A Method for Verifying Privacy-Type Properties: The Unbounded Case

Published at Security&Privacy'16

Lucca Hirschi, David Baelde and Stéphanie Delaune

8th December, 2016

 \rightsquigarrow we need formal verification of crypto protocols covering privacy

Introduction

 \rightsquigarrow we need formal verification of crypto protocols covering privacy

Goal:

- checking unlinkability and anonymity
- ▶ in the symbolic model (= Dolev-Yao model)
- for unbounded sessions and users

Introduction

 \rightsquigarrow we need formal verification of crypto protocols covering privacy

Goal:

- checking unlinkability and anonymity
- ▶ in the symbolic model (= Dolev-Yao model)
- for unbounded sessions and users
- Unlinkability (=untraceability) [ISO/IEC 15408]:

Ensuring that a user may make multiple uses of a service or resource without others being able to link these uses together.

Anonymity [ISO/IEC 15408]:

Ensuring that a user may use a service or resource without disclosing the user's identity. [...]

Protocol's specification

Security goal (e.g., Secrecy)

Lucca Hirschi

Outline

I Model & Problem
II Sufficient Conditions
III Mechanization & Applications
IV Conclusion

I : Model & Problem

Applied- π - Terms

Any Σ -algebra + equational theory E + reduction rules (à la Proverif)

Example

- $\Sigma_c = \{dh/2, \langle_, _\rangle/2, enc/2, ok/0, no/0\}$
- $\Sigma_d = \{\pi_1/1, \pi_2/1, \text{dec}/2\}$
- $\blacktriangleright \mathsf{E} = \{(\mathsf{dh}(\mathsf{dh}(x,y),z) = \mathsf{dh}(\mathsf{dh}(x,z),y))\}$

•
$$def_{\Sigma}(dec) = \{dec(enc(x, y), y) \rightarrow x\}$$

•
$$\operatorname{def}_{\Sigma}(\pi_i) = \{\pi_i(\langle x_1, x_2 \rangle) \to x_i\}$$

induce

- a congruence =_E
- a "computation" relation \Downarrow

e.g., $g^{xy^z} =_{\mathsf{E}} g^{zy^x}$ e.g., dec(enc(n, g^{a^b}), g^{b^a}) $\Downarrow n$

Applied- π - Terms

Any Σ -algebra + equational theory E + reduction rules (à la Proverif)

Example

•
$$\Sigma_c = \{dh/2, \langle_, _\rangle/2, enc/2, ok/0, no/0\}$$

- $\Sigma_d = \{\pi_1/1, \pi_2/1, \text{dec}/2\}$
- $\blacktriangleright \mathsf{E} = \{(\mathsf{dh}(\mathsf{dh}(x,y),z) = \mathsf{dh}(\mathsf{dh}(x,z),y))\}$

•
$$def_{\Sigma}(dec) = \{dec(enc(x, y), y) \rightarrow x\}$$

•
$$\operatorname{def}_{\Sigma}(\pi_i) = \{\pi_i(\langle x_1, x_2 \rangle) \to x_i\}$$

induce

- a congruence =_E
- a "computation" relation \Downarrow

e.g., $g^{xy^z} =_{\mathsf{E}} g^{zy^x}$ e.g., dec(enc(n, g^{a^b}), g^{b^a}) $\Downarrow n$

~ We deal with arbitrary term algebra

Lucca Hirschi

► Process:
$$P, Q := 0$$
 null
 $| in(c, x).P$ input
 $| out(c, u).P$ output
 $| if Test then P else Q$ conditional
 $| P | Q$ parallel

```
► Process: P, Q := 0 null

| in(c, x).P input

| out(c, u).P output

| if Test then P else Q conditional

| P | Q parallel

| !P replication

| \nu n.P restriction
```

► Process: P, Q := 0 null | in(c, x).P input | out(c, u).P output | if Test then P else Q conditional | P | Q parallel | !P replication $| \nu n.P$ restriction

Frame (φ): the set of messages revelead to the → intuition: attacker's () knowledge

$$\phi = \{\underbrace{w_1}_{\text{handle}} \mapsto \underbrace{\text{enc}(m,k)}_{\text{out. message}}; w_2 \mapsto k\}$$

