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Introduction

 we need formal verification of crypto protocols covering privacy

Goal:
I checking unlinkability and anonymity
I in the symbolic model (Dolev-Yao)
I for unbounded sessions

I Unlinkability ( =untraceability) [ISO/IEC 15408]:
Ensuring that a user may make multiple uses of a

service or resource without others being able to link
these uses together.

I Anonymity [ISO/IEC 15408]:
Ensuring that a user may use a service or resource

without disclosing the user’s identity. [...]
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Context
Strong unlinkability [Arapinis, Chothia, Ritter, Ryan CSF’10]:

! ν
#»

k (! ν #»n (T | R))︸ ︷︷ ︸
M

≈ ! ν
#»

k .ν #»n (T | R)︸ ︷︷ ︸
S

I M: ∞ many different T − R playing∞ many sessions
I S: ∞ many different T − R playing at moste one session
I ≈: observational equivalence (trace equivalence)

I Checking this is undecidable (because of replication)

Existing approaches:
I manual: need to exhib huge bisimulations
I automatic (ProVerif/Maude-NPA/Tamarin):

rely on abstraction (diff-equivalence) not precise enough
 always fail to prove unlinkability

 there is a need for dedicated abstraction targeting unlinkability
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Contribution

We identify:
I 2 conditions implying unlinkability and anonymity
I for a class of 2-agents protocols including our target case studies

We make sure:
I our conditions can be checked automatically using ProVerif
I they correspond to good design practices

 sound approach to check automatically privacy properties
working well in practice
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I : What could go wrong ?



R1: Messing up with messages

Tag

k, id

Reader

k

enc(id , k)

. . .

Problem
For some malicious beahvior, relations over messages leak info about
involved agents.

Main idea to avoid that:
I outputs are (statically) indistiguishable from 6= nonces

 Condition 1: Frame Opacity (FO)
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Tag

k, id

Reader

k

new rnd
new n
y1 ← enc(〈id , rnd〉, k)

〈y1, n〉
enc(n, k)

Practical examples (RFID protocols): HB+, DM, KCL, LBV, LD, . . .
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R2: Messing up with conditionals
Tag

k

Reader

k

. . .. . .

new nT

y ← enc(nT , k)

y

new nR

if y = enc(Y, k)
then x← enc(〈Y, nR〉, k)
else x← fail

x

Practical examples: BAC (ePassport), some versions of PACE (new
version of ePassport), LAK, CH

Problem
For some malicious behavior, outcome of conditionals leak info about
involved agents

Main idea to avoid that:
I conditional true ⇐⇒ attacker did not interfer

 Condition 2: Well-Authentication (WA)
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II : Big picture



Equivalence? Active Attacker?
UK/ANO �X �X

⇑ Theorem: implies ⇑

FO

WA

⇑ can be checked ⇑

I FO: automatic check of diff-equivalence using Proverif
I WA: automatic check of correspondence prop. using Proverif

Tight enough to conclude on our case studies:

(BAC, LAK, Hash-Lock, EKE, SPKE)
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III : Model and Problem



Applied-π - Terms
Any Σ-algebra + equational theory E + reduction rules (à la Proverif )

Example
I Σc = {dh/2, 〈_,_〉/2,enc/2,ok/0,no/0}
I Σd = {π1/1, π2/1,dec/2}
I E = {(dh(dh(x , y), z) = dh(dh(x , z), y))}
I defΣ(dec) = {dec(enc(x , y), y)→ x}
I defΣ(πi ) = {πi (〈x1, x2〉)→ xi}

induce

I a congruence =E e.g., gx y z
=E gz y x

I a “computation” relation ⇓ e.g., dec(enc(n,gab),gba
) ⇓ n

 We deal with an arbitrary theory.
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Applied-π - Syntax
I Process:

P,Q := 0 null
| in(c, x).P input
| out(c,u).P output
| if Test then P else Q conditional
| P | Q parallel
| !P replication
| ν n.P restriction

