Partial Order Reduction for Security Protocols 68NQRT Seminar

Lucca Hirschi, David Baelde and Stéphanie Delaune

15th December, 2016

école	_
normale	_
supérieure ——	_
paris-saclay-	_

(H)

wins (BlackHat'15)

concurrent programs + unsecure network + active attacker

→ tricky attacks, hard to detect/avoid

concurrent programs + unsecure network + active attacker

→ tricky attacks, hard to detect/avoid

~ need a mathematical framework to analyze protocols: formal methods

Symbolic attacker $(\textcircled{\basel{eq:symbolic}})$ controls all the network:

 $[\{n\}_k:$ symmetric encryption]

Symbolic attacker $({\ensuremath{\overline{\bigcirc}}})$ controls all the network:

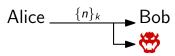
eavesdrops messages

Alice $\underline{\{n\}_k}$ Bob

 $[\{n\}_k:$ symmetric encryption]

Symbolic attacker $({\buildrel {\buildrel {\uildrel {\uildrel {\buildrel {\buildrel {\buildrel {\uildrel \uildrel \u$

eavesdrops messages

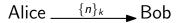


- eavesdrops messages
- builds new messages, applies crypto primitives

(🗒	knows $\{n\}_k$ and	$k) \Rightarrow$
	$\left(\stackrel{\textcircled{\state{red}}}{\longrightarrow} \operatorname{knows} n \right)$	/

Symbolic attacker $({\ensuremath{\overline{\heartsuit}}})$ controls all the network:

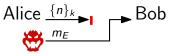
- eavesdrops messages
- builds new messages, applies crypto primitives



injects messages

Symbolic attacker $({ { { { { { { { { { { { { { { { { } } } } } } } } } } } } } })$ controls all the network:

- eavesdrops messages
- builds new messages, applies crypto primitives
- injects messages



Symbolic attacker $({\mathfrak{G}})$ controls all the network:

- eavesdrops messages
- builds new messages, applies crypto primitives
- injects messages

But 😇 cannot break crypto primitives.

Symbolic attacker $({\ensuremath{\overline{\heartsuit}}})$ controls all the network:

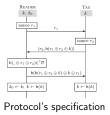
- eavesdrops messages
- builds new messages, applies crypto primitives
- injects messages

But 😇 cannot break crypto primitives.

Symbolic model, pros & cons:

- ⊖ less precise than computational model (*i.e.*, no assumption on primitives)
- $\oplus \,$ allows for automation

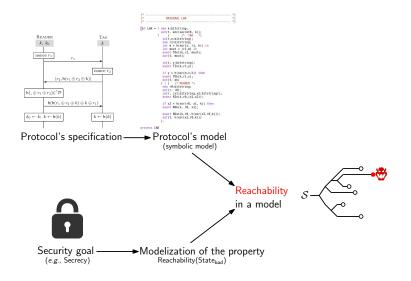
Dolev, Yao: On the Security of Public Key Protocols. FOCS'81

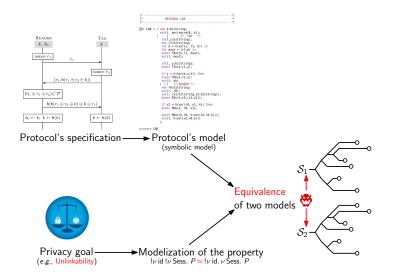


Security goal (e.g., Secrecy)

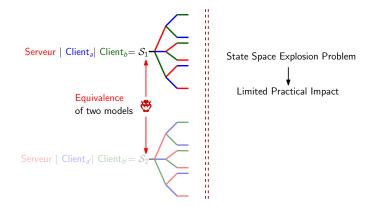
Lucca Hirschi

68NQRT Seminar: Partial Order Reduction for Security Protocols

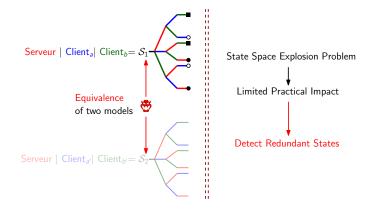




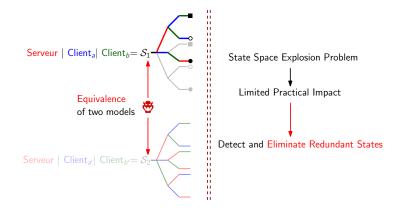
68NQRT Seminar: Partial Order Reduction for Security Protocols