Lucca Hirschi

► Process:
$$P, Q := 0$$
 null
 $| in(c, x).P$ input
 $| out(c, u).P$ output
 $| if Test then P else Q$ conditional
 $| P | Q$ parallel
 $| !P$ replication
 $| \nu n.P$ restriction

Frame (φ): the set of messages revelead to the → intuition: attacker's (↔) knowledge

$$\phi = \{\underbrace{w_1}_{\text{handle}} \mapsto \underbrace{\text{enc}(m,k)}_{\text{out. message}}; w_2 \mapsto k\}$$

• Configuration:
$$A = (\mathcal{P}; \phi)$$

Lucca Hirschi

Recipes: are terms built using handles

e.g., $\frac{R}{R\phi} = \det(w_1, w_2) \quad \text{for } \phi = \{w_1 \mapsto \det(m, k), w_2 \mapsto k\}$

"How 🖑 builds messages from its knowledge"

Recipes: are terms built using handles

e.g., $\begin{array}{l} R = \operatorname{dec}(w_1, w_2) \\ R \phi \Downarrow m \end{array} \quad \text{for } \phi = \{ w_1 \mapsto \operatorname{enc}(m, k), w_2 \mapsto k \} \end{array}$

"How 🖑 builds messages from its knowledge"

- Semantics of configurations:
 - Protocol's output:

 $(\{\operatorname{out}(c, u). P\} \cup \mathcal{P}; \phi) \xrightarrow{\operatorname{out}(c, w)} (\{P\} \cup \mathcal{P}; \phi \cup \{w \mapsto u\}) \text{ if } w \text{ fresh}$

🐯 learns outputted message

Recipes: are terms built using handles

e.g., $\begin{array}{l} R = \operatorname{dec}(w_1, w_2) \\ R \phi \Downarrow m \end{array} \quad \text{for } \phi = \{ w_1 \mapsto \operatorname{enc}(m, k), w_2 \mapsto k \} \end{array}$

"How 🖑 builds messages from its knowledge"

- Semantics of configurations:
 - Protocol's output:

 $(\{\operatorname{out}(c, u).P\} \cup \mathcal{P}; \phi) \xrightarrow{\operatorname{out}(c, w)} (\{P\} \cup \mathcal{P}; \phi \cup \{w \mapsto u\}) \text{ if } w \text{ fresh}$ $\bigotimes \text{ learns outputted message}$

Protocol's input:

 $(\{\operatorname{in}(c,x).P\} \cup \mathcal{P};\phi) \xrightarrow{\operatorname{in}(c,R)} (\{P\{x \mapsto u\}\} \cup \mathcal{P};\phi) \quad \text{if } R\phi \Downarrow u$

😇 injects any message he can builds

Recipes: are terms built using handles

e.g., $\begin{array}{l} R = \operatorname{dec}(w_1, w_2) \\ R \phi \Downarrow m \end{array} \quad \text{for } \phi = \{ w_1 \mapsto \operatorname{enc}(m, k), w_2 \mapsto k \} \end{array}$

"How 🖑 builds messages from its knowledge"

- Semantics of configurations:
 - Protocol's output:

 $(\{\operatorname{out}(c, u). P\} \cup \mathcal{P}; \phi) \xrightarrow{\operatorname{out}(c, w)} (\{P\} \cup \mathcal{P}; \phi \cup \{w \mapsto u\}) \text{ if } w \text{ fresh}$ $\bigotimes \text{ learns outputted message}$

Protocol's input:

 $(\{\operatorname{in}(\boldsymbol{c},\boldsymbol{x}).\boldsymbol{P}\}\cup\mathcal{P};\phi) \xrightarrow{\operatorname{in}(\boldsymbol{c},\boldsymbol{R})} (\{\boldsymbol{P}\{\boldsymbol{x}\mapsto\boldsymbol{u}\}\}\cup\mathcal{P};\phi) \quad \text{if } \boldsymbol{R}\phi\Downarrow\boldsymbol{u}$

