
A Method for Verifying Privacy-Type Properties:
The Unbounded Case

HotSpot 2016

Lucca Hirschi

April 3rd, 2016

David Baelde Stéphanie Delaune
joint work with and

LSV LSV

Introduction

 we need formal verification of crypto protocols covering privacy

Goal:
I checking unlinkability and anonymity
I in the symbolic model (Dolev-Yao)
I for unbounded sessions

I Unlinkability (=untraceability) [ISO/IEC 15408]:
Ensuring that a user may make multiple uses of a

service or resource without others being able to link
these uses together.

I Anonymity [ISO/IEC 15408]:
Ensuring that a user may use a service or resource

without disclosing the user’s identity. [...]

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 2 / 24

Introduction

 we need formal verification of crypto protocols covering privacy

Goal:
I checking unlinkability and anonymity
I in the symbolic model (Dolev-Yao)
I for unbounded sessions

I Unlinkability (=untraceability) [ISO/IEC 15408]:
Ensuring that a user may make multiple uses of a

service or resource without others being able to link
these uses together.

I Anonymity [ISO/IEC 15408]:
Ensuring that a user may use a service or resource

without disclosing the user’s identity. [...]

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 2 / 24

Introduction

 we need formal verification of crypto protocols covering privacy

Goal:
I checking unlinkability and anonymity
I in the symbolic model (Dolev-Yao)
I for unbounded sessions

I Unlinkability (=untraceability) [ISO/IEC 15408]:
Ensuring that a user may make multiple uses of a

service or resource without others being able to link
these uses together.

I Anonymity [ISO/IEC 15408]:
Ensuring that a user may use a service or resource

without disclosing the user’s identity. [...]

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 2 / 24

Context
Strong unlinkability [Arapinis, Chothia, Ritter, Ryan CSF’10]:

! ν
#»

k (! ν #»n (T | R))︸ ︷︷ ︸
M

≈ ! ν
#»

k .ν #»n (T | R)︸ ︷︷ ︸
S

I M: ∞ many different T − R playing∞ many sessions
I S: ∞ many different T − R playing at moste one session
I ≈: observational equivalence (trace equivalence)

I Checking this is undecidable (because of replication)

Existing approaches:
I manual: need to exhib huge bisimulations
I automatic (ProVerif/Maude-NPA/Tamarin):

rely on abstraction (diff-equivalence) not precise enough
 always fail to prove unlinkability

 there is a need for dedicated abstraction targeting unlinkability

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 3 / 24

Context
Strong unlinkability [Arapinis, Chothia, Ritter, Ryan CSF’10]:

! ν
#»

k (! ν #»n (T | R))︸ ︷︷ ︸
M

≈ ! ν
#»

k .ν #»n (T | R)︸ ︷︷ ︸
S

I M: ∞ many different T − R playing∞ many sessions
I S: ∞ many different T − R playing at moste one session
I ≈: observational equivalence (trace equivalence)

I Checking this is undecidable (because of replication)

Existing approaches:
I manual: need to exhib huge bisimulations
I automatic (ProVerif/Maude-NPA/Tamarin):

rely on abstraction (diff-equivalence) not precise enough
 always fail to prove unlinkability

 there is a need for dedicated abstraction targeting unlinkability

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 3 / 24

Context
Strong unlinkability [Arapinis, Chothia, Ritter, Ryan CSF’10]:

! ν
#»

k (! ν #»n (T | R))︸ ︷︷ ︸
M

≈ ! ν
#»

k .ν #»n (T | R)︸ ︷︷ ︸
S

I M: ∞ many different T − R playing∞ many sessions
I S: ∞ many different T − R playing at moste one session
I ≈: observational equivalence (trace equivalence)

I Checking this is undecidable (because of replication)

Existing approaches:
I manual: need to exhib huge bisimulations
I automatic (ProVerif/Maude-NPA/Tamarin):

rely on abstraction (diff-equivalence) not precise enough
 always fail to prove unlinkability

 there is a need for dedicated abstraction targeting unlinkability
Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 3 / 24

Contribution

We identify:
I 2 conditions implying unlinkability and anonymity
I for a class of 2-agents protocols including our target case studies

We make sure:
I our conditions can be checked automatically using ProVerif
I they correspond to good design practices

 sound approach to check automatically privacy properties
working well in practice

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 4 / 24

I : What could go wrong ?