Lucca Hirschi



Lucca Hirschi



Problem

Issue: Limited practical impact

Too slow. - Bottleneck: state space explosion

e.g., verification of P.A.: 1 session \rightarrow 1 sec. vs. 2 sessions \rightarrow 9 days

Problem

Issue: Limited practical impact

```
Too slow. - Bottleneck: state space explosion
```

e.g., verification of P.A.: 1 session \rightarrow 1 sec. vs. 2 sessions \rightarrow 9 days

Our Contribution

Partial Order Reduction techniques:

- adequate with respect to specificities of security setting
- work for reachability and trace equivalence
- very effective in practice (implem + bench)

Outline

- I Model
- II Big Picture
- III Compression
- **IV** Reduction
- V Applications
- VI Conclusion

I: Model

Applied- π - Term Algebra

Model of messages:

- Exchanged messages = terms
- Crypto. primitives = algebraic relations

Applied- π - Term Algebra

Model of messages:

- Exchanged messages = terms
- Crypto. primitives = algebraic relations

Terms Algebra: signature + equational theory.

Example: symmetric encryption

- ► symbols: enc(o, o), dec(o, o)
- equation: $dec(enc(x, y), y) =_{E} x$

Applied- π - Syntax

Protocols ~> process calculus (*i.e.*, applied pi calculus)

► Process:
$$P, Q := 0$$
 null
 $| in(c, x).P$ input
 $| out(c, m).P$ output
 $| if u = v then P else Q$ conditional
 $| P | Q$ parallel
 $| ! v \vec{n}.P$ replication

Applied- π - Syntax

Protocols ~> process calculus (*i.e.*, applied pi calculus)

► Process:
$$P, Q := 0$$
 null
| in(c, x). P input
| out(c, m). P output
| if $u = v$ then P else Q conditiona
| $P | Q$ parallel
| $! v \overrightarrow{n} . P$ replication

Frame (φ): the set of messages revelead to → intuition: Sknowledge

$$\phi = \{\underbrace{w_1}_{\text{handle}} \mapsto \underbrace{\text{enc}(m,k)}_{\text{out. message}}; w_2 \mapsto k\}$$

Applied- π - Syntax

Protocols ~> process calculus (*i.e.*, applied pi calculus)

► Process:
$$P, Q := 0$$
 null
| in(c, x).P input
| out(c, m).P output
| if $u = v$ then P else Q conditiona
| $P | Q$ parallel
| $! v \overrightarrow{n}.P$ replication

Frame (φ): the set of messages revelead to → intuition: Sknowledge

$$\phi = \{\underbrace{w_1}_{\text{handle}} \mapsto \underbrace{\text{enc}(m,k)}_{\text{out. message}}; w_2 \mapsto k\}$$

• Configuration:
$$A = (\mathcal{P}; \phi)$$

Recipes: are terms built using handles

e.g.,
$$\frac{R}{R\phi} = \frac{\text{dec}(w_1, w_2)}{R\phi} = m \quad \text{for } \phi = \{w_1 \mapsto \text{enc}(m, k), w_2 \mapsto k\}$$

"How 😇 builds messages from its knowledge"

Recipes: are terms built using handles

e.g., $\begin{array}{l} R = \operatorname{dec}(w_1, w_2) \\ R\phi =_{\mathsf{E}} m \end{array} \quad \text{for } \phi = \{w_1 \mapsto \operatorname{enc}(m, k), w_2 \mapsto k\} \end{array}$

"How builds messages from its knowledge"

- Semantics of configurations:
 - Protocol's output:

Recipes: are terms built using handles

e.g., $\begin{array}{l} R = \operatorname{dec}(w_1, w_2) \\ R\phi =_{\mathsf{E}} m \end{array} \quad \text{for } \phi = \{w_1 \mapsto \operatorname{enc}(m, k), w_2 \mapsto k\} \end{array}$

"How builds messages from its knowledge"

