Automatic Verification of Privacy Protection for Unbounded Sessions

Lucca Hirschi

July 16, 2015

we need formal verification of crypto protocols covering privacy

→ we need formal verification of crypto protocols covering privacy

Goal:

- checking privacy (unlinkability and anonymity)
- ▶ in the symbolic model
- ▶ for unbounded sessions.

we need formal verification of crypto protocols covering privacy

Goal:

- checking privacy (unlinkability and anonymity)
- ▶ in the symbolic model
- for unbounded sessions.

Strong unlinkability [Ryan et al. CSF'10]:

$$! \nu \vec{k} ! \nu \vec{n} (T \mid R) \approx ! \nu \vec{k} . \nu \vec{n} (T \mid R)$$

we need formal verification of crypto protocols covering privacy

Goal:

- checking privacy (unlinkability and anonymity)
- ▶ in the symbolic model
- for unbounded sessions.

Strong unlinkability [Ryan et al. CSF'10]:

$$! \nu \vec{k} ! \nu \vec{n} (T \mid R) \approx ! \nu \vec{k} . \nu \vec{n} (T \mid R)$$

Existing approaches:

- manual: need to exhib huge bisimulations;
- automatic (ProVerif/Maude-NPA): abstractions yield false attacks.

Contribution

We identify:

- 2 conditions implying unlinkability and anonymity
- for a class of 2-agents protocols including some target case studies;

We make sure:

- our conditions can be checked automatically using Proverif;
- they correspond to good design practices.

sound approach to check automatically privacy properties working well in practice

- ↑ can be checked ↑
- ► C_{rel}: automatic check of diff-equivalence using Proverif
- ► C_{honest}: automatic check of correspondence prop. using Proverif

Applications

New proofs of UK & Ano for:

- ▶ BAC+PA+AA (ePassport);
- PACE+PA+AA (ePassport v2);
- (fixed) LAK (RFID auth.);
- ► Hash-Lock (RFID auth.).

Applications

New proofs of UK & Ano for:

- BAC+PA+AA (ePassport);
- PACE+PA+AA (ePassport v2);
- (fixed) LAK (RFID auth.);
- ► Hash-Lock (RFID auth.).

When conditions fail to hold: no direct attacks but still...

Flaws/attacks discovered:

- ▶ some versions of PACE (¬ UK);
- ► LAK (¬ UK).

... still looking for other case studies ...

Thank You!