛿𝑙(𝑃𝑡)) equals 1 if the
probability 𝑝high (resp. 𝑝normal and 𝑝low) is superior
to the two others, and 0 otherwise.

It is now possible to assign a cost to each partition.
This cost is linear regarding 𝑐+, 𝑐=, 𝑐− and 𝑛 (cardinal
of the partition 𝑃 ). The partition cost is defined as
follows:

𝐶(𝑃 , 𝑡) = 𝛼𝑐+ + 𝛽𝑐= + 𝛾𝑐− + 𝜆𝑛 (7)

The parameters 𝛼, 𝛽, 𝛾 and 𝜆 (all positive) deter-
mine a priority on which parameter to optimize. For
instance, a high value 𝛼 help to minimize 𝑐+, hence
the overall number of sectors with too much traffic.
In a real application, it maybe interesting to order
those parameters as follow: 𝛼 > 𝛾 > 𝛽 > 𝜆.

IV.C.2 Transition cost

In an operational context, each reconfiguration in-
creases the workload for controllers. This needs to
be considered via the definition of a transition cost.
A transition is the difference of two partitions sep-
arated by only on time step. The transition cost is
then

𝐶𝑡𝑟(𝑃1, 𝑃2) = {0 if 𝑃1 = 𝑃2
1 otherwise

(8)

IV.C.3 Objective function

Having defined a cost for partitions and transitions,
it is now possible to aggregate everything in order to
build a cost function over an entire path. For a path
𝜋 = [𝑃0, … , 𝑃𝑛] with a time from 𝑡0 to 𝑡𝑛, the cost
function is given by:

𝑓(𝜋) = 𝐶(𝑃0, 𝑡0) +
𝑛

∑
𝑖=1

[𝐶(𝑃𝑖, 𝑡𝑖)+

𝜃 ⋅ 𝐶𝑡𝑟(𝑃𝑖−1, 𝑃𝑖)]
(9)

with 𝜃 > 0 a parameter to determine. This is the
objective function to minimize in the A∗ algorithm.

The Monte Carlo Tree search algorithm maximizes
an objective function. This function can be inter-
preted as the reward of a path. Given the loss func-
tion defined previously, the target function can be
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constructed as:

𝑄(𝜋) = 1
𝑓(𝜋) (10)

IV.D Heuristic
To use effectively the A∗ algorithm, a heuristic is
needed. Using the null heuristic (∀𝑢 ∈ 𝒩, ℎ(𝑢) = 0)
– and thus using Dijkstra algorithm – revealed to
be inefficient considering the branching factor. Let
𝑘 ∈ ℕ, 𝑢 a node selected at time 𝑘. The heuristic
ℎ(𝑢) gives the cost of the path starting from 𝑢 to a
leaf which is reached at a time 𝑡𝑓 . The heuristic is
built without considering transitions (transition cost
and IV.A.3). Let 𝑃 ∗

𝑖 be the partition with minimal
cost at time 𝑖, the heuristic is then

ℎ(𝑢) =
𝑓

∑
𝑖=𝑘+1

𝐶(𝑃 ∗
𝑖 , 𝑡𝑖) (11)

This allows to generate the sequence of the best par-
titions among all possible at each time step.

V Results

V.A Experimental setup
For the tests, a fictitious area is used. It contains
5 elementary modules and 12 control sectors. The
resulting model tree has a mean branching factor of
6. Regarding the branching, the smallest French area
– which is Paris West – has a branching factor of
16 for 20 control sectors and 12 elementary modules.
Considering the already important branching factor,
a stochastic tree search method seems appropriate.

The traffic is simulated the following way, each ele-
mentary module has an associted list which, at index
𝑖 has the number of aircraft in it at time step 𝑖. Those
lists have been written by hand.

V.B Accuracy
The graph 1 asserts the correct behaviour of both al-
gorithms A∗ and MCTS regarding grouping and de-
grouping. On the 𝑦 axis is indicated the number of
sectors. The trafic activity is the following,
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MCTS

Figure 1: Grouping profile

1. The first part of the scenario shows a busy situ-
ation, all sectors are overloaded;

2. then follows a quiet moment with few aircraft,
much of the sectors are underloaded;

3. the end of the scenario has two overload modules
and the rest under normal or under load.

The expected behaviour is a tendency to increase the
number of sectors through splits to cope with part 1
followed by many merges to reduce the number of
sectors in response to phase 2. The algorithms should
end with a specific sector created, the one overloaded
in 3 and the rest grouped. Seeing 1, both algorithm
behave as expected.

Accuracy can be quantitatively assessed by com-
paring the outcome of the MCTS algorithm against
the A∗ cost and a greedy algorithm cost. The time al-
lowed to the MCTS to run is considered long enough
to allow the MCTS to converge to its best solution.
The results are summarised in table 1.

The graph 2 shows the evolution of the difference of
costs with varying depth. The error rate is expected
to grow as the depth increase since the MCTS might
fail to explore the best nodes among the exponen-
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Alg. Cost Err.
A∗ 77.31 0%
MCTS 82.48 6.7%
Greedy 90.50 17.1%

Table 1: Comparison of several methods on the gen-
erated scenario (𝜃 = 3).
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Figure 2: Cost difference for varying depth with 0.5
seconds allowed to MCTS and 𝜃 = 3.

tially growing amount of them. The figure 2 does not
show a constant growth of error rate between MCTS
and A∗. As hoped, the MCTS remains always better
than the greedy algorithm.

V.C Converging speed
Since the MCTS converges to a solution, one expects
to know the time required to be close enough to the
optimal solution. To have an idea of this lapse, sev-
eral MCTS are run with different computing time.
This results in a graph mapping the time allowed to
compute each step of the MCTS to the cost of the
final path. To get rid of the undesired varations due
to the stochastic nature of the algorithm, the latter
process is run several times; which allows one to com-
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time(s)
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st

Figure 3: Monte Carlo tree search called with varying
time allowed to compute each step, with a depth of
40 and 𝜃 = 11. The cost seems to be approximately
stable from 𝑡 = 0.5s.

pute the mean over all computed costs.
The resulting graphs are shown in figure 3 in which

it can be seen that the algorithm reaches its best cost
when it runs for 1 second per step, but the cost is
approximately stable from 0.5 seconds.

VI Conclusion
The presented work provides the basis of a method
able to create dynamic airspace overture schemes.
The model is built around a quantification of the
workload felt by a air trafic controller. This quan-
tification is then used to create a cost function to be
minimised. The highly combinatorial nature of the
problem makes it prone to be solved with stochastic
methods. The Monte Carlo tree search algorithm is
then introduced since it has been used in some of the
most combinatorial problem (game of Go). In this
paper, the algorithm is modified to take into account
not only a result but all the path leading to this leaf.
It is also adapted to the one-player game nature of
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the problem.

Further work Since all the tests has been run us-
ing the same fictitious area with the same trafic, nei-
ther the influence of the complexity of the airspace
nor of the trafic have been assessed. It would be thus
relevant to carry further tests on bigger areas with
heavier and differing trafic. This can be emphasised
by [7], in which the time needed to compute the cost
with A∗ depends heavily on the trafic itself.

More complex workload models can also be used
such as neural networks in [10].
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