
Partial Order Reduction for Security Protocols
68NQRT Seminar

Lucca Hirschi, David Baelde and Stéphanie Delaune

15th December, 2016



concurrent programs + unsecure network + active attacker

 tricky attacks, hard to detect/avoid
 need a mathematical framework to analyze protocols: formal methods



wins (BlackHat’15)

wins (CSF’10)

wins (CSF’11)

wins (FMSE’08)

wins (CCS’10)

concurrent programs + unsecure network + active attacker

 tricky attacks, hard to detect/avoid
 need a mathematical framework to analyze protocols: formal methods



wins (BlackHat’15)

wins (CSF’10)

wins (CSF’11)

wins (FMSE’08)

wins (CCS’10)

concurrent programs + unsecure network + active attacker

 tricky attacks, hard to detect/avoid

 need a mathematical framework to analyze protocols: formal methods



wins (BlackHat’15)

wins (CSF’10)

wins (CSF’11)

wins (FMSE’08)

wins (CCS’10)

concurrent programs + unsecure network + active attacker

 tricky attacks, hard to detect/avoid
 need a mathematical framework to analyze protocols: formal methods



Symbolic Model

Symbolic attacker
( )

controls all the network:

But cannot break crypto primitives.

Symbolic model, pros & cons:

	 less precise than computational model (i.e., no assumption on primitives)

⊕ allows for automation

Dolev, Yao: On the Security of Public Key Protocols. FOCS’81

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 3 / 27



Symbolic Model [{n}k : symmetric encryption]

Symbolic attacker
( )

controls all the network:

I eavesdrops messages
Alice Bob{n}k

But cannot break crypto primitives.

Symbolic model, pros & cons:

	 less precise than computational model (i.e., no assumption on primitives)

⊕ allows for automation

Dolev, Yao: On the Security of Public Key Protocols. FOCS’81

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 3 / 27



Symbolic Model [{n}k : symmetric encryption]

Symbolic attacker
( )

controls all the network:

I eavesdrops messages Alice Bob{n}k

But cannot break crypto primitives.

Symbolic model, pros & cons:

	 less precise than computational model (i.e., no assumption on primitives)

⊕ allows for automation

Dolev, Yao: On the Security of Public Key Protocols. FOCS’81

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 3 / 27



Symbolic Model

Symbolic attacker
( )

controls all the network:

I eavesdrops messages
I builds new messages, applies crypto

primitives

(
knows {n}k and k

)
⇒(

knows n
)

But cannot break crypto primitives.

Symbolic model, pros & cons:

	 less precise than computational model (i.e., no assumption on primitives)

⊕ allows for automation

Dolev, Yao: On the Security of Public Key Protocols. FOCS’81

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 3 / 27



Symbolic Model

Symbolic attacker
( )

controls all the network:

I eavesdrops messages
I builds new messages, applies crypto

primitives
I injects messages

Alice Bob{n}k

But cannot break crypto primitives.

Symbolic model, pros & cons:

	 less precise than computational model (i.e., no assumption on primitives)

⊕ allows for automation

Dolev, Yao: On the Security of Public Key Protocols. FOCS’81

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 3 / 27



Symbolic Model

Symbolic attacker
( )

controls all the network:

I eavesdrops messages
I builds new messages, applies crypto

primitives
I injects messages

Alice Bob{n}k
mE

But cannot break crypto primitives.

Symbolic model, pros & cons:

	 less precise than computational model (i.e., no assumption on primitives)

⊕ allows for automation

Dolev, Yao: On the Security of Public Key Protocols. FOCS’81

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 3 / 27



Symbolic Model

Symbolic attacker
( )

controls all the network:

I eavesdrops messages
I builds new messages, applies crypto

primitives
I injects messages

But cannot break crypto primitives.

Symbolic model, pros & cons:

	 less precise than computational model (i.e., no assumption on primitives)

⊕ allows for automation

Dolev, Yao: On the Security of Public Key Protocols. FOCS’81

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 3 / 27



Symbolic Model

Symbolic attacker
( )

controls all the network:

I eavesdrops messages
I builds new messages, applies crypto

primitives
I injects messages

But cannot break crypto primitives.

