Partial order reduction for the applied π -calculus CHoCoLa

Lucca Hirschi

LSV, ENS Cachan

November 13, 2014

joint work with	David Baelde	and	Stéphanie Delaune
	LSV		LSV

Introduction

unsecure network, active attacker \rightarrow attacks \rightsquigarrow we need formal verification of crypto protocols

Introduction

unsecure network, active attacker \rightarrow attacks \rightsquigarrow we need formal verification of crypto protocols

Our setting

- Applied- π models protocols;
- Trace equivalence models security properties.

Introduction

unsecure network, active attacker \rightarrow attacks \rightsquigarrow we need formal verification of crypto protocols

Our setting

- Applied- π models protocols;
- Trace equivalence models security properties.

---- several algorithms resolve this problem (Akiss, Apte, Spec)

Issue: Limited practical impact

Too slow. Bottleneck: size of search space (interleavings).

Outline

- Big Picture
- 4 Compression

Outline

- Big Picture
- 4 Compression
- 6 Reduction
- 6 Conclusion

Applied- π - Syntax

Terms

 \mathcal{T} : set of terms + equational theory. *e.g.*, dec(enc(*m*, *k*), *k*) =_E *m*.

Applied- π - Syntax

Terms

 \mathcal{T} : set of terms + equational theory. *e.g.*, dec(enc(*m*, *k*), *k*) =_E *m*.

Processes and configurations

$$\begin{array}{l} P, Q ::= 0 \mid (P|Q) \mid in(c, x).P \mid out(c, m).P \\ \mid if \ u = v \ then \ P \ else \ Q \\ \mid !P \\ A = (\mathcal{P}; \Phi) \end{array}$$

 Φ is the set of messages revelead to the network; intuition: intruder's knowledge.

$$\Phi = \{\underbrace{w_0}_{\text{handle}} \mapsto \underbrace{\text{enc}(m,k)}_{\text{out. message}}; w_1 \mapsto k\}$$

Applied- π - Syntax

Terms

 \mathcal{T} : set of terms + equational theory. *e.g.*, dec(enc(*m*, *k*), *k*) =_E *m*.

Processes and configurations

$$P, Q ::= 0 | (P|Q) | in(c, x).P | out(c, m).P | if u = v then P else Q | !P A = (P; \Phi)$$

 Φ is the set of messages revelead to the network; intuition: intruder's knowledge.

$$\Phi = \{\underbrace{w_0}_{\text{handle}} \mapsto \underbrace{\text{enc}(m,k)}_{\text{out. message}}; w_1 \mapsto k\}$$

recipes are terms built using only handles

$$e.g., R = dec(w_0, w_1)$$
 $m =_{\mathsf{E}} R\Phi$

intuition: how the environment builds messages from its knowledge

Lucca Hirschi

Informal presentation

CHoCoLa: Partial order reduction for the applied *π*-calculus

Informal presentation

Process

$$\Phi = \emptyset$$

 $t = \epsilon$

Let us explore one possible trace.

Lucca Hirschi

CHoCoLa: Partial order reduction for the applied *π*-calculus

Informal presentation

$\textbf{Alice} \rightarrow \textbf{Server}$: $enc(k', k_A)$
$\text{Server} \to \text{Bob}$: enc(k', k _B)
$\textbf{Alice} \rightarrow \textbf{Bob}$: enc(<i>m</i> , <i>k</i> ')

Process

t = out(*a*, *w*₀)

Informal presentation

$\textbf{Alice} \rightarrow \textbf{Server}$: $enc(k', k_A)$
$\text{Server} \to \text{Bob}$: $enc(k', k_B)$
$\text{Alice} \to \text{Bob}$: enc(<i>m</i> , <i>k</i> ')

Process

```
out(a,enc(k',ka)).out(a,enc(m,k'))
```

```
in(s,x). if enc(dec(x,ka),ka) = x
```

then out(s,enc(dec(x,ka),kb))
else 0

| in(b,x) [...]

