A Method for Verifying Privacy-Type Properties:

The Unbounded Case
HotSpot 2016

Lucca Hirschi

April 3rd, 2016

David Baelde Stéphanie Delaune
joint work with and
LSV LSV

(sv

Introduction

~» we need formal verification of crypto protocols covering privacy

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 2/24

Introduction _
)))

~» we need formal verification of crypto protocols covering privacy

Goal:
» checking unlinkability and anonymity
» in the symbolic model (Dolev-Yao)
» for unbounded sessions

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 2/24

Introduction

)))

~» we need formal verification of crypto protocols covering privacy

Goal:
» checking unlinkability and anonymity
» in the symbolic model (Dolev-Yao)
» for unbounded sessions

v

Unlinkability (=untraceability) [ISO/IEC 15408]:
Ensuring that a user may make multiple uses of a
service or resource without others being able to link
these uses together.

v

Anonymity [ISO/IEC 15408]:

Ensuring that a user may use a service or resource
without disclosing the user’s identity. [...]

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 2/24

Context
Strong unlinkability [Arapinis, Chothia, Ritter, Ryan CSF’10]:

\wK(\vA(T|R) ~ v KvA(T | R)
M S

» M: oo many different T — R playing oo many sessions
» S: oo many different T — R playing at moste one session
» ~: observational equivalence (trace equivalence)

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 3/24

Context
Strong unlinkability [Arapinis, Chothia, Ritter, Ryan CSF’10]:

\wK(\vA(T|R) ~ v KvA(T | R)
M S

» M: oo many different T — R playing oo many sessions
» S: oo many different T — R playing at moste one session
» ~: observational equivalence (trace equivalence)

» Checking this is undecidable (because of replication)

Existing approaches:
» manual: need to exhib huge bisimulations

» automatic (ProVerif/Maude-NPA/Tamarin):
rely on abstraction (diff-equivalence) not precise enough
~~ always fail to prove unlinkability

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 3/24

Context
Strong unlinkability [Arapinis, Chothia, Ritter, Ryan CSF’10]:

\wK(\vA(T|R) ~ v KvA(T | R)
M S

» M: oo many different T — R playing oo many sessions
» S: oo many different T — R playing at moste one session
» ~: observational equivalence (trace equivalence)

» Checking this is undecidable (because of replication)

Existing approaches:
» manual: need to exhib huge bisimulations

» automatic (ProVerif/Maude-NPA/Tamarin):
rely on abstraction (diff-equivalence) not precise enough
~~ always fail to prove unlinkability

~ there is a need for dedicated abstraction targeting unlinkability

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 3/24

Contribution

We identify:
» 2 conditions implying unlinkability and anonymity
» for a class of 2-agents protocols including our target case studies

We make sure:
» our conditions can be checked automatically using ProVerif
» they correspond to good design practices

~+ sound approach to check automatically privacy properties
working well in practice

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 4/24

| : What could go wrong & ?

R1: Messing up with messages

Tag Reader
k, id k

‘ enc(id, k)

| ==

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case

6/24

R1: Messing up with messages

Tag Reader
k,id k
|

new rnd
new n
y1 <+ enc((id, rnd), k)

<y17n>
enc(n, k)

Practical examples (RFID protocols): HB*, DM, KCL, LBV, LD, ...

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 6/24

R1: Messing up with messages

Problem

For some malicious beahvior, relations over messages leak info about
involved agents.

Main idea to avoid that:
» outputs are (statically) indistiguishable from # nonces

~+ Condition 1: Frame Opacity (FO)

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 6/24

R2: Messing up with conditionals

Tag Reader
k k
new nr

y < enc(nr, k)

new ng
if y=enc(Y,k)
then z + enc((Y,nr), k)
else x + fail

Practical examples: BAC (ePassport), some versions of PACE (new
version of ePassport), LAK, CH

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 7124

R2: Messing up with conditionals

Problem

For some malicious behavior, outcome of conditionals leak info about
involved agents

Main idea to avoid that:
» conditional true <= attacker did not interfer

~» Condition 2: Well-Authentication (WA)

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 7/24

Il : Big picture

Equivalence? Active Attacker?

UK/ANO v v

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 9/24

Equivalence? Active Attacker?

UK/ANO M v

1+ Theorem: implies 1

FO “Messages are without relations”

WA “Conditionals hold only for honest interactions”

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 9/24

Equivalence? Active Attacker?

UK/ANO v v

1+ Theorem: implies 1

Equivalence? Active Attacker?
FO VI L]
WA] v

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 9/24

Equivalence? Active Attacker?

UK/ANO v v

1+ Theorem: implies 1

Equivalence? Active Attacker?
FO VI L]
WA] v

1+ can be checked 1

» FO: automatic check of diff-equivalence using Proverif
» WA: automatic check of correspondence prop. using Proverif

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 9/24

Equivalence? Active Attacker?