I Frame (φ): the set of messages revelead to the network
 intuition: intruder’s knowledge

φ = { w1︸︷︷︸
handle

7→ enc(m, k)︸ ︷︷ ︸
out. message

; w2 7→ k}

I Configuration: A = (P;φ)
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Applied-π - Semantics
I Recipes: are terms built using handles

e.g., R = dec(w1,w2)
Rφ ⇓ m for φ = {w1 7→ enc(m, k); w2 7→ k}

 intuition: how the environment builds messages from its
knowledge

I Semantics of configurations:

(in(c, x).P ∪ P;φ)
in(c,R)−−−−→ (P{x 7→ u} ∪ P;φ) if Rφ ⇓ u

(out(c,u).P ∪ P;φ)
out(c,w)−−−−−→ (P ∪ P;φ ∪ {w 7→ u}) if w fresh

+ expected rules for conditional and other constructs
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Applied-π - Trace Equivalence

Static Equivalence (intuitively)
Φ ∼ Ψ when

I dom(Φ) = dom(Ψ) and
I for all tests, it holds on φ ⇐⇒ it holds on ψ

Trace Equivalence

A v B when, for any A tr−→ A′ there exists B tr−→ B′ such that
Φ(A′) ∼ Φ(B′).

A ≈ B, when A v B and B v A.
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Our class of protocols & our problem

Our class
I Intuitively, a party P is a process of the form:

P ::= 0 | in(c, y). if Test then out(c,u).PR else Pelse

Pelse ::= 0 | out(c′,u′)

I A protocol Π is a tuple (
#»

k , #»n T ,
#»n R ,T ,R) where:

T and R are parties
#»

k : identity names and #»n T/
#»n R : session names

fn(T ) ⊆ #»

k t #»n T (resp. for R)

Unlinkability

! ν
#»

k (! (ν #»n T T | ν #»n RR))︸ ︷︷ ︸
M

≈ ! ν
#»

k .(ν #»n T T | ν #»n RR)︸ ︷︷ ︸
S
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IV : Sufficient conditions



Frame opacity
Frame opacity

For any executionM t−→ B, we have that Φ(B) ∼ [Φ(B)]nonce.

I Φ = {w 7→ 〈enc(n1, k),enc(n2, k)〉}
I [Φ]nonce = {w 7→ 〈n,n′〉} and Φ ∼ [Φ]nonce

Transparent function symbols
f ∈ Σc is transparent if:

I attacker can extract its arguments and
I does not appear in E.

Idealization
There exists a function [·]ideal : T (Σc ,N )→ T (Σt , {�}) such that:

I [u]ideal = f([u1]ideal, . . .) if u =E f(u1, . . .) for some f ∈ Σt ,
I and [u]ideal = � otherwise.

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 17 / 24



Frame opacity
Frame opacity

For any executionM t−→ B, we have that Φ(B) ∼ [Φ(B)]nonce.

Require that all outputs are ∼ from nonces is too strong:

I Φ = {w 7→ 〈enc(n1, k),enc(n2, k)〉}
I if [Φ]nonce = {w 7→ n} then Φ 6∼ [Φ]nonce

I if [Φ]nonce = {w 7→ 〈n,n′〉} then Φ ∼ [Φ]nonce

Transparent function symbols
f ∈ Σc is transparent if:

I attacker can extract its arguments and
I does not appear in E.

Idealization
There exists a function [·]ideal : T (Σc ,N )→ T (Σt , {�}) such that:

I [u]ideal = f([u1]ideal, . . .) if u =E f(u1, . . .) for some f ∈ Σt ,
I and [u]ideal = � otherwise.

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 17 / 24



Frame opacity
Frame opacity

For any executionM t−→ B, we have that Φ(B) ∼ [Φ(B)]nonce.