😁 injects any message he can builds

+ expected rules for conditional and other constructs

Lucca Hirschi

Applied- π - Trace Equivalence

Unlinkability and Anonymity rely on trace equivalence

Applied- π - Trace Equivalence

Unlinkability and Anonymity rely on trace equivalence

Static Equivalence (intuitively)

 $\Phi \sim \Psi$ when

- $\operatorname{dom}(\Phi) = \operatorname{dom}(\Psi)$ and
- for all tests, it holds on $\phi \iff$ it holds on ψ

Applied- π - Trace Equivalence

Unlinkability and Anonymity rely on trace equivalence

Static Equivalence (intuitively)

 $\Phi \sim \Psi$ when

- $\operatorname{dom}(\Phi) = \operatorname{dom}(\Psi)$ and
- for all tests, it holds on $\phi \iff$ it holds on ψ

Trace Equivalence

 $A \sqsubseteq B$: for any $A \xrightarrow{\text{tr}} A'$ there exists $B \xrightarrow{\text{tr}} B'$ such that $\Phi(A') \sim \Phi(B')$.

 $A \approx B$, when $A \sqsubseteq B$ and $B \sqsubseteq A$.

Intuition of A ⊑ B:
 ∀ ☺ and behaviour of (A||☺) producing observable D
 ⇒ ∃ behaviour of (B||☺) producing observable D' ~ D

Lucca Hirschi

I: Model & Problem

"Real" usage of the protocol

"Ideal" usage of the protocol

∀ 🤩, 👋 cannot observe any difference

"Real" usage of the protocol

"Ideal" usage of the protocol

(\approx : trace equivalence)

- Infinitely many users
- Each playing infinitely many sessions

Lucca Hirschi

(Strong unlinkability [Arapinis, Chothia, Ritter, Ryan CSF'10])

Lucca Hirschi

The Problem

Goal

Automatic verification of

$$\underbrace{! \nu \operatorname{id.} (! \nu \operatorname{Sess.} P)}_{\mathcal{M}} \approx \underbrace{! \nu \operatorname{id.} (\nu \operatorname{Sess.} P)}_{\mathcal{S}}$$

for a large class of 2-party protocols (think of P = Tag | Reader)

The Problem

Goal

Automatic verification of

$$\underbrace{! \nu \operatorname{id.} (! \nu \operatorname{Sess.} P)}_{\mathcal{M}} \approx \underbrace{! \nu \operatorname{id.} (\nu \operatorname{Sess.} P)}_{\mathcal{S}}$$

for a large class of 2-party protocols (think of P = Tag | Reader)

Our class of protocols

Intuitively, a party P is a process of the form:

The Problem

Goal

Automatic verification of

$$\underbrace{! \nu \operatorname{id.} (! \nu \operatorname{Sess.} P)}_{\mathcal{M}} \approx \underbrace{! \nu \operatorname{id.} (\nu \operatorname{Sess.} P)}_{\mathcal{S}}$$

for a large class of 2-party protocols (think of P = Tag | Reader)

Our class of protocols

Intuitively, a party P is a process of the form:

- A protocol Π is a tuple $(\vec{k}, \vec{n}_T, \vec{n}_B, T, R)$ where:

 - *T* and *R* are parties \vec{k} : identity names and \vec{n}_T / \vec{n}_R : session names
 - $fn(T) \subset \vec{k} \sqcup \vec{n}_T$ (resp. for R)

Existing Approaches

Goal

Automatic verification of

$$\underbrace{! \nu \operatorname{id.} (! \nu \operatorname{Sess.} P)}_{\mathcal{M}} \approx \underbrace{! \nu \operatorname{id.} (\nu \operatorname{Sess.} P)}_{\mathcal{S}}$$

for a large class of 2-party protocols (think of P = Tag | Reader)

Existing approaches:

- manual: long, difficult, and highly error prone
- automatic (only ProVerif/Maude-NPA/Tamarin):
 - rely on too imprecise approximation of \approx : diff-equivalence
 - ----- always fail to prove unlinkability

Contributions

Theory:

- 2 reasonable conditions implying unlinkability (& anonymity)
- for a large class of 2-party protocols