Symbolic model, pros & cons:

	 less precise than computational model (i.e., no assumption on primitives)

⊕ allows for automation

Dolev, Yao: On the Security of Public Key Protocols. FOCS’81

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 3 / 27



Introduction: Formal Methods for Security Protocols

Protocol’s specification

Security goal
(e.g., Secrecy)

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 4 / 27



Introduction: Formal Methods for Security Protocols

Protocol’s specification Protocol’s model
(symbolic model)

(e.g., Secrecy)
Modelization of the property

Reachability
in a model

Reachability(Statebad)
Security goal

S

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 4 / 27



Introduction: Formal Methods for Security Protocols

Privacy goal
(e.g., Unlinkability)

Modelization of the property
!ν id !ν Sess. P ≈ !ν id. ν Sess. P

Equivalence
of two models

Protocol’s specification Protocol’s model
(symbolic model)

S2

S1

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 4 / 27



Introduction: Formal Methods for Security Protocols

(e.g., Unlinkability)

Equivalence
of two models

Serveur | Clienta′| Clientb′= S2

Serveur | Clienta| Clientb= S1 State Space Explosion Problem

Limited Practical Impact

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 4 / 27



Introduction: Formal Methods for Security Protocols

(e.g., Unlinkability)

Equivalence
of two models

Serveur | Clienta′| Clientb′= S2

Serveur | Clienta| Clientb= S1

Detect Redundant States

State Space Explosion Problem

Limited Practical Impact

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 4 / 27



Introduction: Formal Methods for Security Protocols

(e.g., Unlinkability)

Equivalence
of two models

Serveur | Clienta′| Clientb′= S2

Serveur | Clienta| Clientb= S1

Detect and Eliminate Redundant States

State Space Explosion Problem

Limited Practical Impact

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 4 / 27



Problem

Issue: Limited practical impact

Too slow. − Bottleneck: state space explosion

e.g., verification of P.A.: 1 session→ 1 sec. vs. 2 sessions→ 9 days

Our Contribution
Partial Order Reduction techniques:

I adequate with respect to specificities of security setting
I work for reachability and trace equivalence
I very effective in practice (implem + bench)

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 5 / 27



Problem

Issue: Limited practical impact

Too slow. − Bottleneck: state space explosion

e.g., verification of P.A.: 1 session→ 1 sec. vs. 2 sessions→ 9 days

Our Contribution
Partial Order Reduction techniques:

I adequate with respect to specificities of security setting
I work for reachability and trace equivalence
I very effective in practice (implem + bench)

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 5 / 27



Outline

I Model

II Big Picture

III Compression

IV Reduction

V Applications

VI Conclusion



I : Model



Applied-π - Term Algebra

Model of messages:
I Exchanged messages = terms
I Crypto. primitives = algebraic relations

Terms Algebra: signature + equational theory.

Example: symmetric encryption
I symbols: enc(◦, ◦), dec(◦, ◦)
I equation: dec(enc(x , y), y) =E x

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 8 / 27



Applied-π - Term Algebra

Model of messages:
I Exchanged messages = terms
I Crypto. primitives = algebraic relations

Terms Algebra: signature + equational theory.

Example: symmetric encryption
I symbols: enc(◦, ◦), dec(◦, ◦)
I equation: dec(enc(x , y), y) =E x

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 8 / 27



Applied-π - Syntax

Protocols process calculus (i.e., applied pi calculus)

I Process: P,Q := 0 null
| in(c, x).P input
| out(c,m).P output
| if u = v then P else Q conditional
| P | Q parallel
| ! ν

−→n .P replication

I Frame (φ): the set of messages revelead to

 intuition: ’s knowledge

φ = { w1︸︷︷︸
handle

7→ enc(m, k)︸ ︷︷ ︸
out. message

; w2 7→ k}

I Configuration: A = (P;φ)

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 9 / 27



Applied-π - Syntax

Protocols process calculus (i.e., applied pi calculus)

I Process: P,Q := 0 null
| in(c, x).P input
| out(c,m).P output
| if u = v then P else Q conditional
| P | Q parallel
| ! ν

−→n .P replication

I Frame (φ): the set of messages revelead to

 intuition: ’s knowledge

φ = { w1︸︷︷︸
handle

7→ enc(m, k)︸ ︷︷ ︸
out. message

; w2 7→ k}

I Configuration: A = (P;φ)

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 9 / 27



Applied-π - Syntax

Protocols process calculus (i.e., applied pi calculus)

I Process: P,Q := 0 null
| in(c, x).P input
| out(c,m).P output
| if u = v then P else Q conditional
| P | Q parallel
| ! ν

−→n .P replication

I Frame (φ): the set of messages revelead to

 intuition: ’s knowledge

φ = { w1︸︷︷︸
handle

7→ enc(m, k)︸ ︷︷ ︸
out. message

; w2 7→ k}

I Configuration: A = (P;φ)

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 9 / 27



Applied-π - Semantics
I Recipes: are terms built using handles

e.g., R = dec(w1,w2)
Rφ =E m for φ = {w1 7→ enc(m, k),w2 7→ k}

“How builds messages from its knowledge”

I Semantics of configurations:

Protocol’s output:

({out(c, u).P} ∪ P;φ)
out(c,w)−−−−−→ ({P} ∪ P;φ ∪ {w 7→ u}) if w fresh

learns outputted message

Protocol’s input:

({in(c, x).P} ∪ P;φ)
in(c,R)−−−−→ ({P{x 7→ Rφ}} ∪ P;φ)

injects any message he can builds

+ expected rules for conditional and other constructs

 controls all the network

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 10 / 27



Applied-π - Semantics
I Recipes: are terms built using handles

e.g., R = dec(w1,w2)
Rφ =E m for φ = {w1 7→ enc(m, k),w2 7→ k}

“How builds messages from its knowledge”

I Semantics of configurations:
Protocol’s output:

({out(c, u).P} ∪ P;φ)
out(c,w)−−−−−→ ({P} ∪ P;φ ∪ {w 7→ u}) if w fresh

learns outputted message

Protocol’s input:

({in(c, x).P} ∪ P;φ)
in(c,R)−−−−→ ({P{x 7→ Rφ}} ∪ P;φ)

injects any message he can builds

+ expected rules for conditional and other constructs

 controls all the network

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 10 / 27



Applied-π - Semantics
I Recipes: are terms built using handles

e.g., R = dec(w1,w2)
Rφ =E m for φ = {w1 7→ enc(m, k),w2 7→ k}

“How builds messages from its knowledge”

I Semantics of configurations:
Protocol’s output:

({out(c, u).P} ∪ P;φ)
out(c,w)−−−−−→ ({P} ∪ P;φ ∪ {w 7→ u}) if w fresh

learns outputted message

Protocol’s input:

({in(c, x).P} ∪ P;φ)
in(c,R)−−−−→ ({P{x 7→ Rφ}} ∪ P;φ)

injects any message he can builds

+ expected rules for conditional and other constructs

 controls all the network

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 10 / 27



Applied-π - Semantics
I Recipes: are terms built using handles

e.g., R = dec(w1,w2)
Rφ =E m for φ = {w1 7→ enc(m, k),w2 7→ k}

“How builds messages from its knowledge”

I Semantics of configurations:
Protocol’s output:

({out(c, u).P} ∪ P;φ)
out(c,w)−−−−−→ ({P} ∪ P;φ ∪ {w 7→ u}) if w fresh

learns outputted message

Protocol’s input:

({in(c, x).P} ∪ P;φ)
in(c,R)−−−−→ ({P{x 7→ Rφ}} ∪ P;φ)

injects any message he can builds

+ expected rules for conditional and other constructs

 controls all the network
Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 10 / 27



Applied-π - Trace Equivalence

1 Reachability (e.g., secret, authentification) and
2 Trace equivalence (e.g., anonymity, unlinkability).

Static Equivalence (intuitively)
Φ ∼ Ψ when

I dom(Φ) = dom(Ψ) and
I for all tests, it holds on Φ ⇐⇒ it holds on Ψ

Trace Equivalence

A v B: for any A tr−→ A′ there exists B tr−→ B′ such that Φ(A′) ∼ Φ(B′).

A ≈ B, when A v B and B v A.

(bisimulation: too strong)

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 11 / 27



Applied-π - Trace Equivalence

1 Reachability (e.g., secret, authentification) and
2 Trace equivalence (e.g., anonymity, unlinkability).

Static Equivalence (intuitively)
Φ ∼ Ψ when

I dom(Φ) = dom(Ψ) and
I for all tests, it holds on Φ ⇐⇒ it holds on Ψ

Trace Equivalence

A v B: for any A tr−→ A′ there exists B tr−→ B′ such that Φ(A′) ∼ Φ(B′).

A ≈ B, when A v B and B v A.

(bisimulation: too strong)

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 11 / 27



Applied-π - Trace Equivalence

1 Reachability (e.g., secret, authentification) and
2 Trace equivalence (e.g., anonymity, unlinkability).

Static Equivalence (intuitively)
Φ ∼ Ψ when

I dom(Φ) = dom(Ψ) and
I for all tests, it holds on Φ ⇐⇒ it holds on Ψ

Trace Equivalence

A v B: for any A tr−→ A′ there exists B tr−→ B′ such that Φ(A′) ∼ Φ(B′).

A ≈ B, when A v B and B v A.

