A Method for Verifying Privacy-Type Properties: The Unbounded Case

HotSpot 2016

Lucca Hirschi

April 3rd, 2016

joint work with	David Baelde	and	Stéphanie Delaune
	LSV		LSV

(a)

 \rightsquigarrow we need formal verification of crypto protocols covering privacy

Introduction

 \rightsquigarrow we need formal verification of crypto protocols covering privacy

Goal:

- checking unlinkability and anonymity
- ▶ in the symbolic model (Dolev-Yao)
- for unbounded sessions

Introduction

 \rightsquigarrow we need formal verification of crypto protocols covering privacy

Goal:

- checking unlinkability and anonymity
- ► in the symbolic model (Dolev-Yao)
- for unbounded sessions
- Unlinkability (=untraceability) [ISO/IEC 15408]:

Ensuring that a user may make multiple uses of a service or resource without others being able to link these uses together.

Anonymity [ISO/IEC 15408]:

Ensuring that a user may use a service or resource without disclosing the user's identity. [...]

Lucca Hirschi

HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case

Context

Strong unlinkability [Arapinis, Chothia, Ritter, Ryan CSF'10]:

$$\underbrace{! \nu \vec{k} (! \nu \vec{n} (T \mid R))}_{\mathcal{M}} \approx \underbrace{! \nu \vec{k} . \nu \vec{n} (T \mid R)}_{\mathcal{S}}$$

- \mathcal{M} : ∞ many different T R playing ∞ many sessions
- S: ∞ many different T R playing at moste one session
- $\triangleright \approx$: observational equivalence (trace equivalence)

Context

Strong unlinkability [Arapinis, Chothia, Ritter, Ryan CSF'10]:

$$\underbrace{! \nu \vec{k} (! \nu \vec{n} (T \mid R))}_{\mathcal{M}} \approx \underbrace{! \nu \vec{k} . \nu \vec{n} (T \mid R)}_{\mathcal{S}}$$

- \mathcal{M} : ∞ many different T R playing ∞ many sessions
- S: ∞ many different T R playing at moste one session
- $\triangleright \approx$: observational equivalence (trace equivalence)
- Checking this is undecidable (because of replication)

Existing approaches:

- manual: need to exhib huge bisimulations
- automatic (ProVerif/Maude-NPA/Tamarin): rely on abstraction (diff-equivalence) not precise enough
 always fail to prove unlinkability

Context

Strong unlinkability [Arapinis, Chothia, Ritter, Ryan CSF'10]:

$$\underbrace{! \nu \vec{k} (! \nu \vec{n} (T \mid R))}_{\mathcal{M}} \approx \underbrace{! \nu \vec{k} . \nu \vec{n} (T \mid R)}_{\mathcal{S}}$$

- \mathcal{M} : ∞ many different T R playing ∞ many sessions
- S: ∞ many different T R playing at moste one session
- $\triangleright \approx$: observational equivalence (trace equivalence)
- Checking this is undecidable (because of replication)

Existing approaches:

- manual: need to exhib huge bisimulations
- automatic (ProVerif/Maude-NPA/Tamarin): rely on abstraction (diff-equivalence) not precise enough
 always fail to prove unlinkability

→ there is a need for dedicated abstraction targeting unlinkability

Lucca Hirschi

HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case

Contribution

We identify:

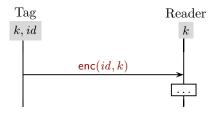
- 2 conditions implying unlinkability and anonymity
- ► for a class of 2-agents protocols including our target case studies

We make sure:

- our conditions can be checked automatically using ProVerif
- they correspond to good design practices

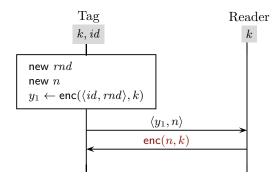
sound approach to check automatically privacy properties working well in practice I : What could go wrong 🖑 ?

R1: Messing up with messages



Lucca Hirschi

R1: Messing up with messages



Practical examples (RFID protocols): HB⁺, DM, KCL, LBV, LD, ...

Lucca Hirschi

R1: Messing up with messages

Problem

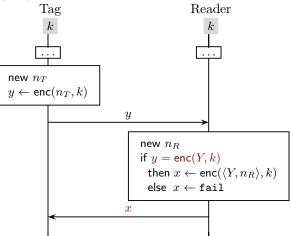
For some malicious beahvior, relations over messages leak info about involved agents.