- Semantics of configurations:
 - Protocol's output:

Protocol's input:

$$(\{\operatorname{in}(c,x).P\} \cup \mathcal{P};\phi) \xrightarrow{\operatorname{in}(c,R)} (\{P\{x \mapsto R\phi\}\} \cup \mathcal{P};\phi)$$

Recipes: are terms built using handles

e.g., $\frac{R}{R\phi} = \det(w_1, w_2) \quad \text{for } \phi = \{w_1 \mapsto \det(m, k), w_2 \mapsto k\}$

"How builds messages from its knowledge"

- Semantics of configurations:
 - Protocol's output:

Protocol's input:

$$(\{\operatorname{in}(c,x).P\} \cup \mathcal{P};\phi) \xrightarrow{\operatorname{in}(c,R)} (\{P\{x \mapsto R\phi\}\} \cup \mathcal{P};\phi)$$

😇 injects any message he can builds

+ expected rules for conditional and other constructs

→ 😇 controls all the network

Lucca Hirschi

68NQRT Seminar: Partial Order Reduction for Security Protocols

Applied- π - Trace Equivalence

Reachability (e.g., secret, authentification) and

Trace equivalence (e.g., anonymity, unlinkability).

Applied- π - Trace Equivalence

- Reachability (e.g., secret, authentification) and
- Trace equivalence (e.g., anonymity, unlinkability).

Static Equivalence (intuitively)

 $\Phi \sim \Psi$ when

- $\operatorname{dom}(\Phi) = \operatorname{dom}(\Psi)$ and
- for all tests, it holds on $\Phi \iff$ it holds on Ψ

Applied- π - Trace Equivalence

- Reachability (e.g., secret, authentification) and
- Trace equivalence (e.g., anonymity, unlinkability).

Static Equivalence (intuitively)

 $\Phi \sim \Psi$ when

- $\operatorname{dom}(\Phi) = \operatorname{dom}(\Psi)$ and
- for all tests, it holds on $\Phi \iff$ it holds on Ψ

Trace Equivalence

 $A \sqsubseteq B$: for any $A \xrightarrow{\text{tr}} A'$ there exists $B \xrightarrow{\text{tr}} B'$ such that $\Phi(A') \sim \Phi(B')$. $A \approx B$, when $A \sqsubseteq B$ and $B \sqsubseteq A$.

(bisimulation: too strong)

II : Big Picture

- Motivation: Improve algorithms checking trace equivalence
- How: Remove redundant interleavings via a reduced semantics

- Motivation: Improve algorithms checking trace equivalence
- How: Remove redundant interleavings via a reduced semantics

Two types of redundancies:

•
$$\operatorname{in}(c_1, x) | \operatorname{out}(c_2, m) \rightsquigarrow$$

 $\operatorname{tr}_1 = \operatorname{out}(c_2, w).\operatorname{in}(c_1, M)$
 $\operatorname{tr}_2 = \operatorname{in}(c_1, M).\operatorname{out}(c_2, w)$

- Motivation: Improve algorithms checking trace equivalence
- How: Remove redundant interleavings via a reduced semantics

Two types of redundancies:

•
$$\operatorname{in}(c_1, x) | \operatorname{out}(c_2, m) \rightsquigarrow$$

 $\operatorname{tr}_1 = \operatorname{out}(c_2, w).\operatorname{in}(c_1, M)$
 $\operatorname{tr}_2 = \operatorname{in}(c_1, M).\operatorname{out}(c_2, w)$

- Motivation: Improve algorithms checking trace equivalence
- How: Remove redundant interleavings via a reduced semantics

Two types of redundancies:

•
$$\operatorname{in}(c_1, x) | \operatorname{out}(c_2, m) \rightsquigarrow$$

 $\operatorname{tr}_1 = \operatorname{out}(c_2, w) \cdot \operatorname{in}(c_1, M)$
 $\operatorname{tr}_2 = \operatorname{in}(c_1, M) \cdot \operatorname{out}(c_2, w)$