Contributions

Theory:

- 2 reasonable conditions implying unlinkability (& anonymity)
- for a large class of 2-party protocols

Practice:

- our conditions can be checked automatically using existing tools
- we provide tool support for that (UKano)
Contributions

Theory:

- 2 reasonable conditions implying unlinkability (& anonymity)
- for a large class of 2-party protocols

Practice:

- our conditions can be checked automatically using existing tools
- we provide tool support for that (UKano)

Applications:

new proofs & attacks on RFID protocols

Outline

I Model & Problem

II Sufficient Conditions

III Mechanization & Applications

IV Conclusion

II: Two Generic Classes of Attacks 😁 Two Conditions to Avoid them

Lucca Hirschi

A Method for Verifying Privacy-Type Properties: The Unbounded Case

Lucca Hirschi

A Method for Verifying Privacy-Type Properties: The Unbounded Case

Problem

For some \bigoplus 's behaviors, relations over messages leak info about involved agents.

For some \bigoplus 's behaviors, relations over messages leak info about involved agents.

Main idea to avoid that:

- no relation at all
- ► (roughly) ~→ outputs are indistinguishable from fresh nonces

For some \bigoplus 's behaviors, relations over messages leak info about involved agents.

Main idea to avoid that:

- no relation at all
- ► (roughly) ~→ outputs are indistinguishable from fresh nonces

Problem

For some \bigoplus 's behaviors, relations over messages leak info about involved agents.

Main idea to avoid that:

- no relation at all
- ► (roughly) ~→ outputs are indistinguishable from fresh nonces

1st Condition: Frame Opacity (informal) For all $\mathcal{M} \xrightarrow{t} (\mathcal{P}; \Phi)$, we have that $\underbrace{\Phi}_{\text{"real" frame}} \sim \underbrace{[\Phi]^{\text{nonce}}}_{\text{"ideal" frame}}$. • $\Phi = \{ w \mapsto \langle \operatorname{enc}(n_1, k), \operatorname{enc}(n_2, k) \rangle \}$ • $[\Phi]^{\text{nonce}} = \{ w \mapsto \langle n, n' \rangle \}$ and $\Phi \sim [\Phi]^{\text{nonce}}$

$[\Phi]^{\text{nonce}}$ based on a notion of transparent function symbols

Lucca Hirschi

A Method for Verifying Privacy-Type Properties: The Unbounded Case

Lucca Hirschi

A Method for Verifying Privacy-Type Properties: The Unbounded Case

20 / 29

Lucca Hirschi

A Method for Verifying Privacy-Type Properties: The Unbounded Case

Problem

For some \bigoplus 's behaviors, conditionals' outcomes leak info about involved agents.

Main idea to avoid that:

- when \bigoplus plays such an attack \Rightarrow conditional evaluates negatively
- \blacktriangleright \rightsquigarrow conditional evaluates positively \iff \bigoplus did not interfer

Problem

Main idea to avoid that:

- when ${\buildrel {\buildrel {\buildrel {\buildre {\uildre {\buildre {\buildre {\buildre {\buildre {\buildre {\buildre {\buildre {\buildre {\uildre {\buildre {\uildre {\buildre {\buildre {\uildre {\uildre {\buildre {\uildre {\ulltre {\uildre {\uull}\uildre {\uildre \uill} \uildre \uildre \uull} \uildre \uil$
- ightarrow
 ightarrow conditional evaluates positively $\iff {\brace \brace \brace {\brace {\brace \brace {\brace \brace \brace {\brace \brace \br$

2nd Condition: Well-Authentication (informal)

$$\forall \mathcal{M} \xrightarrow{t.\texttt{test-ok}[T(\texttt{id},\texttt{sess})]} (\mathcal{P}; \Phi)$$

there must be a R(id, sess') such that T(id, sess) and R(id, sess') were having an honest interaction.