Main idea to avoid that:

• outputs are (statically) indistiguishable from \neq nonces

→ Condition 1: Frame Opacity (FO)

R2: Messing up with conditionals



Practical examples: BAC (ePassport), some versions of PACE (new version of ePassport), LAK, CH

R2: Messing up with conditionals

Problem

For some malicious behavior, outcome of conditionals leak info about involved agents

Main idea to avoid that:

conditional true <>> attacker did not interfer

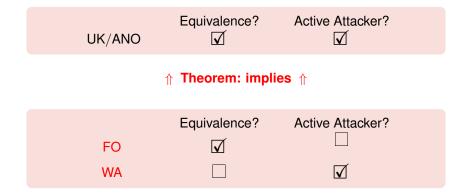
→ Condition 2: Well-Authentication (WA)

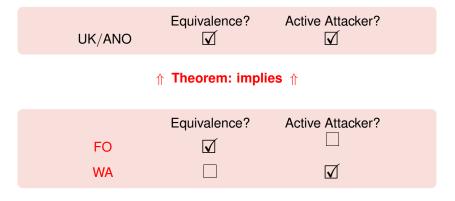
II : Big picture

UK/ANO	Equivalence?	Active Attacker?		
↑ Theorem: implies ↑				
FO "Messages are without relations"WA "Conditionals hold only for honest interactions"				

Lucca Hirschi

HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case

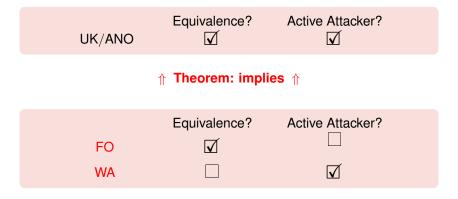




↑ can be checked ↑

► FO: automatic check of diff-equivalence using Proverif

WA: automatic check of correspondence prop. using Proverif



↑ can be checked ↑

► FO: automatic check of diff-equivalence using Proverif

WA: automatic check of correspondence prop. using Proverif

Tight enough to conclude on our case studies: (BAC, LAK, Hash-Lock, EKE, SPKE)

Lucca Hirschi

HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case

III : Model and Problem

Applied- π - Terms

Any Σ -algebra + equational theory E + reduction rules (à la Proverif)

Example

- $\Sigma_c = \{dh/2, \langle_, _\rangle/2, enc/2, ok/0, no/0\}$
- $\Sigma_d = \{\pi_1/1, \pi_2/1, \text{dec}/2\}$
- $\blacktriangleright \mathsf{E} = \{(\mathsf{dh}(\mathsf{dh}(x,y),z) = \mathsf{dh}(\mathsf{dh}(x,z),y))\}$
- $def_{\Sigma}(dec) = \{dec(enc(x, y), y) \rightarrow x\}$

• def_{$$\Sigma$$}(π_i) = { π_i ($\langle x_1, x_2 \rangle$) $\rightarrow x_i$ }

induce

- a congruence =_E
- a "computation" relation \Downarrow

e.g., $g^{xy^z} =_{\mathsf{E}} g^{zy^x}$ e.g., dec(enc(n, g^{a^b}), g^{b^a}) $\Downarrow n$

Applied- π - Terms

Any Σ -algebra + equational theory E + reduction rules (à la Proverif)

Example

- $\Sigma_c = \{dh/2, \langle_, _\rangle/2, enc/2, ok/0, no/0\}$
- $\Sigma_d = \{\pi_1/1, \pi_2/1, \text{dec}/2\}$
- $\blacktriangleright \mathsf{E} = \{(\mathsf{dh}(\mathsf{dh}(x,y),z) = \mathsf{dh}(\mathsf{dh}(x,z),y))\}$

•
$$def_{\Sigma}(dec) = \{dec(enc(x, y), y) \rightarrow x\}$$

•
$$\operatorname{def}_{\Sigma}(\pi_i) = \{\pi_i(\langle x_1, x_2 \rangle) \to x_i\}$$

induce

- a congruence =_E
- a "computation" relation \Downarrow

e.g., $g^{xy^z} =_{\mathsf{E}} g^{zy^x}$ e.g., dec(enc(n, g^{a^b}), g^{b^a}) $\Downarrow n$

~ We deal with an arbitrary theory.