- $(a) \quad \text{in}(c_1, x). \text{out}(c_1, m_1) \mid \text{in}(c_2, y). \text{out}(c_2, m_2) \rightsquigarrow$
 - $\operatorname{tr}_1 = \operatorname{in}(c_1, M_1) \operatorname{out}(c_1, w_1) \operatorname{in}(c_2, M_2) \operatorname{out}(c_2, w_2)$
 - $\operatorname{tr}_2 = \operatorname{in}(c_2, M_2) \operatorname{out}(c_2, w_2) \operatorname{in}(c_1, M_1) \operatorname{out}(c_1, w_1)$

- Motivation: Improve algorithms checking trace equivalence
- How: Remove redundant interleavings via a reduced semantics

Two types of redundancies:

•
$$\operatorname{in}(c_1, x) | \operatorname{out}(c_2, m) \rightsquigarrow$$

 $\operatorname{tr}_1 = \operatorname{out}(c_2, w).\operatorname{in}(c_1, M)$
 $\operatorname{tr}_2 = \operatorname{in}(c_1, M).\operatorname{out}(c_2, w)$

in(c₁, x).out(c₁, m₁) | in(c₂, y).out(c₂, m₂) →
 • tr₁ = in(c₁, M₁).out(c₁, w₁).in(c₂, M₂).out(c₂, w₂)
 • tr₂ = in(c₂, M₂).out(c₂, w₂).in(c₁, M₁).out(c₁, w₁)
 when M₁ does not use w₂

- Motivation: Improve algorithms checking trace equivalence
- How: Remove redundant interleavings via a reduced semantics

Two types of redundancies:

•
$$\operatorname{in}(c_1, x) | \operatorname{out}(c_2, m) \rightsquigarrow$$

 $\operatorname{tr}_1 = \operatorname{out}(c_2, w).\operatorname{in}(c_1, M)$
 $\operatorname{tr}_2 = \operatorname{in}(c_1, M).\operatorname{out}(c_2, w)$

② $in(c_1, x).out(c_1, m_1) | in(c_2, y).out(c_2, m_2) \rightarrow$ • $tr_1 = in(c_1, M_1).out(c_1, w_1).in(c_2, M_2).out(c_2, w_2)$ • $tr_2 = in(c_2, M_2).out(c_2, w_2).in(c_1, M_1).out(c_1, w_1)$ when M_1 does not use w_2

▶ what about trace equivalence (\approx) ? e.g., (in(c_1, x) | out(c_2, m)) \approx (out(c_2, m).in(c_1, x))

- Motivation: Improve algorithms checking trace equivalence
- How: Remove redundant interleavings via a reduced semantics

Two types of redundancies:

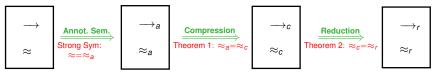
•
$$\operatorname{in}(c_1, x) | \operatorname{out}(c_2, m) \rightsquigarrow$$

 $\operatorname{tr}_1 = \operatorname{out}(c_2, w).\operatorname{in}(c_1, M)$
 $\operatorname{tr}_2 = \operatorname{in}(c_1, M).\operatorname{out}(c_2, w)$

② $in(c_1, x).out(c_1, m_1) | in(c_2, y).out(c_2, m_2) \rightarrow t_1 = in(c_1, M_1).out(c_1, w_1).in(c_2, M_2).out(c_2, w_2)$ • $t_7 = in(c_2, M_2).out(c_2, w_2).in(c_1, M_1).out(c_1, w_1)$ when M_1 does not use w_2

what about trace equivalence (≈) ?
 e.g., (in(c₁, x) | out(c₂, m)) ≈ (out(c₂, m).in(c₁, x))
 ~ same swaps are possible (≡ same sequential dependencies)

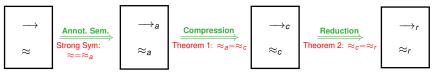
Big Picture



Required properties

- \rightarrow_r is such that:
 - reachability properties coincide on \rightarrow_r and \rightarrow ;
 - For action-determinate processes, trace-equivalence coincides on →r and →.

Big Picture



Required properties

 \rightarrow_r is such that:

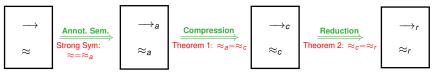
- reachability properties coincide on \rightarrow_r and \rightarrow ;
- For action-determinate processes, trace-equivalence coincides on →r and →.

