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Introduction

unsecure network, active attacker→ attacks
 we need formal verification of crypto protocols

Our setting
I Applied-π models protocols;
I Trace equivalence models security properties.

 several algorithms resolve this problem (Akiss, Apte, Spec)

Issue: Limited practical impact
Too slow. Bottleneck: size of search space (interleavings).
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Applied-π - Syntax
Terms
T : set of terms + equational theory. e.g., dec(enc(m, k), k) =E m.

Processes and configurations
P,Q ::= 0 | (P|Q) | in(c, x).P | out(c,m).P

| if u = v then P else Q
| !P

A = (P; Φ)

I Φ is the set of messages revelead to the network;
intuition: intruder’s knowledge.

Φ = { w0︸︷︷︸
handle

7→ enc(m, k)︸ ︷︷ ︸
out. message

; w1 7→ k}

I recipes are terms built using only handles

e.g., R = dec(w0,w1) m =E RΦ

intuition: how the environment builds messages from its
knowledge
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Example - Wide Mouth Frog

Informal presentation
Alice→ Server : enc(k ′, kA)
Server→ Bob : enc(k ′, kB)

Alice→ Bob : enc(m, k ′)

Process
out(a,enc(k’,ka)).out(a,enc(m,k’))

| in(s,x). if enc(dec(x,ka),ka) = x
then out(s,enc(dec(x,ka),kb))
else 0

| in(b,x) [...]

Lucca Hirschi CHoCoLa: Partial order reduction for the applied π-calculus 6 / 30



Example - Wide Mouth Frog

Informal presentation
Alice→ Server : enc(k ′, kA)
Server→ Bob : enc(k ′, kB)

Alice→ Bob : enc(m, k ′)

Process
out(a,enc(k’,ka)).out(a,enc(m,k’))

| in(s,x). if enc(dec(x,ka),ka) = x
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else 0

| in(b,x) [...]

Φ = ∅

t = ε

Let us explore one possible trace.
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then out(s,enc(dec(x,ka),kb))
else 0

| in(b,x) [...]

Φ = {w0 7→ enc(k ′, ka)}

t = out(a,w0).in(s,w0)

w0 is one possible recipe using Φ
no other for then branch since the attacker does not know kA
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Applied-π - Semantics

Internal reduction :
I (if u = v then P else Q) P when u =E v ;
I (if u = v then P else Q) Q when u 6=E v ;
I (P | Q) (P ′ | Q) and (Q | P) (Q | P ′) when P  P ′;
I ((P1 | P2) | P3) (P1 | (P2 | P3)); not. Π3

i=1Pi

I (P | 0)→ P and (0 | P) P.

IN ({in(c, x).Q} ] P; Φ)
in(c,M)−−−−−→ ({Q{u/x}} ] P; Φ)

where M ∈ T (dom(Φ)) and MΦ =E u

OUT ({out(c,u).Q} ] P; Φ)
out(c,w)−−−−−→ ({Q} ] P; Φ ∪ {w 7→ u})

where w ∈ W is fresh

PAR ({Πn
i=1Pi} ] P; Φ)

par−−→ ({P1; . . . ; Pn} ] P; Φ)

ZERO ({0} ] P; Φ)
zero−−−→ (P; Φ)
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Trace Equivalence
Properties:

1 Reachability (e.g., secret, authentification) and
2 Trace equivalence (e.g., anonymity, unlikability).

(bisimulation: too strong)

Trace equivalence

I A ≈ B ⇐⇒ ∀A t−→ A′, ∃B t′−→ B′ such that obs(t) = obs(t ′) and
ΦA′ ∼ ΦB′ (and conversely)

I Φ ∼ Φ′ ⇐⇒ (∀M,N, MΦ = NΦ ⇐⇒ MΦ′ = NΦ′)

Example: unlinkability of WMF

(

Alice→S→Bob︷ ︸︸ ︷
{Pa; Ps; Pb}∪

Alice→S→Bob︷ ︸︸ ︷
{Pa; Ps; Pb}; ε)