Lucca Hirschi

HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case

Applied- π - Syntax

Process:

P,Q := 0 | in(c,x).P | out(c,u).P | if Test then P else Q | P | Q | !P $| \nu n.P$

null input output conditional parallel replication restriction

Lucca Hirschi

Applied- π - Syntax

Process:

 $\begin{array}{rcl} P,Q & := & 0 & & \text{null} \\ & \mid & \text{in}(c,x).P & & \text{input} \\ & \mid & \text{out}(c,u).P & & \text{output} \\ & \mid & \text{if Test then } P \text{ else } Q & & \text{conditional} \\ & \mid & P \mid Q & & \text{parallel} \\ & \mid & !P & & \text{replication} \\ & \mid & \nu n.P & & \text{restriction} \end{array}$

Frame (φ): the set of messages revelead to the network → intuition: intruder's knowledge

$$\phi = \{\underbrace{w_1}_{\text{handle}} \mapsto \underbrace{\text{enc}(m,k)}_{\text{out. message}}; w_2 \mapsto k\}$$

Lucca Hirschi

Applied- π - Syntax

Process:

 $\begin{array}{rcl} P,Q &:= & 0 & & \text{null} \\ & \mid & \text{in}(c,x).P & & \text{input} \\ & \mid & \text{out}(c,u).P & & \text{output} \\ & \mid & \text{if Test then } P \text{ else } Q & & \text{conditional} \\ & \mid & P \mid Q & & \text{parallel} \\ & \mid & !P & & \text{replication} \\ & \mid & \nu n.P & & \text{restriction} \end{array}$

Frame (φ): the set of messages revelead to the network → intuition: intruder's knowledge

$$\phi = \{\underbrace{w_1}_{\text{handle}} \mapsto \underbrace{\text{enc}(m,k)}_{\text{out. message}}; w_2 \mapsto k\}$$

• Configuration:
$$A = (\mathcal{P}; \phi)$$

Lucca Hirschi

HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case

Applied- π - Semantics

Recipes: are terms built using handles

$$e.g., \quad \frac{R}{R\phi \Downarrow m} = \operatorname{dec}(w_1, w_2) \qquad \text{for } \phi = \{w_1 \mapsto \operatorname{enc}(m, k); w_2 \mapsto k\}$$

 \rightsquigarrow intuition: how the environment builds messages from its knowledge

Applied- π - Semantics

Recipes: are terms built using handles

e.g., $\begin{array}{l} R = \operatorname{dec}(w_1, w_2) \\ R \phi \Downarrow m \end{array} \quad \text{for } \phi = \{w_1 \mapsto \operatorname{enc}(m, k); w_2 \mapsto k\} \end{array}$

 \leadsto intuition: how the environment builds messages from its knowledge

Semantics of configurations:

$$(\operatorname{in}(\boldsymbol{c}, \boldsymbol{x}).\boldsymbol{P} \cup \boldsymbol{\mathcal{P}}; \phi) \xrightarrow{\operatorname{in}(\boldsymbol{c}, \boldsymbol{R})} (\boldsymbol{P}\{\boldsymbol{x} \mapsto \boldsymbol{u}\} \cup \boldsymbol{\mathcal{P}}; \phi) \quad \text{if } \boldsymbol{R}\phi \Downarrow \boldsymbol{u}$$
$$(\operatorname{out}(\boldsymbol{c}, \boldsymbol{u}).\boldsymbol{P} \cup \boldsymbol{\mathcal{P}}; \phi) \xrightarrow{\operatorname{out}(\boldsymbol{c}, \boldsymbol{w})} (\boldsymbol{P} \cup \boldsymbol{\mathcal{P}}; \phi \cup \{\boldsymbol{w} \mapsto \boldsymbol{u}\}) \quad \text{if } \boldsymbol{w} \text{ fresh}$$

Lucca Hirschi

Applied- π - Semantics

Recipes: are terms built using handles

e.g., $\begin{array}{l} R = \operatorname{dec}(w_1, w_2) \\ R \phi \Downarrow m \end{array} \quad \text{for } \phi = \{w_1 \mapsto \operatorname{enc}(m, k); w_2 \mapsto k\} \end{array}$

 \leadsto intuition: how the environment builds messages from its knowledge

Semantics of configurations:

$$(\operatorname{in}(c, x).P \cup \mathcal{P}; \phi) \xrightarrow{\operatorname{in}(c, R)} (P\{x \mapsto u\} \cup \mathcal{P}; \phi) \quad \text{if } R\phi \Downarrow u \\ (\operatorname{out}(c, u).P \cup \mathcal{P}; \phi) \xrightarrow{\operatorname{out}(c, w)} (P \cup \mathcal{P}; \phi \cup \{w \mapsto u\}) \quad \text{if } w \text{ fresh}$$