Action-determinism

A is action-deterministic if: two actions in parallel must be \neq

Attacker knows to/from whom he is sending/receiving messages.

Big Picture



Required properties

- \rightarrow_r is such that:
 - reachability properties coincide on \rightarrow_r and \rightarrow ;
 - For action-determinate processes, trace-equivalence coincides on →r and →.

Action-determinism

A is action-deterministic if: two actions in parallel must be \neq

Attacker knows to/from whom he is sending/receiving messages.

- D. Baelde, S. Delaune and L. Hirschi: Partial Order Reduction for Security Protocols. CONCUR'15
 - D. Baelde, S. Delaune and L. Hirschi: A reduced semantics for deciding trace equivalence using constraint systems. POST'14

Lucca Hirschi

68NQRT Seminar: Partial Order Reduction for Security Protocols

Outline

I Model

II Big Picture

III Compression

IV Reduction

- **V** Applications
- **VI** Conclusion

Annotated Semantics

- embeds labels into produced actions
- one can extract sequential dependencies from labelled actions

e.g., $in(c_1, x) \mid out(c_2, m) \xrightarrow{[out(c_2, w)]^{1.2} \cdot [in(c_1, M_1)]^{1.1}}_{a} \cdot labels: in parallel while out(c_2, m).in(c_1, x) \xrightarrow{[out(c_2, w)]^1 \cdot [in(c_1, M_1)]^1}_{a} \cdot labels: in sequence$

Annotated Semantics

- embeds labels into produced actions
- one can extract sequential dependencies from labelled actions

e.g., $in(c_1, x) \mid out(c_2, m) \xrightarrow{[out(c_2, w)]^{1.2} \cdot [in(c_1, M_1)]^{1.1}}_{a} \cdot labels: in parallel while out(c_2, m).in(c_1, x) \xrightarrow{[out(c_2, w)]^1 \cdot [in(c_1, M_1)]^1}_{a} \cdot labels: in sequence$

Strong Symmetry Lemma

- mismatch on labels \rightsquigarrow systematically used to show $\not\approx$
- ▶ for action-deterministic, (\approx + labels) coincides with \approx

The Idea

Follow a particular **strategy** that reduces the number of choices by looking at the **nature** of available actions.

Polarities of processes:

▶ *negative*: out().*P*,(*P*₁ | *P*₂),0

Bring new data or choices, execution independent on the context

The Idea

Follow a particular **strategy** that reduces the number of choices by looking at the **nature** of available actions.

Polarities of processes:

- negative: out().P, (P₁ | P₂), 0 Bring new data or choices, execution independent on the context
- ▶ *positive*: in().*P*

Execution depends on the context

The Idea

Follow a particular **strategy** that reduces the number of choices by looking at the **nature** of available actions.

Polarities of processes:

negative: out().P, (P₁ | P₂), 0

Bring new data or choices, execution independent on the context

 \rightsquigarrow to be performed as soon as possible in a given order

positive: in().P

Execution depends on the context

The Idea

Follow a particular **strategy** that reduces the number of choices by looking at the **nature** of available actions.

Polarities of processes:

negative: out().P, (P₁ | P₂), 0

Bring new data or choices, execution independent on the context

 \rightsquigarrow to be performed as soon as possible in a given order

positive: in().P

Execution depends on the context

~ can be performed only if no negative

The Idea

Follow a particular **strategy** that reduces the number of choices by looking at the **nature** of available actions.

Polarities of processes:

negative: out().P, (P₁ | P₂), 0

Bring new data or choices, execution independent on the context

 \rightsquigarrow to be performed as soon as possible in a given order

positive: in().P

Execution depends on the context

- ~ can be performed only if no negative
- ~ choose one *positive*, put it under focus
- → focus released when *negative*

The Idea

Follow a particular **strategy** that reduces the number of choices by looking at the **nature** of available actions.