R1: Messing up with messages

Tag

k, id

Reader

k

enc(id , k)

. . .

Problem
For some malicious beahvior, relations over messages leak info about
involved agents.

Main idea to avoid that:
I outputs are (statically) indistiguishable from 6= nonces

 Condition 1: Frame Opacity (FO)

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 6 / 24

R1: Messing up with messages

Tag

k, id

Reader

k

new rnd
new n
y1 ← enc(〈id , rnd〉, k)

〈y1, n〉
enc(n, k)

Practical examples (RFID protocols): HB+, DM, KCL, LBV, LD, . . .

Problem
For some malicious beahvior, relations over messages leak info about
involved agents.

Main idea to avoid that:
I outputs are (statically) indistiguishable from 6= nonces

 Condition 1: Frame Opacity (FO)

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 6 / 24

R1: Messing up with messages

Problem
For some malicious beahvior, relations over messages leak info about
involved agents.

Main idea to avoid that:
I outputs are (statically) indistiguishable from 6= nonces

 Condition 1: Frame Opacity (FO)

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 6 / 24

R2: Messing up with conditionals
Tag

k

Reader

k

.

new nT

y ← enc(nT , k)

y

new nR

if y = enc(Y, k)
then x← enc(〈Y, nR〉, k)
else x← fail

x

Practical examples: BAC (ePassport), some versions of PACE (new
version of ePassport), LAK, CH

Problem
For some malicious behavior, outcome of conditionals leak info about
involved agents

Main idea to avoid that:
I conditional true ⇐⇒ attacker did not interfer

 Condition 2: Well-Authentication (WA)

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 7 / 24

R2: Messing up with conditionals

Problem
For some malicious behavior, outcome of conditionals leak info about
involved agents

Main idea to avoid that:
I conditional true ⇐⇒ attacker did not interfer

 Condition 2: Well-Authentication (WA)

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 7 / 24

II : Big picture

Equivalence? Active Attacker?
UK/ANO �X �X

⇑ Theorem: implies ⇑

FO

WA

⇑ can be checked ⇑

I FO: automatic check of diff-equivalence using Proverif
I WA: automatic check of correspondence prop. using Proverif

Tight enough to conclude on our case studies:

(BAC, LAK, Hash-Lock, EKE, SPKE)

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 9 / 24

Equivalence? Active Attacker?
UK/ANO �X �X

⇑ Theorem: implies ⇑

FO “Messages are without relations”

WA “Conditionals hold only for honest interactions”

⇑ can be checked ⇑

I FO: automatic check of diff-equivalence using Proverif
I WA: automatic check of correspondence prop. using Proverif

Tight enough to conclude on our case studies:

(BAC, LAK, Hash-Lock, EKE, SPKE)

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 9 / 24

Equivalence? Active Attacker?
UK/ANO �X �X

⇑ Theorem: implies ⇑

Equivalence? Active Attacker?

FO �X f

WA f �X

⇑ can be checked ⇑

I FO: automatic check of diff-equivalence using Proverif
I WA: automatic check of correspondence prop. using Proverif

Tight enough to conclude on our case studies:

(BAC, LAK, Hash-Lock, EKE, SPKE)

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 9 / 24

Equivalence? Active Attacker?
UK/ANO �X �X

⇑ Theorem: implies ⇑

Equivalence? Active Attacker?

FO �X f

WA f �X

⇑ can be checked ⇑

I FO: automatic check of diff-equivalence using Proverif
I WA: automatic check of correspondence prop. using Proverif

Tight enough to conclude on our case studies:

(BAC, LAK, Hash-Lock, EKE, SPKE)

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 9 / 24

Equivalence? Active Attacker?
UK/ANO �X �X

⇑ Theorem: implies ⇑

Equivalence? Active Attacker?

