
A Method for Verifying Privacy-Type Properties:

The Unbounded Case
Security & Privacy 2016

Lucca Hirschi, David Baelde and Stéphanie Delaune

Security & Privacy 2016

Introduction

 we need formal verification of crypto protocols covering privacy

Lucca Hirschi Security & Privacy 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 2 / 19

Introduction

 we need formal verification of crypto protocols covering privacy

Goal:
◮ checking unlinkability and anonymity

◮ in the symbolic model (=Dolev-Yao model)

◮ for unbounded sessions and users

Lucca Hirschi Security & Privacy 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 2 / 19

Introduction

 we need formal verification of crypto protocols covering privacy

Goal:
◮ checking unlinkability and anonymity

◮ in the symbolic model (=Dolev-Yao model)

◮ for unbounded sessions and users

Unlinkability (= untraceability) [ISO/IEC 15408]:

Ensuring that a user may make multiple uses of a service or resource without

others being able to link these uses together.

Lucca Hirschi Security & Privacy 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 2 / 19

Symbolic Model

Symbolic attacker () controls all the network:

Lucca Hirschi Security & Privacy 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 3 / 19

Symbolic Model [{n}k : symmetric encryption]

Symbolic attacker () controls all the network:

◮ eavesdrops messages Alice Bob{n}k

Lucca Hirschi Security & Privacy 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 3 / 19

Symbolic Model [{n}k : symmetric encryption]

Symbolic attacker () controls all the network:

◮ eavesdrops messages
Alice Bob{n}k

Lucca Hirschi Security & Privacy 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 3 / 19

Symbolic Model

Symbolic attacker () controls all the network:

◮ eavesdrops messages

◮ builds new messages, applies crypto primitives

(

knows {n}k and k
)

⇒
(

knows n
)

Lucca Hirschi Security & Privacy 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 3 / 19

Symbolic Model

Symbolic attacker () controls all the network:

◮ eavesdrops messages

◮ builds new messages, applies crypto primitives

◮ injects messages

Alice Bob{n}k

Lucca Hirschi Security & Privacy 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 3 / 19

Symbolic Model

Symbolic attacker () controls all the network:

◮ eavesdrops messages

◮ builds new messages, applies crypto primitives

◮ injects messages

Alice Bob{n}k

mE

Lucca Hirschi Security & Privacy 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 3 / 19

Symbolic Model

Symbolic attacker () controls all the network:

◮ eavesdrops messages

◮ builds new messages, applies crypto primitives

◮ injects messages

But cannot break crypto primitives.

Lucca Hirschi Security & Privacy 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 3 / 19

Symbolic Model

Symbolic attacker () controls all the network:

◮ eavesdrops messages

◮ builds new messages, applies crypto primitives

◮ injects messages

But cannot break crypto primitives.

Symbolic model, pros & cons:

⊖ less precise than computational model

⊕ allows for automation

Lucca Hirschi Security & Privacy 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 3 / 19

Symbolic Model

Symbolic attacker () controls all the network:

◮ eavesdrops messages

◮ builds new messages, applies crypto primitives

◮ injects messages

But cannot break crypto primitives.

Symbolic model, pros & cons:

⊖ less precise than computational model

⊕ allows for automation

Ingredients for modeling:
◮ messages: term algebra with equational theory

Lucca Hirschi Security & Privacy 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 3 / 19

Symbolic Model

Symbolic attacker () controls all the network:

◮ eavesdrops messages

◮ builds new messages, applies crypto primitives

◮ injects messages

But cannot break crypto primitives.

Symbolic model, pros & cons:

⊖ less precise than computational model

⊕ allows for automation

Ingredients for modeling:
◮ messages: term algebra with equational theory
◮ protocols & attacker: process algebra (e.g., applied π-calculus)

Lucca Hirschi Security & Privacy 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 3 / 19

Symbolic Model

Symbolic attacker () controls all the network:

◮ eavesdrops messages

◮ builds new messages, applies crypto primitives

◮ injects messages

But cannot break crypto primitives.