Polarities of processes:

▶ *negative*: out().*P*, (*P*₁ | *P*₂), 0

Bring new data or choices, execution independent on the context

 \leadsto to be performed as soon as possible in a given order

▶ positive: in().P

Execution depends on the context

- ~ can be performed only if no negative
- ~ choose one *positive*, put it under focus
- → focus released when negative

(Replication: $| \nu \vec{n} \cdot P$ is *positive* but releases the focus)

 $\mathcal{P} = \{ ! \nu n. in(c, x).out(c, enc(\langle x, n \rangle \}, k)).0 \}$

Compressed interleavings:

t =

Compression - Example

$$\mathcal{P} = \{ \underbrace{|\nu n. in(c, x).out(c, \{\langle x, n \rangle\}_k).0;}_{in(c_1, x).out(c_1, enc(\langle x, n_1 \rangle, k)).0} \}$$

Compressed interleavings:

 $t = sess(a, c_1)$

$$\mathcal{P} = \{ \underbrace{\nu n. in(c, x).out(c, \{ < x, n > \}_k).0;}_{out(c_1, enc(\langle x, n_1 \rangle, k)).0} \}$$

Compressed interleavings:

 $t = \operatorname{sess}(a, c_1).\operatorname{in}(c_1, M_1)$

 $\mathcal{P} = \{!\nu n. in(c, x).out(c, \{< x, n > \}_k).0\}$

Compressed interleavings:

 $t = \operatorname{sess}(a, c_1).in(c_1, X_1).out(c_1, w_1)$

Compression - Example

 $\mathcal{P} = \{!\nu n. in(c, x).out(c, \{< x, n > \}_k).0\}$

Compressed interleavings: $t = sess(a, c_1).in(c_1, X_1).out(c_1, w_1)$

Only traces of the form: $sess_1.in_1.out_1. sess_2.in_2.out_2. ...$

Compression - Results

Reachability:

- Soundness: $A \xrightarrow{t}_{c} A' \Rightarrow A \xrightarrow{t} A'$
- Completeness: for complete execution $A \xrightarrow{t} A' \Rightarrow$
 - $\exists t_c$, permutation of t, $A \xrightarrow{t_c} A'$

Compression - Results

Reachability:

- Soundness: $A \xrightarrow{t}_{c} A' \Rightarrow A \xrightarrow{t} A'$
- ► Completeness: for complete execution $A \xrightarrow{t} A' \Rightarrow \exists t_c$, permutation of t, $A \xrightarrow{t_c} A'$

Equivalence:

Theorem: $\approx_c = \approx$

Let A and B be two action-deterministic configurations.

 $A \approx B$ if, and, only if, $A \approx_c B$.

Outline

- I Model
- II Big Picture
- III Compression
- **IV** Reduction
- **V** Applications
- **VI** Conclusion

Reduction - Intuitions

By building upon \rightarrow_c, \approx_c :

compressed semantics produces *blocks* of actions of the form:

b = (sess).in...in.out...out

- but we still need to make choices (which positive process/block?)
- some of them are redundant.

Reduction - Intuitions

By building upon \rightarrow_c, \approx_c :

compressed semantics produces *blocks* of actions of the form:

b = (sess).in...in.out...out

- but we still need to make choices (which positive process/block?)
- some of them are redundant.

 $P = in(c_1, x).out(c_1, m_1) | in(c_2, y).out(c_2, m_2)$

Compressed traces:

- $\operatorname{tr}_1 = \operatorname{in}(c_1, M_1) \operatorname{out}(c_1, w_1) \operatorname{in}(c_2, M_2) \operatorname{out}(c_2, w_2)$
- ► $\operatorname{tr}_2 = \operatorname{in}(o_2, M_2) \cdot \operatorname{out}(o_2, w_2) \cdot \operatorname{in}(o_1, M_1) \cdot \operatorname{out}(o_1, w_1)$ when M_1 does not use w_2

Reduction - Monoid of traces

Definition

Given a frame $\Phi,$ the relation \equiv_{Φ} is the smallest equivalence over compressed traces such that:

- $t.b_1.b_2.t' \equiv_{\Phi} t.b_2.b_1.t'$ when $b_1 \parallel b_2$, and
- $t.b_1.t' \equiv_{\Phi} t.b_2.t'$ when $(b_1 =_{\mathsf{E}} b_2)\Phi$.