(bisimulation: too strong)

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 11 / 27



II : Big Picture



Redundancies

I Motivation: Improve algorithms checking trace equivalence
I How: Remove redundant interleavings via a reduced semantics

Two types of redundancies:

1 in(c1, x) | out(c2,m) 
tr1 = out(c2,w).in(c1,M)
tr2 = in(c1,M).out(c2,w)

2 in(c1, x).out(c1,m1) | in(c2, y).out(c2,m2) 
tr1 = in(c1,M1).out(c1,w1).in(c2,M2).out(c2,w2)
tr2 = in(c2,M2).out(c2,w2).in(c1,M1).out(c1,w1)

I what about trace equivalence (≈) ?

e.g., (in(c1, x) | out(c2,m)) 6≈ (out(c2,m).in(c1, x))

I  same swaps are possible (≡ same sequential dependencies)

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 13 / 27



Redundancies

I Motivation: Improve algorithms checking trace equivalence
I How: Remove redundant interleavings via a reduced semantics

Two types of redundancies:

1 in(c1, x) | out(c2,m) 
tr1 = out(c2,w).in(c1,M)
tr2 = in(c1,M).out(c2,w)

2 in(c1, x).out(c1,m1) | in(c2, y).out(c2,m2) 
tr1 = in(c1,M1).out(c1,w1).in(c2,M2).out(c2,w2)
tr2 = in(c2,M2).out(c2,w2).in(c1,M1).out(c1,w1)

I what about trace equivalence (≈) ?

e.g., (in(c1, x) | out(c2,m)) 6≈ (out(c2,m).in(c1, x))

I  same swaps are possible (≡ same sequential dependencies)

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 13 / 27



Redundancies

I Motivation: Improve algorithms checking trace equivalence
I How: Remove redundant interleavings via a reduced semantics

Two types of redundancies:

1 in(c1, x) | out(c2,m) 
tr1 = out(c2,w).in(c1,M)
tr2 = in(c1,M).out(c2,w)

2 in(c1, x).out(c1,m1) | in(c2, y).out(c2,m2) 
tr1 = in(c1,M1).out(c1,w1).in(c2,M2).out(c2,w2)
tr2 = in(c2,M2).out(c2,w2).in(c1,M1).out(c1,w1)

I what about trace equivalence (≈) ?

e.g., (in(c1, x) | out(c2,m)) 6≈ (out(c2,m).in(c1, x))

I  same swaps are possible (≡ same sequential dependencies)

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 13 / 27



Redundancies

I Motivation: Improve algorithms checking trace equivalence
I How: Remove redundant interleavings via a reduced semantics

Two types of redundancies:

1 in(c1, x) | out(c2,m) 
tr1 = out(c2,w).in(c1,M)
tr2 = in(c1,M).out(c2,w)

2 in(c1, x).out(c1,m1) | in(c2, y).out(c2,m2) 
tr1 = in(c1,M1).out(c1,w1).in(c2,M2).out(c2,w2)
tr2 = in(c2,M2).out(c2,w2).in(c1,M1).out(c1,w1)

I what about trace equivalence (≈) ?

e.g., (in(c1, x) | out(c2,m)) 6≈ (out(c2,m).in(c1, x))

I  same swaps are possible (≡ same sequential dependencies)

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 13 / 27



Redundancies

I Motivation: Improve algorithms checking trace equivalence
I How: Remove redundant interleavings via a reduced semantics

Two types of redundancies:

1 in(c1, x) | out(c2,m) 
tr1 = out(c2,w).in(c1,M)
tr2 = in(c1,M).out(c2,w)

2 in(c1, x).out(c1,m1) | in(c2, y).out(c2,m2) 
tr1 = in(c1,M1).out(c1,w1).in(c2,M2).out(c2,w2)
tr2 = in(c2,M2).out(c2,w2).in(c1,M1).out(c1,w1)
when M1 does not use w2

I what about trace equivalence (≈) ?

e.g., (in(c1, x) | out(c2,m)) 6≈ (out(c2,m).in(c1, x))

I  same swaps are possible (≡ same sequential dependencies)

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 13 / 27



Redundancies

I Motivation: Improve algorithms checking trace equivalence
I How: Remove redundant interleavings via a reduced semantics

Two types of redundancies:

1 in(c1, x) | out(c2,m) 
tr1 = out(c2,w).in(c1,M)
tr2 = in(c1,M).out(c2,w)

2 in(c1, x).out(c1,m1) | in(c2, y).out(c2,m2) 
tr1 = in(c1,M1).out(c1,w1).in(c2,M2).out(c2,w2)
tr2 = in(c2,M2).out(c2,w2).in(c1,M1).out(c1,w1)
when M1 does not use w2

I what about trace equivalence (≈) ?

e.g., (in(c1, x) | out(c2,m)) 6≈ (out(c2,m).in(c1, x))

I  same swaps are possible (≡ same sequential dependencies)

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 13 / 27



Redundancies

I Motivation: Improve algorithms checking trace equivalence
I How: Remove redundant interleavings via a reduced semantics