UK/ANO v v

1+ Theorem: implies 1

Equivalence? Active Attacker?
FO VI L]
WA] v

1+ can be checked 1

» FO: automatic check of diff-equivalence using Proverif
» WA: automatic check of correspondence prop. using Proverif

Tight enough to conclude on our case studies:
(BAC, LAK, Hash-Lock, EKE, SPKE)

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 9/24

[1l : Model and Problem

Applied-7 - Terms

Any Y -algebra + equational theory E + reduction rules (a la Proverif)

Example

Y.={dh/2,(_,)/2,enc/2,0k/0,n0/0}
Y4 ={m/1,72/1,dec/2}

E = {(dh(dh(x, y), z) = dh(dh(x, 2),y))}
defsy(dec) = {dec(enc(x, y),y) — x}
defs () = {mi({x1, X2)) = X}

v

vV V. v VY

induce

> acongruence =g eg. g = g~
a “computation” relation |} e.g., dec(enc(n, g°),g"%) I n

v

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 11/24

Applied-7 - Terms

Any Y -algebra + equational theory E + reduction rules (a la Proverif)

Example

Y.={dh/2,(_,)/2,enc/2,0k/0,n0/0}
Y4 ={m/1,72/1,dec/2}

E = {(dh(dh(x, y), z) = dh(dh(x, 2),y))}
defsy(dec) = {dec(enc(x, y),y) — x}
defs () = {mi({x1, X2)) = X}

v

vV V. v VY

induce

> acongruence =g eg. g = g~
a “computation” relation |} e.g., dec(enc(n, g°),g"%) I n

v

~ We deal with an arbitrary theory.

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 11/24

Applied-r - Syntax
» Process:

P,Q = 0
| in(c,x).P

| out(c,u).P

| if Testthen P else Q
| P|Q

| P

| vnP

null

input
output
conditional
parallel
replication
restriction

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 12/24

Applied-r - Syntax
» Process:

P.Q =

0

in(c, x).P

out(c, u).P

if Test then P else Q
PlQ

1P

vnP

null

input
output
conditional
parallel
replication
restriction

» Frame (¢): the set of messages revelead to the network
~ intuition: intruder’s knowledge

¢o=9{ wy —enc(m k), wo— k}
~N

handle out. message

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 12/24

Applied-r - Syntax
» Process:

P.Q =

0

in(c, x).P

out(c, u).P

if Test then P else Q
PlQ

1P

vnP

null

input
output
conditional
parallel
replication
restriction

» Frame (¢): the set of messages revelead to the network
~ intuition: intruder’s knowledge

¢o=9{ wy —enc(m k), wo— k}
~N

handle out. message

» Configuration: A = (P; ¢)

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 12/24

Applied-7 - Semantics
» Recipes: are terms built using handles

R= dec(w1, W2)

e.g., Ro | m for ¢ = {wy — enc(m, k); wo — k}

~ intuition: how the environment builds messages from its
knowledge

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 13/24

Applied-7 - Semantics
» Recipes: are terms built using handles

R= dec(w1, W2)

e.g., Ro | m for ¢ = {wy — enc(m, k); wo — k}

~ intuition: how the environment builds messages from its
knowledge

» Semantics of configurations:

(in(c,x).PUP;¢) OB (pix s uy UP;0) it Rp Il u

out(c,w)

(out(c, u).PUP; $) (PUP;¢U{w — u}) if wiresh

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 13/24

Applied-7 - Semantics
» Recipes: are terms built using handles

R= dec(w1, W2)

e.g., Ro | m for ¢ = {wy — enc(m, k); wo — k}

~= intuition: how the environment builds messages from its
knowledge

» Semantics of configurations:
(in(e,x).PUP;¢) 2P (P{x s u} UP;) if R I u

out(c,w)

(out(c, u).PUP; $) (PUP;¢U{w — u}) if wiresh

+ expected rules for conditional and other constructs

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 13/24

Applied-7 - Trace Equivalence

Static Equivalence (intuitively)
® ~ ¥ when
» dom(®) = dom(V) and
» for all tests, it holds on ¢ < it holds on ¢

Trace Equivalence

AC Bwhen, forany A A’ there exists B X B’ such that
S(A) ~ (B').

A~ B,when AC Band BLC A.

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 14/24

Our class of protocols & our problem

Our class
» Intuitively, a party P is a process of the form:

P = 0| in(c,y).if Testthen out(c, u).Pg else Pese

Pise == 0 | out(c,)

15/24

HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case

Lucca Hirschi

Our class of protocols & our problem

Our class
» Intuitively, a party P is a process of the form:

P = 0| in(c,y).if Testthen out(c, u).Pg else Pese
Pise == 0 | out(c,)

» A protocol Mis a tuple (k, A7, Ag, T, R) where:
e T and R are parties
e K:identity names and Hir/Ta: session names
o f(T)C Kk U Tt (resp. for R)

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 15/24

Our class of protocols & our problem

Our class
» Intuitively, a party P is a process of the form:

P = 0| in(c,y).if Testthen out(c, u).Pg else Pese
Pise == 0 | out(c,)

» A protocol Mis a tuple (k, A7, Ag, T, R) where:
e T and R are parties
e K:identity names and Hir/Ta: session names
o f(T)C Kk U Tt (resp. for R)

Unlinkability

! VT((! (vATrT |vAgR)) ~ | V?.(VHTT | v RR)

M S

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 15/24

IV : Sufficient conditions

Frame opacity
Frame opacity
For any execution M 1 B, we have that ®(B) ~ [®(B)]"onee.