Reduction - Monoid of traces

Definition

Given a frame $\Phi,$ the relation \equiv_{Φ} is the smallest equivalence over compressed traces such that:

• $t.b_1.b_2.t' \equiv_{\Phi} t.b_2.b_1.t'$ when $b_1 \parallel b_2$, and

•
$$t.b_1.t' \equiv_{\Phi} t.b_2.t'$$
 when $(b_1 =_{\mathsf{E}} b_2)\Phi$.

Lemma

If
$$A \xrightarrow{t}_{c} A'$$
. Then $A \xrightarrow{t'}_{c} A'$ for any $t' \equiv_{\Phi(A')} t$.

Goal: explore one trace per equivalence class.

Reduced semantics

We assume an arbitrary order \prec over blocks priority order.

Semantics (informal)

$$\frac{A \xrightarrow{t} A' A' \xrightarrow{b} A' \xrightarrow{b} A''}{A \xrightarrow{t.b} A'} \quad \text{if } t \ltimes b$$

Informally, $t \ltimes b$ means:

there is no way to swap b towards the beginning of t before a block $b_0 \succ b$ (even by modifying recipes)

Reduced semantics

We assume an arbitrary order \prec over blocks priority order.

Semantics (informal)

$$\frac{A \xrightarrow{t} A' A' \xrightarrow{b} A' \xrightarrow{b} A''}{A \xrightarrow{t.b} A'} \quad \text{if } t \ltimes b$$

Informally, $t \ltimes b$ means:

there is no way to swap b towards the beginning of t before a block $b_0 \succ b$ (even by modifying recipes)

t is Φ -minimal if there is no $t' \equiv_{\Phi} t$ such that $t' \prec_{\text{lex}} t$

If $A \xrightarrow{t}_{c} A'$ then t is $\Phi(A')$ -minimal if, and only if, $A \xrightarrow{t}_{r} A'$.

Theorem

 $\approx = \approx_r$ for action-deterministic configurations.

Lucca Hirschi

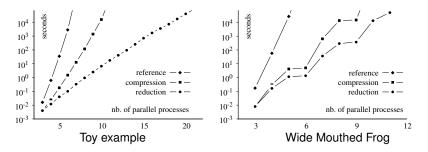
V : Applications

Benchmarks

We implemented compression/reduction in APTE by adapting well established techniques based on:

- symbolic semantics (abstract inputs);
- constraint solving procedures.

tr kb: a new type of constraints



All benchmarks & instructions for reproduction: www.lsv.ens-cachan.fr/~hirschi/apte_por VI : Conclusion

Conclusion

- New optimizations: compression and reduction;
- applied to trace equivalence checking;
- implementation in APTE.

Conclusion

- New optimizations: compression and reduction;
- applied to trace equivalence checking;
- implementation in APTE.

Future Work

- drop action-deterministic assumption
- 2 impact of the choice of \prec
- POR for backward research
- study others redundancies ~> recognize symmetries ?

Conclusion

- New optimizations: compression and reduction;
- applied to trace equivalence checking;
- implementation in APTE.

Future Work

- drop action-deterministic assumption
- 2 impact of the choice of \prec
- POR for backward research
- study others redundancies ~> recognize symmetries ?

Any question?

Compressed semantics - Definition

 \mathcal{P} is initial if $\forall P \in \mathcal{P}$, P is *positive*or replicated.

Semantics:

Compressed semantics - Definition

 \mathcal{P} is **initial** if $\forall P \in \mathcal{P}$, *P* is *positive*or replicated.

Semantics:

$$\frac{\mathcal{P} \text{ is initial } (P; \Phi) \xrightarrow{\text{in}(c,M)} (P'; \Phi)}{(\mathcal{P} \uplus \{P\}; \emptyset; \Phi) \xrightarrow{\text{foc}(\text{in}(c,M))} c} (\mathcal{P}; P'; \Phi)}$$

$$\frac{(P; \Phi) \xrightarrow{\text{in}(c,M)} (P'; \Phi)}{(\mathcal{P}; P; \Phi) \xrightarrow{\text{in}(c,M)} c} (\mathcal{P}; P'; \Phi)}$$
Pos/In

Compressed semantics - Definition

 \mathcal{P} is initial if $\forall P \in \mathcal{P}$, P is *positive* or replicated.