Main Result

Theorem

For any protocol in our class:

frame opacity & well-authentication

Lucca Hirschi

A Method for Verifying Privacy-Type Properties: The Unbounded Case

III : Mechanization & Applications

Mechanization

Both conditions can be automatically verified using ProVerif:

- ► Well Authentication: ~> just reachability properties
 - no longer equivalence property

Mechanization

Both conditions can be automatically verified using ProVerif:

- ► Well Authentication: ~> just reachability properties
 - no longer equivalence property
- Frame Opacity: ~> equivalence between messages
 - checkable with good precision via diff-equivalence and encodings

Mechanization

Both conditions can be automatically verified using ProVerif:

- ► Well Authentication: ~> just reachability properties
 - no longer equivalence property
- Frame Opacity: ~> equivalence between messages
 - checkable with good precision via diff-equivalence and encodings

Tool: UKano

Built on top of ProVerif that automatically checks our conditions.

Sources of UKano at

http://projects.lsv.ens-cachan.fr/ukano/

UKano

UKano

Case Studies

RFID auth. protocol	Frame	Well- auth.	Unlinkability
Feldhofer		1	safe
Hash-Lock		\checkmark	safe
LAK (stateless)	_	×	*
Fixed LAK		1	safe
ePassport protocol	Frame	Well-	Unlinkability
	opacity	auth.	
BAC	1	\checkmark	safe
BAC/PA/AA	 ✓ 	\checkmark	safe
PACE (faillible dec)	_	×	*
PACE (missing test)	_	×	*
PACE		×	₩
PACE with tags	1	\checkmark	safe

Found automatically new proofs and new attacks using UKano

Lucca Hirschi

IV : Conclusion

- ► **Theory**: 2 conditions ⇒ unlinkability & anonymity
- Practice: UKano automatically verifies them
- Applications: new proofs & attacks on RFID protocols

- ► **Theory**: 2 conditions ⇒ unlinkability & anonymity
- Practice: UKano automatically verifies them
- Applications: new proofs & attacks on RFID protocols

Future Current Work:

- more precise notion of frame opacity (for e.g., signature, ZK)
- extend the class of protocols + unlinkability scenarios
 - $\bullet \ \mapsto \mathsf{DAA}, \mathsf{ABCDH}: \mathsf{new} \ \mathsf{case} \ \mathsf{studies}$
- for standard crypto, conditions checkable without equivalence

Future Work

Improve the method:

- tackle memory (often used in RFID)
- move to other tools as backends (Tamarin, Maude-NPA)
- allow more flexibility for honest interactions

Future Work

Improve the method:

- tackle memory (often used in RFID)
- move to other tools as backends (Tamarin, Maude-NPA)
- allow more flexibility for honest interactions

Reusing core ideas:

- reuse methodology for other contextes/privacy properties
 - e-voting: done for ballot secrecy with Cas Cremers this summer
 - (?) attribute-based credentials, TPM, blockchain technologies, transparent certificate authorities, ...
- extract guidelines for privacy from our conditions

Paper, sources of UKano, ProVerif files at http://projects.lsv.ens-cachan.fr/ukano/

Thank you !

Lucca Hirschi

A Method for Verifying Privacy-Type Properties: The Unbounded Case

More : Extensions
Extensions

- A more precise notion of frame opacity (for e.g., signature, ZK)
- B extend the class of protocols + unlinkability scenarios
 - \mapsto DAA, ABCDH: new case studies
- C for standard crypto, conditions checkable without equivalence

Example DAA Sign:

Example DAA Sign:

Before

- No relation at all
- Outputs are indistinguishable from fresh nonces

For any execution $\mathcal{M} \xrightarrow{t} (\mathcal{P}, \Phi)$, we have that $\Phi \sim [\Phi(B)]^{\text{nonce}}$.

Before

- No relation at all
- Outputs are indistinguishable from fresh nonces

For any execution $\mathcal{M} \xrightarrow{t} (\mathcal{P}, \Phi)$, we have that $\Phi \sim [\Phi(B)]^{\text{nonce}}$.

Now

Relations must only depend on what is already observable

For any execution $\mathcal{M} \xrightarrow{t} (\mathcal{P}; \Phi)$, we have that $\Phi \sim \text{ideal}(t)$.