FO �X f

WA f �X

⇑ can be checked ⇑

I FO: automatic check of diff-equivalence using Proverif
I WA: automatic check of correspondence prop. using Proverif

Tight enough to conclude on our case studies:

(BAC, LAK, Hash-Lock, EKE, SPKE)

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 9 / 24

III : Model and Problem

Applied-π - Terms
Any Σ-algebra + equational theory E + reduction rules (à la Proverif)

Example
I Σc = {dh/2, 〈_,_〉/2,enc/2,ok/0,no/0}
I Σd = {π1/1, π2/1,dec/2}
I E = {(dh(dh(x , y), z) = dh(dh(x , z), y))}
I defΣ(dec) = {dec(enc(x , y), y)→ x}
I defΣ(πi) = {πi (〈x1, x2〉)→ xi}

induce

I a congruence =E e.g., gx y z
=E gz y x

I a “computation” relation ⇓ e.g., dec(enc(n,gab),gba
) ⇓ n

 We deal with an arbitrary theory.

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 11 / 24

Applied-π - Terms
Any Σ-algebra + equational theory E + reduction rules (à la Proverif)

Example
I Σc = {dh/2, 〈_,_〉/2,enc/2,ok/0,no/0}
I Σd = {π1/1, π2/1,dec/2}
I E = {(dh(dh(x , y), z) = dh(dh(x , z), y))}
I defΣ(dec) = {dec(enc(x , y), y)→ x}
I defΣ(πi) = {πi (〈x1, x2〉)→ xi}

induce

I a congruence =E e.g., gx y z
=E gz y x

I a “computation” relation ⇓ e.g., dec(enc(n,gab),gba
) ⇓ n

 We deal with an arbitrary theory.

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 11 / 24

Applied-π - Syntax
I Process:

P,Q := 0 null
| in(c, x).P input
| out(c,u).P output
| if Test then P else Q conditional
| P | Q parallel
| !P replication
| ν n.P restriction

I Frame (φ): the set of messages revelead to the network
 intuition: intruder’s knowledge

φ = { w1︸︷︷︸
handle

7→ enc(m, k)︸ ︷︷ ︸
out. message

; w2 7→ k}

I Configuration: A = (P;φ)

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 12 / 24

Applied-π - Syntax
I Process:

P,Q := 0 null
| in(c, x).P input
| out(c,u).P output
| if Test then P else Q conditional
| P | Q parallel
| !P replication
| ν n.P restriction

I Frame (φ): the set of messages revelead to the network
 intuition: intruder’s knowledge

φ = { w1︸︷︷︸
handle

7→ enc(m, k)︸ ︷︷ ︸
out. message

; w2 7→ k}

I Configuration: A = (P;φ)

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 12 / 24

Applied-π - Syntax
I Process:

P,Q := 0 null
| in(c, x).P input
| out(c,u).P output
| if Test then P else Q conditional
| P | Q parallel
| !P replication
| ν n.P restriction

I Frame (φ): the set of messages revelead to the network
 intuition: intruder’s knowledge

φ = { w1︸︷︷︸
handle

7→ enc(m, k)︸ ︷︷ ︸
out. message

; w2 7→ k}

I Configuration: A = (P;φ)

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 12 / 24

Applied-π - Semantics
I Recipes: are terms built using handles

e.g., R = dec(w1,w2)
Rφ ⇓ m for φ = {w1 7→ enc(m, k); w2 7→ k}

 intuition: how the environment builds messages from its
knowledge

I Semantics of configurations:

(in(c, x).P ∪ P;φ)
in(c,R)−−−−→ (P{x 7→ u} ∪ P;φ) if Rφ ⇓ u

(out(c,u).P ∪ P;φ)
out(c,w)−−−−−→ (P ∪ P;φ ∪ {w 7→ u}) if w fresh

+ expected rules for conditional and other constructs

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 13 / 24

Applied-π - Semantics
I Recipes: are terms built using handles

e.g., R = dec(w1,w2)
Rφ ⇓ m for φ = {w1 7→ enc(m, k); w2 7→ k}

 intuition: how the environment builds messages from its
knowledge

I Semantics of configurations:

(in(c, x).P ∪ P;φ)
in(c,R)−−−−→ (P{x 7→ u} ∪ P;φ) if Rφ ⇓ u

(out(c,u).P ∪ P;φ)
out(c,w)−−−−−→ (P ∪ P;φ ∪ {w 7→ u}) if w fresh

+ expected rules for conditional and other constructs

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 13 / 24

Applied-π - Semantics
I Recipes: are terms built using handles

e.g., R = dec(w1,w2)
Rφ ⇓ m for φ = {w1 7→ enc(m, k); w2 7→ k}

 intuition: how the environment builds messages from its
knowledge

I Semantics of configurations:

(in(c, x).P ∪ P;φ)
in(c,R)−−−−→ (P{x 7→ u} ∪ P;φ) if Rφ ⇓ u

(out(c,u).P ∪ P;φ)
out(c,w)−−−−−→ (P ∪ P;φ ∪ {w 7→ u}) if w fresh

+ expected rules for conditional and other constructs

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 13 / 24

Applied-π - Trace Equivalence

Static Equivalence (intuitively)
Φ ∼ Ψ when

I dom(Φ) = dom(Ψ) and
I for all tests, it holds on φ ⇐⇒ it holds on ψ

Trace Equivalence

A v B when, for any A tr−→ A′ there exists B tr−→ B′ such that
Φ(A′) ∼ Φ(B′).

A ≈ B, when A v B and B v A.

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 14 / 24

Our class of protocols & our problem

Our class
I Intuitively, a party P is a process of the form:

P ::= 0 | in(c, y). if Test then out(c,u).PR else Pelse

Pelse ::= 0 | out(c′,u′)

I A protocol Π is a tuple (
#»

k , #»n T ,
#»n R ,T ,R) where:

T and R are parties
#»

k : identity names and #»n T/
#»n R : session names

fn(T) ⊆ #»

k t #»n T (resp. for R)

Unlinkability

! ν
#»

k (! (ν #»n T T | ν #»n RR))︸ ︷︷ ︸
M

≈ ! ν
#»

k .(ν #»n T T | ν #»n RR)︸ ︷︷ ︸
S

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 15 / 24

Our class of protocols & our problem

Our class
I Intuitively, a party P is a process of the form:

P ::= 0 | in(c, y). if Test then out(c,u).PR else Pelse

Pelse ::= 0 | out(c′,u′)

I A protocol Π is a tuple (
#»

k , #»n T ,
#»n R ,T ,R) where:

T and R are parties
#»

k : identity names and #»n T/
#»n R : session names

fn(T) ⊆ #»

k t #»n T (resp. for R)

Unlinkability

! ν
#»

k (! (ν #»n T T | ν #»n RR))︸ ︷︷ ︸
M

≈ ! ν
#»

k .(ν #»n T T | ν #»n RR)︸ ︷︷ ︸
S

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 15 / 24

Our class of protocols & our problem

Our class
I Intuitively, a party P is a process of the form:

P ::= 0 | in(c, y). if Test then out(c,u).PR else Pelse

Pelse ::= 0 | out(c′,u′)

I A protocol Π is a tuple (
#»

k , #»n T ,
#»n R ,T ,R) where:

T and R are parties
#»

k : identity names and #»n T/
#»n R : session names

fn(T) ⊆ #»

k t #»n T (resp. for R)

Unlinkability

! ν
#»

k (! (ν #»n T T | ν #»n RR))︸ ︷︷ ︸
M

≈ ! ν
#»

k .(ν #»n T T | ν #»n RR)︸ ︷︷ ︸
S

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 15 / 24

IV : Sufficient conditions

Frame opacity
Frame opacity

For any executionM t−→ B, we have that Φ(B) ∼ [Φ(B)]nonce.

I Φ = {w 7→ 〈enc(n1, k),enc(n2, k)〉}
I [Φ]nonce = {w 7→ 〈n,n′〉} and Φ ∼ [Φ]nonce

Transparent function symbols
f ∈ Σc is transparent if:

I attacker can extract its arguments and
I does not appear in E.

Idealization
There exists a function [·]ideal : T (Σc ,N)→ T (Σt , {�}) such that:

I [u]ideal = f([u1]ideal, . . .) if u =E f(u1, . . .) for some f ∈ Σt ,
I and [u]ideal = � otherwise.