Symbolic model, pros & cons:

⊖ less precise than computational model

⊕ allows for automation

Ingredients for modeling:
◮ messages: term algebra with equational theory
◮ protocols & attacker: process algebra (e.g., applied π-calculus)
◮ security properties: reachability & observational equivalence

Lucca Hirschi Security & Privacy 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 3 / 19

I : Problem

Unlinkability

Scenario 1 Scenario 2

”Real” usage of the protocol ”Ideal” usage of the protocol

∀ , cannot observe any difference

Lucca Hirschi Security & Privacy 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 5 / 19

Unlinkability
Scenario 1 Scenario 2

”Real” usage of the protocol

≈

”Ideal” usage of the protocol

≈: trace equivalence

(observational equivalence between processes)

Lucca Hirschi Security & Privacy 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 5 / 19

Unlinkability

Scenario 1

≈
Session 1

Session 2

Session 3

Session 1

Session 2

Session 3

Session 1

Session 2

Session 3

Session 1 Session 1 Session 1

Scenario 2

◮ Infinitely many users

◮ Each playing infinitely many sessions

Lucca Hirschi Security & Privacy 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 5 / 19

Unlinkability
Scenario 1

≈

Session 1

Session 2

Session 3

Session 1

Session 2

Session 3

Session 1

Session 2

Session 3

Session 1 Session 1 Session 1

Scenario 2

id1 id2 id3 id1 id2 id3

!ν id !ν Sess. P !ν id.ν Sess. P

∞ users ∞ users
∞ sessions

(Strong unlinkability [Arapinis, Chothia, Ritter, Ryan CSF’10])

Lucca Hirschi Security & Privacy 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 5 / 19

The Problem & Existing Approaches

Goal
◮ automatic verification of

! ν id. (! ν Sess.P) ≈ ! ν id. (ν Sess.P)

for a large class of 2-party protocols (think of P = Tag |Reader)

Lucca Hirschi Security & Privacy 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 6 / 19

The Problem & Existing Approaches

Goal
◮ automatic verification of

! ν id. (! ν Sess.P) ≈ ! ν id. (ν Sess.P)

for a large class of 2-party protocols (think of P = Tag |Reader)

Existing approaches:

◮ manual: long, difficult, and highly error prone
◮ automatic (only ProVerif/Maude-NPA/Tamarin):

rely on too imprecise approximation of ≈
 always fail to prove unlinkability

Lucca Hirschi Security & Privacy 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 6 / 19

Contributions

Theory:

◮ 2 reasonable conditions implying unlinkability (& anonymity)

◮ for a large class of 2-party protocols

Lucca Hirschi Security & Privacy 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 7 / 19

Contributions

Theory:

◮ 2 reasonable conditions implying unlinkability (& anonymity)

◮ for a large class of 2-party protocols

Practice:

◮ our conditions can be checked automatically using existing tools

◮ we provide tool support for that (UKano)

Lucca Hirschi Security & Privacy 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 7 / 19

Contributions

Theory:

◮ 2 reasonable conditions implying unlinkability (& anonymity)

◮ for a large class of 2-party protocols

Practice:

◮ our conditions can be checked automatically using existing tools

◮ we provide tool support for that (UKano)

Applications:

◮ new proofs & attacks on RFID protocols

Lucca Hirschi Security & Privacy 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 7 / 19

II :
Two Generic Classes of Attacks

Two Conditions to Avoid them

1st Class: Leaks through Relations over Messages

Tag Reader
k, id k

{id}k

Lucca Hirschi Security & Privacy 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 9 / 19

1st Class: Leaks through Relations over Messages

Tag1
k1, id1

{id1}k1

Tag2
k2, id2

{id2}k2

=
?

Lucca Hirschi Security & Privacy 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 9 / 19

1st Class: Leaks through Relations over Messages

Tag1
k1, id1

{id1}k1

Tag1
k1, id1

{id1}k1

(k1, id1) = (k2, id2)

=

Lucca Hirschi Security & Privacy 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 9 / 19

1st Class: Leaks through Relations over Messages

Tag1
k1, id1

{id1}k1

Tag2
k2, id2

{id2}k2

(k1, id1) 6= (k2, id2)

6=

Lucca Hirschi Security & Privacy 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 9 / 19

1st Class: Leaks through Relations over Messages

Tag Reader
k

n

{n, id}k

k, id

Lucca Hirschi Security & Privacy 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 10 / 19

1st Class: Leaks through Relations over Messages

Tag1
k1, id1

{0, id1}k1

Tag2
k2, id2

0

0 =
?

{0, id2}k2

Lucca Hirschi Security & Privacy 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 10 / 19

1st Class: Leaks through Relations over Messages

Problem

For some malicious behavior, relations over messages leak info about involved agents.

Lucca Hirschi Security & Privacy 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 11 / 19

1st Class: Leaks through Relations over Messages

Problem

For some malicious behavior, relations over messages leak info about involved agents.