+ expected rules for conditional and other constructs

Applied- π - Trace Equivalence

Static Equivalence (intuitively)

 $\Phi \sim \Psi$ when

- $dom(\Phi) = dom(\Psi)$ and
- for all tests, it holds on $\phi \iff$ it holds on ψ

Trace Equivalence

 $A \sqsubseteq B$ when, for any $A \xrightarrow{\text{tr}} A'$ there exists $B \xrightarrow{\text{tr}} B'$ such that $\Phi(A') \sim \Phi(B')$.

$$A \approx B$$
, when $A \sqsubseteq B$ and $B \sqsubseteq A$.

Our class of protocols & our problem

Our class

Intuitively, a party P is a process of the form:

$$P ::= 0 \mid in(c, y). \text{ if Test then } out(c, u).P_R \text{ else } P_{else}$$
$$P_{else} ::= 0 \mid out(c', u')$$

Our class of protocols & our problem

Our class

Intuitively, a party P is a process of the form:

- A protocol Π is a tuple $(\vec{k}, \vec{n}_T, \vec{n}_R, T, R)$ where:
 - <u>T</u> and R are parties
 - \vec{k} : identity names and \vec{n}_T / \vec{n}_R : session names
 - $fn(T) \subseteq \vec{k} \sqcup \vec{n}_T$ (resp. for *R*)

Our class of protocols & our problem

Our class

Intuitively, a party P is a process of the form:

• A protocol Π is a tuple $(\vec{k}, \vec{n}_T, \vec{n}_R, T, R)$ where:

- <u>T</u> and R are parties
- \vec{k} : identity names and \vec{n}_T / \vec{n}_R : session names
- $fn(T) \subseteq \vec{k} \sqcup \vec{n}_T$ (resp. for *R*)

Unlinkability

$$\underbrace{! \nu \vec{k} (! (\nu \vec{n}_T T | \nu \vec{n}_R R))}_{\mathcal{M}} \approx \underbrace{! \nu \vec{k} . (\nu \vec{n}_T T | \nu \vec{n}_R R)}_{\mathcal{S}}$$

IV : Sufficient conditions

Frame opacity

Frame opacity

For any execution $\mathcal{M} \xrightarrow{t} B$, we have that $\Phi(B) \sim [\Phi(B)]^{\text{nonce}}$.

Frame opacity

Frame opacity

For any execution $\mathcal{M} \xrightarrow{t} B$, we have that $\Phi(B) \sim [\Phi(B)]^{\text{nonce}}$.

Require that all outputs are \sim from nonces is too strong:

- $\Phi = \{ w \mapsto (\operatorname{enc}(n_1, k), \operatorname{enc}(n_2, k)) \}$
- if $[\Phi]^{nonce} = \{ w \mapsto n \}$ then $\Phi \not\sim [\Phi]^{nonce}$
- if $[\Phi]^{nonce} = \{ w \mapsto \langle n, n' \rangle \}$ then $\Phi \sim [\Phi]^{nonce}$

Frame opacity

Frame opacity

For any execution $\mathcal{M} \xrightarrow{t} B$, we have that $\Phi(B) \sim [\Phi(B)]^{\text{nonce}}$.

Require that all outputs are \sim from nonces is too strong:

- $\Phi = \{ w \mapsto (\operatorname{enc}(n_1, k), \operatorname{enc}(n_2, k)) \}$
- if $[\Phi]^{nonce} = \{ w \mapsto n \}$ then $\Phi \not\sim [\Phi]^{nonce}$
- if $[\Phi]^{nonce} = \{ w \mapsto \langle n, n' \rangle \}$ then $\Phi \sim [\Phi]^{nonce}$

Transparent function symbols

- $f \in \Sigma_c$ is *transparent* if:
 - attacker can extract its arguments and
 - does not appear in E.

Frame opacity

Frame opacity

For any execution $\mathcal{M} \xrightarrow{t} B$, we have that $\Phi(B) \sim [\Phi(B)]^{\text{nonce}}$.

$$\bullet \ \Phi = \{ w \mapsto (\operatorname{enc}(n_1, k), \operatorname{enc}(n_2, k)) \}$$

•
$$[\Phi]^{nonce} = \{ w \mapsto \langle n, n' \rangle \}$$
 and $\Phi \sim [\Phi]^{nonce}$

Transparent function symbols

- $f \in \Sigma_c$ is *transparent* if:
 - attacker can extract its arguments and
 - does not appear in E.