Semantics:

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \mathcal{P} \text{ is initial } (P; \Phi) \xrightarrow{\text{in}(c,M)} (P'; \Phi) \\ \hline \end{array} \\ \end{array} \\ \text{START/IN} \end{array} & \begin{array}{c} \begin{array}{c} \mathcal{P} \text{ is initial } (P; \Phi) \xrightarrow{\text{foc}(\text{in}(c,M))} c (\mathcal{P}'; \Phi) \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \begin{array}{c} (\mathcal{P}; \Phi) \xrightarrow{\text{foc}(\text{in}(c,M))} c (\mathcal{P}; P'; \Phi) \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \begin{array}{c} (P; \Phi) \xrightarrow{\text{in}(c,M)} c (\mathcal{P}; P'; \Phi) \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \begin{array}{c} P \text{ negative} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \begin{array}{c} \mathcal{P} \text{ rel} \\ \mathcal{P}; \Phi) \xrightarrow{\text{rel}} c (\mathcal{P} \uplus \{P\}; \emptyset; \Phi) \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} \begin{array}{c} \mathcal{P} \text{ rel} \\ \mathcal{P}; \varphi; \Phi \end{pmatrix} \\ \hline \end{array} \\ \begin{array}{c} \begin{array}{c} \mathcal{P} \text{ rel} \\ \mathcal{P}; \varphi; \Phi \end{pmatrix} \\ \hline \end{array} \\ \begin{array}{c} \begin{array}{c} \mathcal{P} \text{ rel} \\ \mathcal{P}; \varphi; \varphi \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \mathcal{P} \text{ rel} \\ \mathcal{P}; \varphi; \varphi \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \mathcal{P} \text{ rel} \\ \mathcal{P} \text{ rel} \\ \mathcal{P}; \varphi; \varphi \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \mathcal{P} \text{ rel} \\ \mathcal{P} \text{ rel} \\ \mathcal{P}; \varphi; \varphi \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \mathcal{P} \text{ rel} \\ \mathcal{P} \text{ rel} \\ \mathcal{P} \text{ rel} \\ \mathcal{P}; \varphi; \varphi \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \mathcal{P} \text{ rel} \\ \mathcal{P} \text{ re$$

+ Repl/In

Reduced semantics

We assume an arbitrary order \prec over blocks (without recipes/messages): priority order.

Semantics

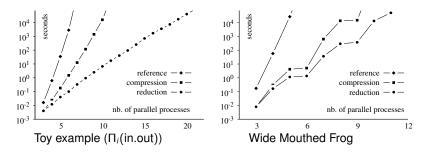
$$\frac{A \stackrel{\epsilon}{\to}_{r} A}{\frac{A \stackrel{\text{tr}}{\to}_{r} (\mathcal{P}; \emptyset; \Phi) \quad (\mathcal{P}; \emptyset; \Phi) \stackrel{b}{\to}_{c} A'}{A \stackrel{\text{tr}, b}{\to}_{r} A'} \quad \text{if } \text{tr} \ltimes b' \text{ for all } b' \text{ with } (b' =_{\mathsf{E}} b) \Phi$$

Availability

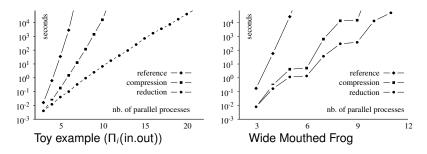
A block *b* is *available* after tr, denoted $tr \ltimes b$, if:

- either $tr = \epsilon$
- or tr = tr₀. b_0 with $\neg(b_0 || b)$
- or tr = tr₀. b_0 with $b_0 || b, b_0 \prec b$ and tr₀ $\ltimes b$.

Benchmarks



Benchmarks



Maximum number of parallel processes verifiable in 20 hours:

Protocol	ref	comp	red
Yahalom (3-party)	4	5	5
Needham Schroeder (3-party)	4	6	7
Private Authentication (2-party)	4	7	7
E-Passport PA (2-party)	4	7	9
Denning-Sacco (3-party)	5	9	10
Wide Mouthed Frog (3-party)	6	12	13

Instructions for reproduction:

www.lsv.ens-cachan.fr/~hirschi/apte_por