Two types of redundancies:

1 in(c1, x) | out(c2,m) 
tr1 = out(c2,w).in(c1,M)
tr2 = in(c1,M).out(c2,w)

2 in(c1, x).out(c1,m1) | in(c2, y).out(c2,m2) 
tr1 = in(c1,M1).out(c1,w1).in(c2,M2).out(c2,w2)
tr2 = in(c2,M2).out(c2,w2).in(c1,M1).out(c1,w1)
when M1 does not use w2

I what about trace equivalence (≈) ?

e.g., (in(c1, x) | out(c2,m)) 6≈ (out(c2,m).in(c1, x))

I  same swaps are possible (≡ same sequential dependencies)

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 13 / 27



Big Picture

−→

≈

Annot. Sem.
=======⇒

Strong Sym:
≈=≈a

−→a

≈a

Compression
=======⇒

Theorem 1: ≈a=≈c

−→c

≈c

Reduction
======⇒

Theorem 2: ≈c =≈r

−→r

≈r

Required properties
−→r is such that:

I reachability properties coincide on −→r and −→;
I for action-determinate processes, trace-equivalence coincides on −→r

and −→.

Action-determinism
A is action-deterministic if: two actions in parallel must be 6=

Attacker knows to/from whom he is sending/receiving messages.

D. Baelde, S. Delaune and L. Hirschi: Partial Order Reduction for
Security Protocols. CONCUR’15

D. Baelde, S. Delaune and L. Hirschi: A reduced semantics for deciding
trace equivalence using constraint systems. POST’14

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 14 / 27



Big Picture

−→

≈

Annot. Sem.
=======⇒

Strong Sym:
≈=≈a

−→a

≈a

Compression
=======⇒

Theorem 1: ≈a=≈c

−→c

≈c

Reduction
======⇒

Theorem 2: ≈c =≈r

−→r

≈r

Required properties
−→r is such that:

I reachability properties coincide on −→r and −→;
I for action-determinate processes, trace-equivalence coincides on −→r

and −→.

Action-determinism
A is action-deterministic if: two actions in parallel must be 6=

Attacker knows to/from whom he is sending/receiving messages.

D. Baelde, S. Delaune and L. Hirschi: Partial Order Reduction for
Security Protocols. CONCUR’15

D. Baelde, S. Delaune and L. Hirschi: A reduced semantics for deciding
trace equivalence using constraint systems. POST’14

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 14 / 27



Big Picture

−→

≈

Annot. Sem.
=======⇒

Strong Sym:
≈=≈a

−→a

≈a

Compression
=======⇒

Theorem 1: ≈a=≈c

−→c

≈c

Reduction
======⇒

Theorem 2: ≈c =≈r

−→r

≈r

Required properties
−→r is such that:

I reachability properties coincide on −→r and −→;
I for action-determinate processes, trace-equivalence coincides on −→r

and −→.

Action-determinism
A is action-deterministic if: two actions in parallel must be 6=

Attacker knows to/from whom he is sending/receiving messages.

D. Baelde, S. Delaune and L. Hirschi: Partial Order Reduction for
Security Protocols. CONCUR’15

D. Baelde, S. Delaune and L. Hirschi: A reduced semantics for deciding
trace equivalence using constraint systems. POST’14

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 14 / 27



Outline

I Model

II Big Picture

III Compression

IV Reduction

V Applications

VI Conclusion



Annotated Semantics

I embeds labels into produced actions
I one can extract sequential dependencies from labelled actions

e.g., in(c1, x) | out(c2,m)
[out(c2,w)]1.2.[in(c1,M1)]1.1−−−−−−−−−−−−−−−→a · labels: in parallel

while out(c2,m).in(c1, x)
[out(c2,w)]1.[in(c1,M1)]1−−−−−−−−−−−−−→a · labels: in sequence

Strong Symmetry Lemma
I mismatch on labels systematically used to show 6≈
I for action-deterministic, (≈ + labels) coincides with ≈

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 16 / 27



Annotated Semantics

I embeds labels into produced actions
I one can extract sequential dependencies from labelled actions

e.g., in(c1, x) | out(c2,m)
[out(c2,w)]1.2.[in(c1,M1)]1.1−−−−−−−−−−−−−−−→a · labels: in parallel

while out(c2,m).in(c1, x)
[out(c2,w)]1.[in(c1,M1)]1−−−−−−−−−−−−−→a · labels: in sequence

Strong Symmetry Lemma
I mismatch on labels systematically used to show 6≈
I for action-deterministic, (≈ + labels) coincides with ≈

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 16 / 27



Compression - Intuitions

The Idea
Follow a particular strategy that reduces the number of choices by looking at
the nature of available actions.