?
≈ (

Alice→S→Bob︷ ︸︸ ︷
{Pa; Ps; Pb}∪

Alice→S →Charlie︷ ︸︸ ︷
{P ′a; P ′s; Pc} ; ε)

Broken: reusing 1st session on the left, impossible on the right
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Big Picture

I Motivation: Improve algorithms checking trace equivalence
I How: Remove redundant interleavings via a reduced semantics

−→

≈

Compression
========⇒

Theorem 1: ≈=≈c

−→c

≈c

Reduction
======⇒

Theorem 2: ≈c=≈r

−→r

≈r

−→r does not explore all behaviours but sufficiently to ensure ≈=≈r
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Big Picture

−→

≈

Compression
========⇒

Theorem 1: ≈=≈c

−→c

≈c

Reduction
======⇒

Theorem 2: ≈c=≈r

−→r

≈r

Required properties
−→r is such that:

I reachability properties coincide on −→r and −→;
I for action-determinate processese, trace-equivalence coincides

on −→r and −→.

Action-determinsm

A is action-deterministic if ∀A t−→ (P; Φ), ∀P,Q ∈ P, P and Q cannot
perform an observable action of the same nature on the same
channel.

Makes sense in security (e.g., IP of agents)
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Intuitions

The Idea
Follow a particular strategy that reduces the number of choices by
looking at the nature of available actions.

Polarities of processes (similar to focusing of LL):
I negative: out().P,ΠPi ,0

Bring new data or choices, execution independent of the context
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Compressed semantics - Definitions

P is initial if ∀P ∈ P, P is positive.

Semantics:

START/IN

P is initial (P; Φ)
in(c,M)−−−−−→ (P ′; Φ)

(P ] {P};∅; Φ)
foc(in(c,M))−−−−−−−−−→c (P; P ′; Φ)

POS/IN

(P; Φ)
in(c,M)−−−−−→ (P ′; Φ)

(P; P; Φ)
in(c,M)−−−−−→c (P ] {P ′}; Φ;)

RELEASE

P negative

(P; P; Φ)
rel−−−→c (P ] {P};∅; Φ)

NEG/α

({P}; Φ)
α−→ (P ′; Φ′)

(P ] {P};∅; Φ)
α−−→c (P ] P ′;∅; Φ′)

α ∈ {par,zero,out(_,_)}
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Results - Reachability
Translations:

d(P; Φ)e = (P;∅; Φ), b(P;∅; Φ)c = (P; Φ), b(P; P; Φ)c = (P]{P}; Φ).

bεc = ε, bfoc(α).tc = α.btc, brel.tc = btc, and
bα.tc = α.btc for any other α.

Lemma: soundness for reachability

Let A, A′, and t be such that A t−→c A′. We have that bAc btc−−→ bA′c.

Easy.

Lemma: completeness for reachability

Let A, A′, and t be such that A t−→ A′ is complete. There exists a
trace tc such that btcc is a permutation of t and dAe tc−→c dA′e.

Proof: non-trivial. Adapating the “positive trunk” argument. Involving
swaps of actions.
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Let A, A′, and t be such that A t−→c A′. We have that bAc btc−−→ bA′c.

Easy.

Lemma: completeness for reachability

Let A, A′, and t be such that A t−→ A′ is complete. There exists a
trace tc such that btcc is a permutation of t and dAe tc−→c dA′e.

Proof: non-trivial. Adapating the “positive trunk” argument. Involving
swaps of actions.
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Sequential dependencies

We need to formalize sequential dependencies.
I add syntactical info. on procces and produced actions
I labels: list of integers;
I denote the position of the current action in “the tree of parallel

compositions”

Example
Labelled configuration:

A = ({[in(c, x).
(
in(c, y).out(c, xy ).0 | in(d , y).out(d , yc).0]1

)
}; ∅)

Labelled trace :
t = [in(c, x)]1
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I labels: list of integers;
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compositions”

Example
Labelled configuration:

A = ([in(c, y).out(c, xy ).0]1.1; [in(d , y).out(d , yc).0]1.2}; ∅)

Labelled trace :
t = [in(c, x)]1[par]1[in(c, y)]1.1[out(c,w0)]1.1[zero]1.1

[in(d , y)]1.2[out(d ,w1)]1.2[zero]1.2
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Swapping actions

Definition
[α]` and [β]`

′
are sequentially dependent if ` is a prefix of `′ (or the

converse).