Require that all outputs are ∼ from nonces is too strong:

I Φ = {w 7→ 〈enc(n1, k),enc(n2, k)〉}
I if [Φ]nonce = {w 7→ n} then Φ 6∼ [Φ]nonce

I if [Φ]nonce = {w 7→ 〈n,n′〉} then Φ ∼ [Φ]nonce

Transparent function symbols
f ∈ Σc is transparent if:

I attacker can extract its arguments and
I does not appear in E.

Idealization
There exists a function [·]ideal : T (Σc ,N )→ T (Σt , {�}) such that:

I [u]ideal = f([u1]ideal, . . .) if u =E f(u1, . . .) for some f ∈ Σt ,
I and [u]ideal = � otherwise.

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 17 / 24



Frame opacity
Frame opacity

For any executionM t−→ B, we have that Φ(B) ∼ [Φ(B)]nonce.

I Φ = {w 7→ 〈enc(n1, k),enc(n2, k)〉}
I [Φ]nonce = {w 7→ 〈n,n′〉} and Φ ∼ [Φ]nonce

Transparent function symbols
f ∈ Σc is transparent if:

I attacker can extract its arguments and
I does not appear in E.

Idealization
There exists a function [·]ideal : T (Σc ,N )→ T (Σt , {�}) such that:

I [u]ideal = f([u1]ideal, . . .) if u =E f(u1, . . .) for some f ∈ Σt ,
I and [u]ideal = � otherwise.

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 17 / 24



Well-Authentication
We assume additional annotations to actions:

e.g., ({T{ #»

k 7→ #»

k 0; #»n T 7→ #»n 0}};φ)
in(c,x)[T (

#»

k 0,
#»n 0)].then[T (

#»

k 0,
#»n 0)]−−−−−−−−−−−−−−−−−−−−−−→ ·

Well-Authentication
Π = (

#»

k , #»n T ,
#»n R ,T ,R) is well-authenticating if, for any execution

(M; ∅) t.then[T (
#»

k , #»n 1)]−−−−−−−−−−→ (P; Φ)

there must be a R(
#»

k , #»n 2) such that T (
#»

k , #»n 1) and R(
#»

k , #»n 2) were
having an honest execution in (t ,Φ). + similarly for R

A trace t is honest for a frame Φ if
I else /∈ t and
I obs(t) = out(·,w0).in(·,M0).out(·,w1) . . . with Mi Φ ⇓=E wi Φ.
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Main Theorem

If Π = (
#»

k , #»n T ,
#»n R ,T ,R) is well-authenticating andM ensures frame

opacity, then Π ensures unlinkability.

A similar theorem for both unlinkability and anonymity.
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V : Applications



Tool: UKano
We wrote UKano: a tool built on top of ProVerif that automatically
checks our two sufficient conditions.

New proofs of Unlinkability & Anonymity for:
I Feldhofer, Hash-Lock and (fixed) LAK (RFID auth.);
I BAC+PA+AA, (fixed) PACE (ePassport);

When conditions fail to hold: no direct attacks but still...

Flaws/attacks discovered:
I PACE (¬ UK);
I LAK (¬ UK).

Paper, sources of UKano, ProVerif files at
http://projects.lsv.ens-cachan.fr/ukano/
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VI : Conclusion



Equivalence? Active Attacker?
UK/ANO �X �X

⇑ Theorem: implies ⇑

FO “Messages are without relations”

WA “Conditionals hold only for honest interactions”

⇑ can be checked ⇑

I FO: automatic check of diff-equivalence using Proverif
I WA: automatic check of correspondence prop. using Proverif

Tight enough to conclude on our case studies:

(BAC, LAK, Hash-Lock, EKE, SPKE)



Future Work

Improve the method
I tackle memory (often used in RFID)
I move to other tools as backends (Tamarin, Maude-NPA)
I allow more flexibility for idealization

Reusing core ideas
I exploit our conditions to obtain other properties
I extract guidelines from our conditions

Paper, sources of UKano, ProVerif files at
http://projects.lsv.ens-cachan.fr/ukano/

Thank you !
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