Automatic Verification of Privacy Protection for Unbounded Sessions Shonan

Lucca Hirschi

October 28, 2015

joint work with	David Baelde	and	Stéphanie Delaune
	LSV		LSV

 \rightsquigarrow we need formal verification of crypto protocols covering privacy

Introduction

 \rightsquigarrow we need formal verification of crypto protocols covering privacy

Goal:

- checking privacy (unlinkability and anonymity)
- ▶ in the symbolic model (Dolev-Yao)
- for unbounded sessions

Introduction

 \rightsquigarrow we need formal verification of crypto protocols covering privacy

Goal:

- checking privacy (unlinkability and anonymity)
- ▶ in the symbolic model (Dolev-Yao)
- for unbounded sessions
- Unlinkability (=untraceability) [ISO/IEC 15408]:

Ensuring that a user may make multiple uses of a service or resource without others being able to link these uses together.

Anonymity [ISO/IEC 15408]:

Ensuring that a user may use a service or resource without disclosing the user's identity. [...]

Lucca Hirschi

Shonan: Automatic Verification of Privacy Protection for Unbounded Sessions

Context

Strong unlinkability [Ryan et al. CSF'10]:

$$\underbrace{! \nu \vec{k} ! \nu \vec{n}(T \mid R)}_{\mathcal{M}} \approx \underbrace{! \nu \vec{k} . \nu \vec{n}(T \mid R)}_{\mathcal{S}}$$

Intuition: $\mathcal{M} \sqsubseteq \mathcal{S}$

 $\forall {\buildrel {\mathfrak S}}$ and behaviour of $({\mathcal M} \| {\buildrel {\mathfrak S}})$ producing observable ${\mathcal D}$

 $\Rightarrow \exists$ behaviour of ($\mathcal{S} \parallel \stackrel{\bullet}{\textcircled{O}}$) producing observable $\mathcal{D}' \sim \mathcal{D}$

Context

Strong unlinkability [Ryan et al. CSF'10]:

$$\underbrace{! \, \nu \, \vec{k} \, ! \, \nu \, \vec{n}(T \mid R)}_{\mathcal{M}} \approx \underbrace{! \, \nu \, \vec{k} \, . \nu \, \vec{n}(T \mid R)}_{\mathcal{S}}$$

Intuition: $\mathcal{M} \sqsubseteq \mathcal{S}$

 $\forall {\begin{tabular}{ll} {\begin{tabular} {\begin{tabular}$

 $\Rightarrow \exists \text{ behaviour of } (\mathcal{S} \| {\textcircled{\textcircled{}}}) \text{ producing observable } \mathcal{D}' \sim \mathcal{D}$

Checking this is undecidable (because of !)

Existing approaches:

- manual: need to exhib huge bisimulations
- automatic (ProVerif/Maude-NPA/Tamarin): rely on abstraction (diff-equivalence) not enough precise
 always fail to prove unlinkability

Context

Strong unlinkability [Ryan et al. CSF'10]:

$$\underbrace{! \, \nu \, \vec{k} \, ! \, \nu \, \vec{n}(T \mid R)}_{\mathcal{M}} \approx \underbrace{! \, \nu \, \vec{k} \, . \nu \, \vec{n}(T \mid R)}_{\mathcal{S}}$$

Intuition: $\mathcal{M} \sqsubseteq \mathcal{S}$

 $\forall \mathfrak{G}$ and behaviour of $(\mathcal{M} \| \mathfrak{G})$ producing observable \mathcal{D}

 $\Rightarrow \exists \text{ behaviour of } (\mathcal{S} \| {\textcircled{\textcircled{}}}) \text{ producing observable } \mathcal{D}' \sim \mathcal{D}$

Checking this is undecidable (because of !)

Existing approaches:

- manual: need to exhib huge bisimulations
- automatic (ProVerif/Maude-NPA/Tamarin): rely on abstraction (diff-equivalence) not enough precise
 always fail to prove unlinkability

\rightsquigarrow there is a need for dedicated abstraction targeting privacy

Lucca Hirschi

Shonan: Automatic Verification of Privacy Protection for Unbounded Sessions

Contribution

We identify:

- 2 conditions implying unlinkability and anonymity
- ► for a class of 2-agents protocols including our target case studies

We make sure:

- our conditions can be checked automatically using ProVerif
- they correspond to good design practices

sound approach to check automatically privacy properties working well in practice

Messing with messages & C_{data}

C_{data}: "Messages are without relations"

Messing with messages & C_{data}

C_{data}: "Messages are without relations"

Practical examples (RFID protocols): HB⁺, DM, KCL, LBV, LD, ...

Messing with messages & C_{data}

C_{data}: "Messages are without relations"

- Goal: messages do not leak info about involved agents
- ▶ Intuitively: outputs are (statically) indistiguishable from ≠ nonces

 $\{\operatorname{enc}(\operatorname{ok}, k), \operatorname{enc}(\operatorname{ok}, k)\} \not\sim \{n_1^f, n_2^f\}$

Messing with conditionals & C_{test}

Ctest: "Conditionals hold only for honest interactions"

Practical examples: BAC (ePassport), some versions of PACE (new version of ePassport), LAK, CH

Messing with conditionals & C_{test}

Ctest: "Conditionals hold only for honest interactions"

- Goal: conditionals do not leak info about involved agents
- Intuitively: if Tag goes to a Then branch then the attacker just forwarded messages between this Tag and some Reader

\Uparrow can be **checked** \Uparrow

- ► C_{data}: automatic check of diff-equivalence using Proverif
- C_{test}: automatic check of correspondence prop. using Proverif

Applications

We wrote a tool on top of ProVerif that automatically checks our two sufficient conditions

New proofs of Unlinkability & Anonymity for:

- BAC+PA+AA (ePassport);
- PACE+PA+AA (ePassport v2);
- (fixed) LAK (RFID auth.);
- Hash-Lock (RFID auth.).

Applications

We wrote a tool on top of ProVerif that automatically checks our two sufficient conditions

New proofs of Unlinkability & Anonymity for:

- BAC+PA+AA (ePassport);
- PACE+PA+AA (ePassport v2);
- (fixed) LAK (RFID auth.);
- Hash-Lock (RFID auth.).

When conditions fail to hold: no direct attacks but still...

Flaws/attacks discovered:

- ▶ some versions of PACE (¬ UK);
- ► LAK (¬ UK).

... still looking for other case studies ...

Thank You!

Lucca Hirschi

Shonan: Automatic Verification of Privacy Protection for Unbounded Sessions