Polarities of processes:
I negative: out().P, (P1 | P2), 0

Bring new data or choices, execution independent on the context

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 17 / 27



Compression - Intuitions

The Idea
Follow a particular strategy that reduces the number of choices by looking at
the nature of available actions.

Polarities of processes:
I negative: out().P, (P1 | P2), 0

Bring new data or choices, execution independent on the context
I positive: in().P

Execution depends on the context

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 17 / 27



Compression - Intuitions

The Idea
Follow a particular strategy that reduces the number of choices by looking at
the nature of available actions.

Polarities of processes:
I negative: out().P, (P1 | P2), 0

Bring new data or choices, execution independent on the context
 to be performed as soon as possible in a given order

I positive: in().P
Execution depends on the context

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 17 / 27



Compression - Intuitions

The Idea
Follow a particular strategy that reduces the number of choices by looking at
the nature of available actions.

Polarities of processes:
I negative: out().P, (P1 | P2), 0

Bring new data or choices, execution independent on the context
 to be performed as soon as possible in a given order

I positive: in().P
Execution depends on the context
 can be performed only if no negative

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 17 / 27



Compression - Intuitions

The Idea
Follow a particular strategy that reduces the number of choices by looking at
the nature of available actions.

Polarities of processes:
I negative: out().P, (P1 | P2), 0

Bring new data or choices, execution independent on the context
 to be performed as soon as possible in a given order

I positive: in().P
Execution depends on the context
 can be performed only if no negative
 choose one positive, put it under focus
 focus released when negative

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 17 / 27



Compression - Intuitions

The Idea
Follow a particular strategy that reduces the number of choices by looking at
the nature of available actions.

Polarities of processes:
I negative: out().P, (P1 | P2), 0

Bring new data or choices, execution independent on the context
 to be performed as soon as possible in a given order

I positive: in().P
Execution depends on the context
 can be performed only if no negative
 choose one positive, put it under focus
 focus released when negative

(Replication: ! ν
−→n . P is positive but releases the focus)

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 17 / 27



Compression - Example

P = { ! νn. in(c, x).out(c, enc(〈x , n〉}, k)).0 }

Compressed interleavings:
t =

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 18 / 27



Compression - Example

P = { !νn. in(c, x).out(c, {< x , n >}k ).0;

in(c1, x).out(c1, enc(〈x , n1〉, k)).0 }

Compressed interleavings:
t =sess(a, c1)

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 18 / 27



Compression - Example

P = { !νn. in(c, x).out(c, {< x , n >}k ).0;

out(c1, enc(〈x , n1〉, k)).0 }

Compressed interleavings:
t = sess(a, c1).in(c1,M1)

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 18 / 27



Compression - Example

P = {!νn. in(c, x).out(c, {< x , n >}k ).0}

Compressed interleavings:
t = sess(a, c1).in(c1,X1).out(c1,w1)

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 18 / 27



Compression - Example

P = {!νn. in(c, x).out(c, {< x , n >}k ).0}

Compressed interleavings:
t = sess(a, c1).in(c1,X1).out(c1,w1)

Only traces of the form:
sess1.in1.out1. sess2.in2.out2. . . .

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 18 / 27



Compression - Results

Reachability:

I Soundness: A t−→c A′ ⇒ A t−→ A′

I Completeness: for complete execution A t−→ A′ ⇒
∃tc , permutation of t , A tc−→c A′

Equivalence:

Theorem: ≈c=≈
Let A and B be two action-deterministic configurations.

A ≈ B if, and, only if, A ≈c B.

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 19 / 27



Compression - Results

Reachability:

I Soundness: A t−→c A′ ⇒ A t−→ A′

I Completeness: for complete execution A t−→ A′ ⇒
∃tc , permutation of t , A tc−→c A′

Equivalence:

Theorem: ≈c=≈
Let A and B be two action-deterministic configurations.

A ≈ B if, and, only if, A ≈c B.

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 19 / 27



Outline

I Model

II Big Picture

III Compression

IV Reduction

V Applications

VI Conclusion



Reduction - Intuitions

By building upon −→c ,≈c :
I compressed semantics produces blocks of actions of the form:

b = (sess).in . . . in.out . . . out

I but we still need to make choices (which positive process/block?)
I some of them are redundant.

P = in(c1, x).out(c1,m1) | in(c2, y).out(c2,m2)

Compressed traces:
I tr1 = in(c1,M1).out(c1,w1).in(c2,M2).out(c2,w2)

I tr2 = in(c2,M2).out(c2,w2).in(c1,M1).out(c1,w1)
when M1 does not use w2

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 21 / 27



Reduction - Intuitions

By building upon −→c ,≈c :
I compressed semantics produces blocks of actions of the form:

b = (sess).in . . . in.out . . . out

I but we still need to make choices (which positive process/block?)
I some of them are redundant.