Definition
[α]` and [β]`

′
are recipe dependent if {α;β} = {in(c,M);out(d ,w)}

with w ∈ fv(M).

We note [α]` ‖ [β]`
′

when they are recipe and sequentially
independent.

Swapping Lemma

Consider a labelled configuration A and two actions [α]` ‖ [β]`
′
. We

have that

A
[α]`[β]`

′

−−−−−→ A′ ⇐⇒ A
[β]`

′
[α]`−−−−−→ A′
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Proof sketch of completeness

Let A, A′, and t be such that A t−→ A′ is complete. There exists a
trace tc such that btcc is a permutation of t and dAe tc−→c dA′e.

Using the swapping Lemma we translate iteratively
A = (P; Φ0)

tr−→ (∅; Φ) into

dAe
...trpos.rel.trpos.trpos.rel.trpos.trpos.rel.trpos...−−−−−−−−−−−−−−−−−−−−−−−−−→c (∅;∅; Φ)

 Induction on the length of the derivation.

I If there is a negative P ∈ P.
I Otherwise, A is initial. Only positive actions leading to a

negative process P−.

A trin−→ (P ′ ] {P−}; Φ)
tr0−→ (∅; Φ)

 A = ({P} ]P0; Φ)
trP−→ ({P−} ]P0; Φ)

tr′in−→ (P ′ ] {P−}; Φ)
tr0−→ (∅; Φ)

 ({P} ]P0; Φ)
trP−→ ({P−} ]P0; Φ), ({P−} ]P0;∅; Φ)

tr′−→c (∅; Φ)

 dAe foc(trP ).rel−−−−−−−→c ({P−} ] P0;∅; Φ)
tr′−→c (∅; Φ)
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Results - Equivalence

Compressed trace equivalence

A ≈c B if for any labelled trace t and execution A t−→c (P;∅; Φ) there
is B t−→c (P ′;∅; Φ′) such that Φ ∼ Φ′ (and the converse).

We assume A and B to be labelled consistently.

Theorem: Soundness of ≈c

Let A and B be two initial action-deterministic configurations. If A ≈ B
then dAe ≈c dBe.

Ingredients:
I A ≈ B concides with trace equivalence for labelled trace

(including non-observable actions);
I + and − phases of A and B are sync.
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Results - Equivalence - Completeness

Theorem: Completeness of ≈c

Let A and B be two initial action-deterministic configurations. If
dAe ≈c dBe then A ≈ B.

I “complete” witnesses of non-equivalence are sufficient;

I undo permutations of (
tr−→) (

trc−→c) in dBe’s answer
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Intuitions

By building upon −→c ,≈c :
I compressed semantics produces blocks of actions of the form:

b = foc(a).t in.rel.t−

I but we still need to make choices (which positive process, block?)
I some of them are redundant.

P = in(c1, x1).out(c1, k1).P1 | in(c2, x2).out(c2, k2).P2

X1 must depend on w2.
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Intuitions: More redundancies

P = IO(a)|IO(b)|IO(c) where IO(l) = in(cl ,Xl).out(cl ,wl)
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Monoid of traces

Definition
Given a frame Φ, the relation ≡Φ is the smallest equivalence over
compressed traces such that:

I tr.b1.b2.tr′ ≡Φ tr.b2.b1.tr′ when b1 ‖ b2, and
I tr.b1.tr′ ≡Φ tr.b2.tr′ when (b1 =E b2)Φ.