Unlinkability

 $! \nu \text{ id. } ! \nu \text{ Sess.}(T \mid R) \approx ! \nu \text{ id. } (\nu \text{ Sess.}(T \mid R))$

Well-Authentication

$$\forall (\mathcal{M}; \emptyset) \xrightarrow{t. \text{then}[T(\text{id}, \text{sess})]} (\mathcal{P}; \Phi)$$

there must be a R(id, sess') such that T(id, sess) and R(id, sess') were having an honest interaction.

What if *R* has no proper identity ?

Unlinkability $(! \nu \operatorname{id}_T . ! \nu \operatorname{Sess}_T . T) | ! \nu \operatorname{Sess}_R . R \approx (! \nu \operatorname{id}_T . \nu \operatorname{Sess}_T . T) | ! \nu \operatorname{Sess}_R . R$

Well-Authentication

$$\forall (\mathcal{M}; \emptyset) \xrightarrow{t.\texttt{then}[T(\texttt{id}, \texttt{sess})]} (\mathcal{P}; \Phi)$$

there must be a R(sess') such that T(id, sess) and R(sess') were having an honest interaction.

Lucca Hirschi

What if *T* and *R* never share identity ?

Unlinkability

$$(! \nu \operatorname{id}_T . ! \nu \operatorname{Sess}_T . T) | (! \nu \operatorname{id}_R . ! \nu \operatorname{Sess}_R . R) \\ \approx \\ (! \nu \operatorname{id}_T . \nu \operatorname{Sess}_T . T) | (! \nu \operatorname{id}_R . \nu \operatorname{Sess}_R . R)$$

Well-Authentication

$$\forall (\mathcal{M}; \emptyset) \xrightarrow{t. \texttt{then}[T(\texttt{id}, \texttt{sess})]} (\mathcal{P}; \Phi)$$

there must be a R(id', sess') such that T(id, sess) and R(id', sess') were having an honest interaction.

What if sessions of T (or/and R) cannot be executed concurrently ?

Unlinkability $! \nu \text{ id. } i \nu \text{Sess.}(T \mid R) \approx ! \nu \text{ id. } (\nu \text{Sess.}(T \mid R))$ $!P \sim P \mid P \mid P \mid ...$ $iP \sim P; P; P; ...$

- What if R has no proper identity ?
- What if T and R never share identity ?
- What if sessions of T (or R) cannot be executed concurrently ?

- Now, we can deal with all combinations of those variations
- They all are over-approximations of strong unlinkability
- new case studies: DAA Join & Sign, attribute-based authentication (abcdh used in IRMA)

Protocol	Frame opacity	Well- auth.	Unlinkability
DAA sign	✓	1	safe
DAA join	1	\checkmark	safe
abcdh (irma)	1	1	safe

C: UK & Ano ~> Reachability Problem

(More propsective: defs OK but proofs not finished yet.)

For standard crypto (enc, hash, mac, sign, data structures):

- ► syntactical checks + secrecy checks ⇒ Frame Opacity
- ► ~→ bunch of reachability checks ⇒ UK & ANO

C: UK & Ano ~> Reachability Problem

(More propsective: defs OK but proofs not finished yet.)

For standard crypto (enc, hash, mac, sign, data structures):

- ► syntactical checks + secrecy checks ⇒ Frame Opacity
- ► ~→ bunch of reachability checks ⇒ UK & ANO

Sufficient heuristic: All top-most "crypto" messages:

- ► (a) cannot be forged by . Checked via secrecy of keys/sub-messages.
- (b) are pairwise distinct. Checked via freshness syntactical conditions.

C: UK & Ano ~> Reachability Problem

(More propsective: defs OK but proofs not finished yet.)

For standard crypto (enc, hash, mac, sign, data structures):

- ► syntactical checks + secrecy checks ⇒ Frame Opacity
- ► ~→ bunch of reachability checks ⇒ UK & ANO

Sufficient heuristic: All top-most "crypto" messages:

- (a) cannot be forged by . Checked via secrecy of keys/sub-messages.
- (b) are pairwise distinct. Checked via freshness syntactical conditions.

Those messages are "black-boxed": without any relation \Rightarrow Frame Opacity