P = in(c1, x).out(c1,m1) | in(c2, y).out(c2,m2)

Compressed traces:
I tr1 = in(c1,M1).out(c1,w1).in(c2,M2).out(c2,w2)

I tr2 = in(c2,M2).out(c2,w2).in(c1,M1).out(c1,w1)
when M1 does not use w2

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 21 / 27



Reduction - Monoid of traces

Definition
Given a frame Φ, the relation ≡Φ is the smallest equivalence over
compressed traces such that:

I t .b1.b2.t ′ ≡Φ t .b2.b1.t ′ when b1 ‖ b2, and
I t .b1.t ′ ≡Φ t .b2.t ′ when (b1 =E b2)Φ.

Lemma

If A t−→c A′. Then A t′−→c A′ for any t ′ ≡Φ(A′) t .

Goal: explore one trace per equivalence class.

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 22 / 27



Reduction - Monoid of traces

Definition
Given a frame Φ, the relation ≡Φ is the smallest equivalence over
compressed traces such that:

I t .b1.b2.t ′ ≡Φ t .b2.b1.t ′ when b1 ‖ b2, and
I t .b1.t ′ ≡Φ t .b2.t ′ when (b1 =E b2)Φ.

Lemma

If A t−→c A′. Then A t′−→c A′ for any t ′ ≡Φ(A′) t .

Goal: explore one trace per equivalence class.

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 22 / 27



Reduced semantics

We assume an arbitrary order ≺ over blocks priority order.

Semantics (informal)

A t−→r A′ A′ b−→c A′′

A t.b−→r A′
if tnb

Informally, tnb means:

there is no way to swap b towards the beginning of t before a block
b0 � b (even by modifying recipes)

t is Φ-minimal if there is no t ′ ≡Φ t such that t ′ ≺lex t

If A t−→c A′ then t is Φ(A′)-minimal if, and only if, A t−→r A′.

Theorem
≈=≈r for action-deterministic configurations.

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 23 / 27



Reduced semantics

We assume an arbitrary order ≺ over blocks priority order.

Semantics (informal)

A t−→r A′ A′ b−→c A′′

A t.b−→r A′
if tnb

Informally, tnb means:

there is no way to swap b towards the beginning of t before a block
b0 � b (even by modifying recipes)

t is Φ-minimal if there is no t ′ ≡Φ t such that t ′ ≺lex t

If A t−→c A′ then t is Φ(A′)-minimal if, and only if, A t−→r A′.

Theorem
≈=≈r for action-deterministic configurations.

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 23 / 27



V : Applications



Benchmarks

We implemented compression/reduction in APTE by adapting well
established techniques based on:

I symbolic semantics (abstract inputs);
I constraint solving procedures.

trnb: a new type of constraints

10-3

10-2

10-1

100

101

102

103

104

 5  10  15  20

se
co

nd
s

nb. of parallel processes

reference
compression

reduction

10-3

10-2

10-1

100

101

102

103

104

 3  6  9  12

se
co

nd
s

nb. of parallel processes

reference
compression

reduction

Toy example Wide Mouthed Frog

All benchmarks & instructions for reproduction:
www.lsv.ens-cachan.fr/~hirschi/apte_por

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 25 / 27



VI : Conclusion



Conclusion

I New optimizations: compression and reduction;
I applied to trace equivalence checking;
I implementation in APTE.

Future Work
1 drop action-deterministic assumption
2 impact of the choice of ≺
3 POR for backward research
4 study others redundancies recognize symmetries ?

Any question?

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 27 / 27



Conclusion

I New optimizations: compression and reduction;
I applied to trace equivalence checking;
I implementation in APTE.

Future Work
1 drop action-deterministic assumption
2 impact of the choice of ≺
3 POR for backward research
4 study others redundancies recognize symmetries ?

Any question?

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 27 / 27



Conclusion

I New optimizations: compression and reduction;
I applied to trace equivalence checking;
I implementation in APTE.

Future Work
1 drop action-deterministic assumption
2 impact of the choice of ≺
3 POR for backward research
4 study others redundancies recognize symmetries ?

Any question?

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 27 / 27



Compressed semantics - Definition

P is initial if ∀P ∈ P, P is positiveor replicated.