Lemma

Let A and A′ be two initial configurations such that A tr−→c A′. Then

A tr′−→c A′ for any tr′ ≡Φ(A′) tr.

Goal: explore on trace per equivalence class.
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Reduced semantics
We assume an arbitrary order ≺ over blocks (without
recipes/messages): priority order.

Semantics

A ε−→r A

A tr−→r (P;∅; Φ) (P;∅; Φ)
b−→c A′

A tr.b−−→r A′
if trnb′ for all b′

with (b′ =E b)Φ

transparent=0

Availability
A block b is available after tr, denoted trnb, if:

I either tr = ε

I or tr = tr0.b0 with ¬(b0‖b)

I or tr = tr0.b0 with b0‖b, b0 ≺ b and tr0nb.
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Results - Reachability

Done: explore on trace per equivalence class.

t is Φ-minimal if there is no t ′ ≺lex t such that t ≡Φ t ′

Lemma: completeness for reachability

If A and A′ = (P ′; Φ′) are initial and dAe t−→c dA′e then t is
Φ(A′)-minimal if, and only if, A t−→r A′.

I reduced semantics explores one trace per equivalence class
I with “swapping lemma” completeness of reachability for −→r
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Results - Equivalence

Definition: Reduced trace equivalence

A ≈r B if for any A t−→r A′ there is B t−→r B′ such that ΦA′ ∼ ΦB′ (and
the conv.).

Theorem
Let A and B be two initial action-deterministic configurations.

A ≈ B if, and only if, A ≈r B.

I Reachabilty lemmas +:

Lemma: Static equivalent frames induce same ≡Φ

For any static equivalent frames Φ ∼ Φ′ and traces t1, t2, we have that
t1 ≡Φ t2 if and only if t1 ≡Φ′ t2.
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Implementations
Adapting well established techniques based on:

I symbolic semantics (abstract inputs);
I constraint solving procedures.

trnb (availability) as a new type of constraints

Difficulties:
I decide them exactly is too costly ...
I  over-approximation;
I in a symmmetrical way (otherwise false-attacks).

Results in APTE & SPEC:

Tool Protocol Size Ref (s) Comp (s) Red (s)

APTE
PA 1 Sess. 2/9/5 0.164 0.012 0.004
PA 2 Sess. 4/15/5 > 237h 16.72 11.856
PA 3 Sess. 6/21/5 > 237h 379696 91266

SPEC 2 par 2/22/10 > 20 hours 13853 122.27
7 par 7/14/2 > 20 hours 13853 370.65
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Conclusion

I New optimizations: compression and reduction;
I applied to trace equivalence checking;
I early implementation in SPEC and Apte.

Future Work
1 drop action-deterministic assumption
2 reducing search space:

study others redundancies recognize symmetries ?
study constraint solving in more details

3 introduce interactivity into the verification process (sub-lemmas,
annotations)

Any question?

Lucca Hirschi CHoCoLa: Partial order reduction for the applied π-calculus 30 / 30



Conclusion

I New optimizations: compression and reduction;
I applied to trace equivalence checking;
I early implementation in SPEC and Apte.

Future Work
1 drop action-deterministic assumption
2 reducing search space:

study others redundancies recognize symmetries ?
study constraint solving in more details

3 introduce interactivity into the verification process (sub-lemmas,
annotations)

Any question?

Lucca Hirschi CHoCoLa: Partial order reduction for the applied π-calculus 30 / 30



Conclusion

I New optimizations: compression and reduction;
I applied to trace equivalence checking;
I early implementation in SPEC and Apte.

Future Work
1 drop action-deterministic assumption
2 reducing search space:

study others redundancies recognize symmetries ?
study constraint solving in more details

3 introduce interactivity into the verification process (sub-lemmas,
annotations)

Any question?

Lucca Hirschi CHoCoLa: Partial order reduction for the applied π-calculus 30 / 30


	Introduction
	Model
	Big Picture
	Compression
	Reduction
	Conclusion

