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Introduction

 we need formal verification of crypto protocols covering privacy

Goal:
I checking unlinkability and anonymity
I in the symbolic model (= Dolev-Yao model)
I for unbounded sessions and users

I Unlinkability ( =untraceability) [ISO/IEC 15408]:
Ensuring that a user may make multiple uses of a

service or resource without others being able to link
these uses together.

I Anonymity [ISO/IEC 15408]:
Ensuring that a user may use a service or resource

without disclosing the user’s identity. [...]
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Big Picture

Protocol’s specification

Security goal
(e.g., Secrecy)
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Big Picture

Privacy goal
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Big Picture

Sufficient Condition 1

Sufficient Condition 2
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I : Model & Problem



Applied-π - Terms
Any Σ-algebra + equational theory E + reduction rules (à la Proverif )

Example
I Σc = {dh/2, 〈_,_〉/2,enc/2,ok/0,no/0}
I Σd = {π1/1, π2/1,dec/2}
I E = {(dh(dh(x , y), z) = dh(dh(x , z), y))}
I defΣ(dec) = {dec(enc(x , y), y)→ x}
I defΣ(πi ) = {πi (〈x1, x2〉)→ xi}

induce

I a congruence =E e.g., gx y z
=E gz y x

I a “computation” relation ⇓ e.g., dec(enc(n,gab),gba
) ⇓ n

 We deal with arbitrary term algebra
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Applied-π - Syntax

I Process: P,Q := 0 null
| in(c, x).P input
| out(c,u).P output
| if Test then P else Q conditional
| P | Q parallel

| !P replication
| ν n.P restriction

I Frame (φ): the set of messages revelead to the
 intuition: attacker’s ( ) knowledge

φ = { w1︸︷︷︸
handle

7→ enc(m, k)︸ ︷︷ ︸
out. message

; w2 7→ k}

I Configuration: A = (P;φ)
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Applied-π - Semantics
I Recipes: are terms built using handles

e.g., R = dec(w1,w2)
Rφ ⇓ m for φ = {w1 7→ enc(m, k),w2 7→ k}

“How builds messages from its knowledge”

I Semantics of configurations:

Protocol’s output:

({out(c, u).P} ∪ P;φ) out(c,w)−−−−−→ ({P} ∪ P;φ ∪ {w 7→ u}) if w fresh

learns outputted message

Protocol’s input:

({in(c, x).P} ∪ P;φ) in(c,R)−−−−→ ({P{x 7→ u}} ∪ P;φ) if Rφ ⇓ u

injects any message he can builds

+ expected rules for conditional and other constructs

 controls all the network
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Applied-π - Trace Equivalence
Unlinkability and Anonymity rely on trace equivalence

Static Equivalence (intuitively)
Φ ∼ Ψ when

I dom(Φ) = dom(Ψ) and
I for all tests, it holds on φ ⇐⇒ it holds on ψ

Trace Equivalence

A v B: for any A tr−→ A′ there exists B tr−→ B′ such that Φ(A′) ∼ Φ(B′).

A ≈ B, when A v B and B v A.

I Intuition of A v B:
∀ and behaviour of (A‖ ) producing observable D

⇒ ∃ behaviour of (B‖ ) producing observable D′ ∼ D
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I : Model & Problem



Unlinkability

Scenario 1 Scenario 2

”Real” usage of the protocol ”Ideal” usage of the protocol

∀ , cannot observe any difference
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Unlinkability

Scenario 1 Scenario 2

”Real” usage of the protocol

≈

”Ideal” usage of the protocol

(≈: trace equivalence)
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Unlinkability

Scenario 1

≈
Session 1

Session 2

Session 3

Session 1

Session 2

Session 3

Session 1

Session 2

Session 3

Session 1 Session 1 Session 1

Scenario 2

I Infinitely many users
I Each playing infinitely many sessions
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Unlinkability
Scenario 1

≈

Session 1

Session 2

Session 3

Session 1

Session 2

Session 3

Session 1

Session 2

Session 3

Session 1 Session 1 Session 1

Scenario 2

id1 id2 id3 id1 id2 id3

!ν id !ν Sess. P !ν id.ν Sess. P

∞ users ∞ users
∞ sessions 1 session

(Strong unlinkability [Arapinis, Chothia, Ritter, Ryan CSF’10])
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The Problem
Goal
Automatic verification of

! ν id. (! ν Sess.P)︸ ︷︷ ︸
M

≈ ! ν id. (ν Sess.P)︸ ︷︷ ︸
S

for a large class of 2-party protocols (think of P = Tag |Reader)

Our class of protocols
I Intuitively, a party P is a process of the form:

P ::= 0 | in(c, y). if Test then out(c,u).P else Pelse

Pelse ::= 0 | out(c′,u′)

I A protocol Π is a tuple (
#»

k , #»n T ,
#»n R ,T ,R) where:

T and R are parties
#»

k : identity names and #»n T/
#»n R : session names

fn(T ) ⊆ #»

k t #»n T (resp. for R)
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Existing Approaches

Goal
Automatic verification of

! ν id. (! ν Sess.P)︸ ︷︷ ︸
M

≈ ! ν id. (ν Sess.P)︸ ︷︷ ︸
S

for a large class of 2-party protocols (think of P = Tag |Reader)

Existing approaches:
I manual: long, difficult, and highly error prone
I automatic (only ProVerif/Maude-NPA/Tamarin):

rely on too imprecise approximation of ≈: diff-equivalence
 always fail to prove unlinkability
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Contributions

Theory:
I 2 reasonable conditions implying unlinkability (& anonymity)
I for a large class of 2-party protocols

Practice:
I our conditions can be checked automatically using existing tools
I we provide tool support for that (UKano)

Applications:
I new proofs & attacks on RFID protocols
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II :
Two Generic Classes of Attacks
Two Conditions to Avoid them



1st Class: Leaks through Relations over Messages

Tag Reader
k, id k

{id}k
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1st Class: Leaks through Relations over Messages

Tag1
k1, id1

{id1}k1
Tag2
k2, id2

{id2}k2
=
?
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1st Class: Leaks through Relations over Messages

Tag1
k1, id1

{id1}k1
Tag1
k1, id1

{id1}k1

(k1, id1) = (k2, id2)

=
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1st Class: Leaks through Relations over Messages

Tag1
k1, id1

{id1}k1
Tag2
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{id2}k2

(k1, id1) 6= (k2, id2)

6=
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1st Class: Leaks through Relations over Messages

Tag Reader
k

n

{n, id}k

k, id
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1st Class: Leaks through Relations over Messages

Tag1
k1, id1

{0, id1}k1
Tag2
k2, id2

0

0 =
?

{0, id2}k2
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1st Class: Leaks through Relations over Messages
Problem
For some ’s behaviors, relations over messages leak info about
involved agents.

Main idea to avoid that:
I no relation at all
I (roughly) outputs are indistinguishable from fresh nonces

1st Condition: Frame Opacity (informal)

For allM t−→ (P; Φ), we have that Φ︸︷︷︸
"real" frame

∼ [Φ]nonce︸ ︷︷ ︸
"ideal" frame

.

I Φ = {w 7→ 〈enc(n1, k),enc(n2, k)〉}
I [Φ]nonce = {w 7→ 〈n,n′〉} and Φ ∼ [Φ]nonce

[Φ]nonce based on a notion of transparent function symbols
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2nd Class: Leaks through Conditionals’ Outcomes

Tag Reader
k

{n}k

{n′}k

k

dec(X , k) 6= ⊥if
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2nd Class: Leaks through Conditionals’ Outcomes

Tag1
k1

Reader1
k1

{n1}k1
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Tag1
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Tag2
k2

Reader2
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{n2}k2 {n1}k1

?

dec(X , k2) 6= ⊥if

Lucca Hirschi A Method for Verifying Privacy-Type Properties: The Unbounded Case 20 / 29



2nd Class: Leaks through Conditionals’ Outcomes

Tag1
k1

Reader1
k1

{n1}k1

Tag2
k2

Reader2
k2

{n2}k2 {n1}k1

{n′}k2 k1 = k2

dec(X , k2) 6= ⊥if
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2nd Class: Leaks through Conditionals’ Outcomes

Problem
For some ’s behaviors, conditionals’ outcomes leak info about
involved agents.

Main idea to avoid that:
I when plays such an attack⇒ conditional evaluates negatively
I  conditional evaluates positively ⇐⇒ did not interfer

2nd Condition: Well-Authentication (informal)

∀M t.test−ok[T (id,sess)]−−−−−−−−−−−−−→ (P; Φ)

there must be a R(id, sess′) such that T (id, sess) and R(id, sess′) were
having an honest interaction.
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Main Result

Theorem
For any protocol in our class:

frame opacity
&

well-authentication

}
⇒

{ Unlinkability
&

Anonymity
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III : Mechanization & Applications



Mechanization

Both conditions can be automatically verified using ProVerif:
I Well Authentication:  just reachability properties

no longer equivalence property

I Frame Opacity:  equivalence between messages
checkable with good precision via diff-equivalence and encodings

Tool: UKano
Built on top of ProVerif that automatically checks our conditions.

Sources of UKano at
http://projects.lsv.ens-cachan.fr/ukano/
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UKano

Modelization of the property
!ν id !ν Sess. P ≈ !ν id. ν Sess. P

Equivalence
of two models

ProVerif

No

Protocol’s specification Protocol’s model
(ProVerif model)

Attack?