Semantics:

START/IN

P is initial (P; Φ)
in(c,M)−−−−→ (P′; Φ)

(P ] {P};∅; Φ)
foc(in(c,M))−−−−−−−−→c (P; P′; Φ)

POS/IN

(P; Φ)
in(c,M)−−−−→ (P′; Φ)

(P; P; Φ)
in(c,M)−−−−−→c (P; P′; Φ)

RELEASE

P negative

(P; P; Φ)
rel−−−→c (P ] {P};∅; Φ)

NEG/α

({P}; Φ)
α−→ (P ′; Φ′)

(P ] {P};∅; Φ)
α−−→c (P ] P ′;∅; Φ′)

α ∈ {par,zero, out(_, _)}

+ Repl/In

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 28 / 27



Compressed semantics - Definition

P is initial if ∀P ∈ P, P is positiveor replicated.

Semantics:

START/IN

P is initial (P; Φ)
in(c,M)−−−−→ (P′; Φ)

(P ] {P};∅; Φ)
foc(in(c,M))−−−−−−−−→c (P; P′; Φ)

POS/IN

(P; Φ)
in(c,M)−−−−→ (P′; Φ)

(P; P; Φ)
in(c,M)−−−−−→c (P; P′; Φ)

RELEASE

P negative

(P; P; Φ)
rel−−−→c (P ] {P};∅; Φ)

NEG/α

({P}; Φ)
α−→ (P ′; Φ′)

(P ] {P};∅; Φ)
α−−→c (P ] P ′;∅; Φ′)

α ∈ {par,zero, out(_, _)}

+ Repl/In

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 28 / 27



Compressed semantics - Definition

P is initial if ∀P ∈ P, P is positiveor replicated.

Semantics:

START/IN

P is initial (P; Φ)
in(c,M)−−−−→ (P′; Φ)

(P ] {P};∅; Φ)
foc(in(c,M))−−−−−−−−→c (P; P′; Φ)

POS/IN

(P; Φ)
in(c,M)−−−−→ (P′; Φ)

(P; P; Φ)
in(c,M)−−−−−→c (P; P′; Φ)

RELEASE

P negative

(P; P; Φ)
rel−−−→c (P ] {P};∅; Φ)

NEG/α

({P}; Φ)
α−→ (P ′; Φ′)

(P ] {P};∅; Φ)
α−−→c (P ] P ′;∅; Φ′)

α ∈ {par,zero, out(_, _)}

+ Repl/In

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 28 / 27



Reduced semantics

We assume an arbitrary order ≺ over blocks (without recipes/messages):
priority order.

Semantics

A ε−→r A

A tr−→r (P;∅; Φ) (P;∅; Φ)
b−→c A′

A tr.b−−→r A′
if trnb′ for all b′

with (b′ =E b)Φ

Availability
A block b is available after tr, denoted trnb, if:

I either tr = ε

I or tr = tr0.b0 with ¬(b0‖b)

I or tr = tr0.b0 with b0‖b, b0 ≺ b and tr0nb.

Lucca Hirschi 68NQRT Seminar: Partial Order Reduction for Security Protocols 29 / 27



Benchmarks

10-3

10-2

10-1

100

101

102

103

104

 5  10  15  20

se
co

nd
s

nb. of parallel processes

reference
compression

reduction

10-3

10-2

10-1

100

101

102

103

104

 3  6  9  12

se
co

nd
s

nb. of parallel processes

reference
compression

reduction

Toy example (Πi (in.out)) Wide Mouthed Frog

Maximum number of parallel processes verifiable in 20 hours:
Protocol ref comp red
Yahalom (3-party) 4 5 5
Needham Schroeder (3-party) 4 6 7
Private Authentication (2-party) 4 7 7
E-Passport PA (2-party) 4 7 9
Denning-Sacco (3-party) 5 9 10
Wide Mouthed Frog (3-party) 6 12 13

Instructions for reproduction:
www.lsv.ens-cachan.fr/~hirschi/apte_por



Benchmarks

10-3

10-2

10-1

100

101

102

103

104

 5  10  15  20

se
co

nd
s

nb. of parallel processes

reference
compression

reduction

10-3

10-2

10-1

100

101

102

103

104

 3  6  9  12

se
co

nd
s

nb. of parallel processes

reference
compression

reduction

Toy example (Πi (in.out)) Wide Mouthed Frog

Maximum number of parallel processes verifiable in 20 hours:
Protocol ref comp red
Yahalom (3-party) 4 5 5
Needham Schroeder (3-party) 4 6 7
Private Authentication (2-party) 4 7 7
E-Passport PA (2-party) 4 7 9
Denning-Sacco (3-party) 5 9 10
Wide Mouthed Frog (3-party) 6 12 13

Instructions for reproduction:
www.lsv.ens-cachan.fr/~hirschi/apte_por


	Introduction
	Model
	Preliminary
	Compression
	Reduction
	Conclusion
	Appendix