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 17724

Frame opacity
Frame opacity

For any execution M - B, we have that ®(B) ~ [(B)]""ee.
Require that all outputs are ~ from nonces is too strong:

» & = {w > (enc(ny, k),enc(nz, k))}
> if []MONce — {w i n} then & & [d]nonce
> if [P]"°"¢¢ = {w — (n,)} then & ~ [Pp]nonce

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 17124

Frame opacity
Frame opacity
For any execution M > B, we have that ®(B) ~ [®(B)]"ee,
Require that all outputs are ~ from nonces is too strong:
» & ={w — (enc(ny, k),enc(no, k))}

> if [®]1ON% = {w s n} then & £ [d]nonce
> if [®]MON% = {w 1 (n, 1Y)} then & ~ [b]nonce

Transparent function symbols

f € X is transparent if:
» attacker can extract its arguments and
» does not appear in E.

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 17724

Frame opacity
Frame opacity

For any execution M 1 B, we have that ®(B) ~ [®(B)]onee,

» & = {w s (enc(ny, k),enc(ny, k))}
> [(D]nonce _ {W — <n, n/>} and ¢ ~ [cb]nonce

Transparent function symbols

f € X is transparent if:
» attacker can extract its arguments and
» does not appear in E.

Idealization

There exists a function []¢@ . T(Z,, V) — T (X, {O}) such that:
> [u]9ed = f([us]9e@ ..) if u = f(uy,...) for some f € ¥4,
» and [u]®@ = O otherwise.

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 17724

Well-Authentication
We assume additional annotations to actions:

in(e.X)[T(Ko, Ao)]-then[T(Ko, 7o)]

e.g., {T{K — Ko; 7 — Ao}}:)

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 18/24

Well-Authentication
We assume additional annotations to actions:

in(eX)[T(Ko, o)]-then[T(Ko, Fo)],

e.g., {T{K — Ko; 7 — Ao}}:)

Well-Authentication

M= (K, A, Br. T, R) is well-authenticating if, for any execution

(,/\/l,@) t.then[T(k,n1)] (P, (D)

there must be a R(K, R2) such that T(k, 1) and R(K, i) were
having an honest execution in (t, ®). + similarly for R

A trace t is honest for a frame ® if
» else ¢ tand
> ObS(t) = out(', W()).in(', Mo).out(', W1) ... with Mj® ||=g w;®.

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 18/24

Main Theorem

If M= (7{, N, ng, T, R) is well-authenticating and M ensures frame
opacity, then I ensures unlinkability.

A similar theorem for both unlinkability and anonymity.

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 19/24

V : Applications

Tool: UKano

We wrote UKano: a tool built on top of ProVerif that automatically
checks our two sufficient conditions.

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 21/24

http://projects.lsv.ens-cachan.fr/ukano/

Tool: UKano

We wrote UKano: a tool built on top of ProVerif that automatically
checks our two sufficient conditions.

New proofs of Unlinkability & Anonymity for:

» Feldhofer, Hash-Lock and (fixed) LAK (RFID auth.);
» BAC+PA-+AA, (fixed) PACE (ePassport);

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 21/24

http://projects.lsv.ens-cachan.fr/ukano/

Tool: UKano

We wrote UKano: a tool built on top of ProVerif that automatically
checks our two sufficient conditions.

New proofs of Unlinkability & Anonymity for:
» Feldhofer, Hash-Lock and (fixed) LAK (RFID auth.);

» BAC+PA-+AA, (fixed) PACE (ePassport);
When conditions fail to hold: no direct attacks but still...

Flaws/attacks discovered:
» PACE (- UK);
> LAK (- UK).

Paper, sources of UKano, ProVerif files at
http://projects.lsv.ens—-cachan.fr/ukano/

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 21/24

http://projects.lsv.ens-cachan.fr/ukano/

VI : Conclusion

Equivalence? Active Attacker?

UK/ANO v v
f+ Theorem: implies 1}
FO “Messages are without relations”
WA “Conditionals hold only for honest interactions”
1t can be checked 1

» FO: automatic check of diff-equivalence using Proverif
» WA: automatic check of correspondence prop. using Proverif

Tight enough to conclude on our case studies:
(BAC, LAK, Hash-Lock, EKE, SPKE)

Future Work

Improve the method
» tackle memory (often used in RFID)
» move to other tools as backends (Tamarin, Maude-NPA)
» allow more flexibility for idealization

http://projects.lsv.ens-cachan.fr/ukano/

Future Work

Improve the method

» tackle memory (often used in RFID)
» move to other tools as backends (Tamarin, Maude-NPA)
» allow more flexibility for idealization

Reusing core ideas
» exploit our conditions to obtain other properties
» extract guidelines from our conditions

Paper, sources of UKano, ProVerif files at
http://projects.lsv.ens—-cachan.fr/ukano/

Thank you !

http://projects.lsv.ens-cachan.fr/ukano/

	Introduction