Main idea to avoid that:

◮ outputs are indistinguishable from fresh nonces

e.g., 〈error; {u}k 〉 −→ 〈error; n〉

 1st Condition: Frame Opacity (FO)

... formal definition in the paper

Lucca Hirschi Security & Privacy 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 11 / 19

2nd Class: Leaks through Conditionals’ Outcomes

Tag Reader
k

{n}k

{n′}k

k

dec(X , k) 6= ⊥if

Lucca Hirschi Security & Privacy 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 12 / 19

2nd Class: Leaks through Conditionals’ Outcomes

Tag1
k1

Reader1
k1

{n1}k1

Lucca Hirschi Security & Privacy 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 12 / 19

2nd Class: Leaks through Conditionals’ Outcomes

Tag1
k1

Reader1
k1

{n1}k1

Tag2
k2

Reader2
k2

{n2}k2

Lucca Hirschi Security & Privacy 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 12 / 19

2nd Class: Leaks through Conditionals’ Outcomes

Tag1
k1

Reader1
k1

{n1}k1

Tag2
k2

Reader2
k2

{n2}k2 {n1}k1

?

dec(X , k2) 6= ⊥if

Lucca Hirschi Security & Privacy 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 12 / 19

2nd Class: Leaks through Conditionals’ Outcomes

Tag1
k1

Reader1
k1

{n1}k1

Tag2
k2

Reader2
k2

{n2}k2 {n1}k1

{n′}k2
k1 = k2

dec(X , k2) 6= ⊥if

Lucca Hirschi Security & Privacy 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 12 / 19

2nd Class: Leaks through Conditionals’ Outcomes

Tag1
k1

Reader1
k1

{n1}k1

Tag2
k2

Reader2
k2

{n2}k2 {n1}k1

k1 6= k2

dec(X , k2) 6= ⊥if

Lucca Hirschi Security & Privacy 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 12 / 19

2nd Class: Leaks through Conditionals’ Outcomes

Problem

For some malicious behavior, conditionals’ outcomes leak info about involved agents.

Main idea to avoid that:

◮ conditional evaluates positively ⇐⇒ attacker did not interfer

 2nd Condition: Well-Authentication (WA)

... formal definition in the paper

Lucca Hirschi Security & Privacy 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 13 / 19

Main Result

Theorem

For any protocol in our class:

frame opacity

&

well-authentication

}

⇒

{ Unlinkability

&

Anonymity

... formal statement and proof in the paper

Lucca Hirschi Security & Privacy 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 14 / 19

III : Mechanization & Applications

Mechanization

Both conditions can be automatically verified using ProVerif:

◮ Frame Opacity: equivalence between messages

◮ Well Authentication: just reachability properties

Lucca Hirschi Security & Privacy 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 16 / 19

Mechanization

Both conditions can be automatically verified using ProVerif:

◮ Frame Opacity: equivalence between messages

◮ Well Authentication: just reachability properties

Tool: UKano

Built on top of ProVerif that automatically checks our conditions.

Lucca Hirschi Security & Privacy 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 16 / 19

Case Studies

RFID auth. protocol
Frame Well-

Unlinkability
opacity auth.

Feldhofer ✓ ✓ safe

Hash-Lock ✓ ✓ safe

LAK (stateless) − ✕

Fixed LAK ✓ ✓ safe

ePassport protocol
Frame Well-

Unlinkability
opacity auth.

BAC ✓ ✓ safe

BAC/PA/AA ✓ ✓ safe

PACE (faillible dec) − ✕

PACE (missing test) − ✕

PACE − ✕

PACE with tags ✓ ✓ safe

◮ Found automatically new proofs and new attacks using UKano

Lucca Hirschi Security & Privacy 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 17 / 19

IV : Conclusion

Conclusion

Contributions
◮ Theory: 2 conditions ⇒ unlinkability & anonymity

◮ Practice: UKano automatically verifies them

◮ Applications: new proofs & attacks on RFID protocols

Lucca Hirschi Security & Privacy 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 19 / 19

http://projects.lsv.ens-cachan.fr/ukano/

Conclusion

Contributions
◮ Theory: 2 conditions ⇒ unlinkability & anonymity

◮ Practice: UKano automatically verifies them

◮ Applications: new proofs & attacks on RFID protocols

Future Work
◮ Improve the method (class of protocols, other back-end)

◮ Seek other types of protocols (e.g., e-Voting)

More details, sources of UKano, ProVerif files at

http://projects.lsv.ens-cachan.fr/ukano/

Lucca Hirschi Security & Privacy 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 19 / 19

http://projects.lsv.ens-cachan.fr/ukano/

	Introduction