Idealization

There exists a function $[\cdot]^{ideal}$: $\mathcal{T}(\Sigma_c, \mathcal{N}) \to \mathcal{T}(\Sigma_t, \{\Box\})$ such that:

- ► $[u]^{\text{ideal}} = f([u_1]^{\text{ideal}}, ...)$ if $u =_{\mathsf{E}} f(u_1, ...)$ for some $f \in \Sigma_t$,
- and $[u]^{ideal} = \Box$ otherwise.

Well-Authentication

We assume additional annotations to actions:

$$e.g., (\{T\{\vec{k} \mapsto \vec{k}_0; \vec{n}_T \mapsto \vec{n}_0\}\}; \phi) \xrightarrow{in(c,x)[T(\vec{k}_0, \vec{n}_0)], then[T(\vec{k}_0, \vec{n}_0)]} \cdot$$

Well-Authentication

We assume additional annotations to actions:

$$e.g., (\{T\{\vec{k} \mapsto \vec{k}_0; \vec{n}_T \mapsto \vec{n}_0\}\}; \phi) \xrightarrow{in(c,x)[T(\vec{k}_0, \vec{n}_0)].then[T(\vec{k}_0, \vec{n}_0)]}$$

Well-Authentication

 $\Pi = (\vec{k}, \vec{n}_T, \vec{n}_R, T, R)$ is well-authenticating if, for any execution

$$(\mathcal{M}; \emptyset) \xrightarrow{t. \text{then}[T(\vec{k}, \vec{n}_1)]} (\mathcal{P}; \Phi)$$

there must be a $R(\vec{k}, \vec{n}_2)$ such that $T(\vec{k}, \vec{n}_1)$ and $R(\vec{k}, \vec{n}_2)$ were having an honest execution in (t, Φ) .

A trace t is *honest* for a frame Φ if

- ▶ else ∉ *t* and
- ▶ $obs(t) = out(\cdot, w_0).in(\cdot, M_0).out(\cdot, w_1)...$ with $M_i \Phi \Downarrow =_{\mathsf{E}} w_i \Phi$.

Lucca Hirschi

HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case

Main Theorem

If $\Pi = (\vec{k}, \vec{n}_T, \vec{n}_R, T, R)$ is well-authenticating and \mathcal{M} ensures frame opacity, then Π ensures unlinkability.

A similar theorem for both unlinkability and anonymity.

Lucca Hirschi

HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case

V : Applications

Tool: UKano

We wrote UKano: a tool built on top of ProVerif that automatically checks our two sufficient conditions.

Tool: UKano

We wrote UKano: a tool built on top of ProVerif that automatically checks our two sufficient conditions.

New proofs of Unlinkability & Anonymity for:

- Feldhofer, Hash-Lock and (fixed) LAK (RFID auth.);
- ► BAC+PA+AA, (fixed) PACE (ePassport);

Tool: UKano

We wrote UKano: a tool built on top of ProVerif that automatically checks our two sufficient conditions.

New proofs of Unlinkability & Anonymity for:

- Feldhofer, Hash-Lock and (fixed) LAK (RFID auth.);
- BAC+PA+AA, (fixed) PACE (ePassport);

When conditions fail to hold: no direct attacks but still...

Flaws/attacks discovered:

- ▶ PACE (¬ UK);
- ► LAK (¬ UK).

Paper, sources of UKano, ProVerif files at http://projects.lsv.ens-cachan.fr/ukano/

VI : Conclusion

UK/ANO	Equivalence?	Active Attacker?
↑ Theorem: implies ↑		
FO	"Messages are	without relations"
WA "Co	nditionals hold only	y for honest interactions"

\Uparrow can be **checked** \Uparrow

- ► FO: automatic check of diff-equivalence using Proverif
- ► WA: automatic check of correspondence prop. using Proverif

Tight enough to conclude on our case studies: (BAC, LAK, Hash-Lock, EKE, SPKE)

Future Work

Improve the method

- tackle memory (often used in RFID)
- move to other tools as backends (Tamarin, Maude-NPA)
- allow more flexibility for idealization

Future Work

Improve the method

- tackle memory (often used in RFID)
- move to other tools as backends (Tamarin, Maude-NPA)
- allow more flexibility for idealization

Reusing core ideas

- exploit our conditions to obtain other properties
- extract guidelines from our conditions

Paper, sources of UKano, ProVerif files at http://projects.lsv.ens-cachan.fr/ukano/

Thank you !