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 17 / 24

Frame opacity
Frame opacity

For any executionM t−→ B, we have that Φ(B) ∼ [Φ(B)]nonce.

Require that all outputs are ∼ from nonces is too strong:

I Φ = {w 7→ 〈enc(n1, k),enc(n2, k)〉}
I if [Φ]nonce = {w 7→ n} then Φ 6∼ [Φ]nonce

I if [Φ]nonce = {w 7→ 〈n,n′〉} then Φ ∼ [Φ]nonce

Transparent function symbols
f ∈ Σc is transparent if:

I attacker can extract its arguments and
I does not appear in E.

Idealization
There exists a function [·]ideal : T (Σc ,N)→ T (Σt , {�}) such that:

I [u]ideal = f([u1]ideal, . . .) if u =E f(u1, . . .) for some f ∈ Σt ,
I and [u]ideal = � otherwise.

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 17 / 24

Frame opacity
Frame opacity

For any executionM t−→ B, we have that Φ(B) ∼ [Φ(B)]nonce.

Require that all outputs are ∼ from nonces is too strong:

I Φ = {w 7→ 〈enc(n1, k),enc(n2, k)〉}
I if [Φ]nonce = {w 7→ n} then Φ 6∼ [Φ]nonce

I if [Φ]nonce = {w 7→ 〈n,n′〉} then Φ ∼ [Φ]nonce

Transparent function symbols
f ∈ Σc is transparent if:

I attacker can extract its arguments and
I does not appear in E.

Idealization
There exists a function [·]ideal : T (Σc ,N)→ T (Σt , {�}) such that:

I [u]ideal = f([u1]ideal, . . .) if u =E f(u1, . . .) for some f ∈ Σt ,
I and [u]ideal = � otherwise.

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 17 / 24

Frame opacity
Frame opacity

For any executionM t−→ B, we have that Φ(B) ∼ [Φ(B)]nonce.

I Φ = {w 7→ 〈enc(n1, k),enc(n2, k)〉}
I [Φ]nonce = {w 7→ 〈n,n′〉} and Φ ∼ [Φ]nonce

Transparent function symbols
f ∈ Σc is transparent if:

I attacker can extract its arguments and
I does not appear in E.

Idealization
There exists a function [·]ideal : T (Σc ,N)→ T (Σt , {�}) such that:

I [u]ideal = f([u1]ideal, . . .) if u =E f(u1, . . .) for some f ∈ Σt ,
I and [u]ideal = � otherwise.

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 17 / 24

Well-Authentication
We assume additional annotations to actions:

e.g., ({T{ #»

k 7→ #»

k 0; #»n T 7→ #»n 0}};φ)
in(c,x)[T (

#»

k 0,
#»n 0)].then[T (

#»

k 0,
#»n 0)]−−−−−−−−−−−−−−−−−−−−−−→ ·

Well-Authentication
Π = (

#»

k , #»n T ,
#»n R ,T ,R) is well-authenticating if, for any execution

(M; ∅) t.then[T (
#»

k , #»n 1)]−−−−−−−−−−→ (P; Φ)

there must be a R(
#»

k , #»n 2) such that T (
#»

k , #»n 1) and R(
#»

k , #»n 2) were
having an honest execution in (t ,Φ). + similarly for R

A trace t is honest for a frame Φ if
I else /∈ t and
I obs(t) = out(·,w0).in(·,M0).out(·,w1) . . . with Mi Φ ⇓=E wi Φ.

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 18 / 24

Well-Authentication
We assume additional annotations to actions:

e.g., ({T{ #»

k 7→ #»

k 0; #»n T 7→ #»n 0}};φ)
in(c,x)[T (

#»

k 0,
#»n 0)].then[T (

#»

k 0,
#»n 0)]−−−−−−−−−−−−−−−−−−−−−−→ ·

Well-Authentication
Π = (

#»

k , #»n T ,
#»n R ,T ,R) is well-authenticating if, for any execution

(M; ∅) t.then[T (
#»

k , #»n 1)]−−−−−−−−−−→ (P; Φ)

there must be a R(
#»

k , #»n 2) such that T (
#»

k , #»n 1) and R(
#»

k , #»n 2) were
having an honest execution in (t ,Φ). + similarly for R

A trace t is honest for a frame Φ if
I else /∈ t and
I obs(t) = out(·,w0).in(·,M0).out(·,w1) . . . with Mi Φ ⇓=E wi Φ.