Unlinkability or/and

Anonymity

Secure

Frame Opacity

Well-Authentication
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Case Studies

RFID auth. protocol Frame Well- Unlinkabilityopacity auth.
Feldhofer 3 3 safe
Hash-Lock 3 3 safe
LAK (stateless) − 5
Fixed LAK 3 3 safe

ePassport protocol Frame Well- Unlinkabilityopacity auth.
BAC 3 3 safe
BAC/PA/AA 3 3 safe
PACE (faillible dec) − 5
PACE (missing test) − 5
PACE − 5
PACE with tags 3 3 safe

I Found automatically new proofs and new attacks using UKano
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IV : Conclusion



Conclusion
I Theory: 2 conditions⇒ unlinkability & anonymity
I Practice: UKano automatically verifies them
I Applications: new proofs & attacks on RFID protocols

Future Current Work:
I more precise notion of frame opacity (for e.g., signature, ZK)
I extend the class of protocols + unlinkability scenarios

7→ DAA, ABCDH: new case studies
I for standard crypto, conditions checkable without equivalence

Future Work
Improve the method:

I tackle memory (often used in RFID)
I move to other tools as backends (Tamarin, Maude-NPA)
I allow more flexibility for honest interactions

Reusing core ideas:
I reuse methodology for other contextes/privacy properties

e-voting: done for ballot secrecy with Cas Cremers this summer
(?) attribute-based credentials, TPM, blockchain technologies,
transparent certificate authorities, . . .

I extract guidelines for privacy from our conditions
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Paper, sources of UKano, ProVerif files at
http://projects.lsv.ens-cachan.fr/ukano/

Thank you !
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More : Extensions



Extensions

A more precise notion of frame opacity (for e.g., signature, ZK)
B extend the class of protocols + unlinkability scenarios

7→ DAA, ABCDH: new case studies

C for standard crypto, conditions checkable without equivalence
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A: Improving Preciseness of Frame Opacity

Example DAA Sign:

TPM(cred) Verifier
n

ZK(n,cred)

Before
I No relation at all
I  Outputs are indistinguishable from fresh nonces

For any executionM t−→ (P,Φ), we have that Φ ∼ [Φ(B)]nonce.

Now
I Relations must only depend on what is already observable

For any executionM t−→ (P; Φ), we have that Φ ∼ ideal(t).
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B: Variations of Scenarios

Unlinkability
! ν id. ! ν Sess.(T | R) ≈ ! ν id. (ν Sess.(T | R))

Well-Authentication

∀ (M; ∅) t.then[T (id,sess)]−−−−−−−−−−→ (P; Φ)

there must be a R(id, sess′) such that T (id, sess) and R(id, sess′)
were having an honest interaction.
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B: Variations of Scenarios

What if R has no proper identity ?

Unlinkability
(! ν idT . ! ν SessT .T ) | !ν SessR .R ≈ (! ν idT . ν SessT .T ) | !ν SessR .R

Well-Authentication

∀ (M; ∅) t.then[T (id,sess)]−−−−−−−−−−→ (P; Φ)

there must be a R(sess′) such that T (id, sess) and R(sess′) were
having an honest interaction.
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B: Variations of Scenarios

What if T and R never share identity ?

Unlinkability
(! ν idT . ! ν SessT .T ) | (! ν idR . ! ν SessR .R)

≈
(! ν idT . ν SessT .T ) | (! ν idR .ν SessR .R)

Well-Authentication

∀ (M; ∅) t.then[T (id,sess)]−−−−−−−−−−→ (P; Φ)

there must be a R(id′, sess′) such that T (id, sess) and R(id′, sess′)
were having an honest interaction.
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B: Variations of Scenarios

What if sessions of T (or/and R) cannot be executed concurrently ?

Unlinkability
! ν id. ¡ ν Sess.(T | R) ≈ ! ν id. (ν Sess.(T | R))

!P ∼ P | P | P | . . .
¡P ∼ P; P; P; . . .
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B: Variations of Scenarios

1 What if R has no proper identity ?
2 What if T and R never share identity ?
3 What if sessions of T (or R) cannot be executed concurrently ?

I Now, we can deal with all combinations of those variations
I They all are over-approximations of strong unlinkability
I new case studies: DAA Join & Sign, attribute-based

authentication (abcdh used in IRMA)

Protocol Frame Well- Unlinkabilityopacity auth.
DAA sign 3 3 safe
DAA join 3 3 safe
abcdh (irma) 3 3 safe
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C: UK & Ano Reachability Problem

(More propsective: defs OK but proofs not finished yet.)

For standard crypto (enc, hash, mac, sign, data structures):
I syntactical checks + secrecy checks⇒ Frame Opacity
I  bunch of reachability checks⇒ UK & ANO

Sufficient heuristic: All top-most “crypto” messages:
I (a) cannot be forged by . Checked via secrecy of

keys/sub-messages.
I (b) are pairwise distinct. Checked via freshness syntactical

conditions.
Those messages are “black-boxed”: without any relation
⇒ Frame Opacity
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