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 18 / 24

Main Theorem

If Π = (
#»

k , #»n T ,
#»n R ,T ,R) is well-authenticating andM ensures frame

opacity, then Π ensures unlinkability.

A similar theorem for both unlinkability and anonymity.

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 19 / 24

V : Applications

Tool: UKano
We wrote UKano: a tool built on top of ProVerif that automatically
checks our two sufficient conditions.

New proofs of Unlinkability & Anonymity for:
I Feldhofer, Hash-Lock and (fixed) LAK (RFID auth.);
I BAC+PA+AA, (fixed) PACE (ePassport);

When conditions fail to hold: no direct attacks but still...

Flaws/attacks discovered:
I PACE (¬ UK);
I LAK (¬ UK).

Paper, sources of UKano, ProVerif files at
http://projects.lsv.ens-cachan.fr/ukano/

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 21 / 24

http://projects.lsv.ens-cachan.fr/ukano/

Tool: UKano
We wrote UKano: a tool built on top of ProVerif that automatically
checks our two sufficient conditions.

New proofs of Unlinkability & Anonymity for:
I Feldhofer, Hash-Lock and (fixed) LAK (RFID auth.);
I BAC+PA+AA, (fixed) PACE (ePassport);

When conditions fail to hold: no direct attacks but still...

Flaws/attacks discovered:
I PACE (¬ UK);
I LAK (¬ UK).

Paper, sources of UKano, ProVerif files at
http://projects.lsv.ens-cachan.fr/ukano/

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 21 / 24

http://projects.lsv.ens-cachan.fr/ukano/

Tool: UKano
We wrote UKano: a tool built on top of ProVerif that automatically
checks our two sufficient conditions.

New proofs of Unlinkability & Anonymity for:
I Feldhofer, Hash-Lock and (fixed) LAK (RFID auth.);
I BAC+PA+AA, (fixed) PACE (ePassport);

When conditions fail to hold: no direct attacks but still...

Flaws/attacks discovered:
I PACE (¬ UK);
I LAK (¬ UK).

Paper, sources of UKano, ProVerif files at
http://projects.lsv.ens-cachan.fr/ukano/

Lucca Hirschi HotSpot 2016: A Method for Verifying Privacy-Type Properties: The Unbounded Case 21 / 24

http://projects.lsv.ens-cachan.fr/ukano/

VI : Conclusion

Equivalence? Active Attacker?
UK/ANO �X �X

⇑ Theorem: implies ⇑

FO “Messages are without relations”

WA “Conditionals hold only for honest interactions”

⇑ can be checked ⇑

I FO: automatic check of diff-equivalence using Proverif
I WA: automatic check of correspondence prop. using Proverif

Tight enough to conclude on our case studies:

(BAC, LAK, Hash-Lock, EKE, SPKE)

Future Work

Improve the method
I tackle memory (often used in RFID)
I move to other tools as backends (Tamarin, Maude-NPA)
I allow more flexibility for idealization

Reusing core ideas
I exploit our conditions to obtain other properties
I extract guidelines from our conditions

Paper, sources of UKano, ProVerif files at
http://projects.lsv.ens-cachan.fr/ukano/

Thank you !

http://projects.lsv.ens-cachan.fr/ukano/

Future Work

Improve the method
I tackle memory (often used in RFID)
I move to other tools as backends (Tamarin, Maude-NPA)
I allow more flexibility for idealization

Reusing core ideas
I exploit our conditions to obtain other properties
I extract guidelines from our conditions

Paper, sources of UKano, ProVerif files at
http://projects.lsv.ens-cachan.fr/ukano/

Thank you !

http://projects.lsv.ens-cachan.fr/ukano/

	Introduction