 $\Phi = \{ w_0 \mapsto \textit{enc}(k',\textit{ka}) \}$

 $t = \operatorname{out}(a, W_0) \cdot \operatorname{in}(s, W_0)$

 w_0 is one possible recipe using Φ no other for then branch since the attacker does not know k_A

Lucca Hirschi

CHoCoLa: Partial order reduction for the applied π -calculus

Informal presentation

Process

```
out (a, enc(k', ka)).out (a, enc(m, k'))

| in(s,x). if enc(dec(x, ka), ka) = x

then out(s, enc(k', kb))

else 0

| in(b,x) [...]

\Phi = \{w_0 \mapsto enc(k', ka); w_1 \mapsto enc(k', kb)\}
```

t = out(*a*, *w*₀).in(*s*, *w*₀).out(*s*, *w*₁)

Informal presentation

Process

$$\Phi = \{ w_0 \mapsto \textit{enc}(k',\textit{ka}); w_1 \mapsto \textit{enc}(k',\textit{kb}) \}$$

$$t = \operatorname{out}(a, w_0).\operatorname{in}(s, w_0).\operatorname{out}(s, w_1).\operatorname{in}(b, w_1)$$

Informal presentation

Process

 $\Phi = \{ w_0 \mapsto enc(k', ka); w_1 \mapsto enc(k', kb); w_2 \mapsto enc(m, k') \}$

 $t = \operatorname{out}(a, w_0).\operatorname{in}(s, w_0).\operatorname{out}(s, w_1).\operatorname{in}(b, w_1).\operatorname{out}(a, w_2)$

Informal presentation

Process

 $\Phi = \{ w_0 \mapsto enc(k', ka); w_1 \mapsto enc(k', kb); w_2 \mapsto enc(m, k') \}$

 $t = \operatorname{out}(a, w_0).\operatorname{in}(s, w_0).\operatorname{out}(s, w_1).\operatorname{in}(b, w_1).\operatorname{out}(a, w_2).\operatorname{in}(b, w_2)$

Lucca Hirschi

Applied- π - Semantics

Internal reduction ~>:

- (if u = v then P else Q) $\rightsquigarrow P$ when $u =_{\mathsf{E}} v$;
- (if u = v then P else Q) $\rightsquigarrow Q$ when $u \neq_{\mathsf{E}} v$;
- $(P \mid Q) \rightsquigarrow (P' \mid Q)$ and $(Q \mid P) \rightsquigarrow (Q \mid P')$ when $P \rightsquigarrow P'$;
- ► $((P_1 | P_2) | P_3) \rightsquigarrow (P_1 | (P_2 | P_3));$ not. $\prod_{i=1}^3 P_i$
- $(P \mid 0) \rightarrow P$ and $(0 \mid P) \rightsquigarrow P$.

Applied- π - Semantics

Internal reduction ~>:

• (if
$$u = v$$
 then P else Q) $\rightsquigarrow P$ when $u =_{\mathsf{E}} v$;

• (if
$$u = v$$
 then P else Q) $\rightsquigarrow Q$ when $u \neq_{\mathsf{E}} v$;

•
$$(P \mid Q) \rightsquigarrow (P' \mid Q)$$
 and $(Q \mid P) \rightsquigarrow (Q \mid P')$ when $P \rightsquigarrow P'$;

•
$$((P_1 | P_2) | P_3) \rightsquigarrow (P_1 | (P_2 | P_3));$$
 not. $\prod_{i=1}^3 P_i$

•
$$(P \mid 0) \rightarrow P$$
 and $(0 \mid P) \rightsquigarrow P$.

$$\begin{array}{ll} \mathsf{IN} & (\{\operatorname{in}(c,x).Q\} \uplus \mathcal{P}; \Phi) & \xrightarrow{\operatorname{in}(c,M)} & (\{Q\{u/x\}\} \uplus \mathcal{P}; \Phi) \\ & \text{where } M \in \mathcal{T}(\operatorname{dom}(\Phi)) \text{ and } M\Phi =_{\mathsf{E}} u \\ \mathsf{OUT} & (\{\operatorname{out}(c,u).Q\} \uplus \mathcal{P}; \Phi) & \xrightarrow{\operatorname{out}(c,w)} & (\{Q\} \uplus \mathcal{P}; \Phi \cup \{w \mapsto u\}) \\ & \text{where } w \in \mathcal{W} \text{ is fresh} \\ \mathsf{PAR} & (\{\prod_{i=1}^{n} P_i\} \uplus \mathcal{P}; \Phi) & \xrightarrow{\mathsf{par}} & (\{P_1; \ldots; P_n\} \uplus \mathcal{P}; \Phi) \end{array}$$

$$\mathsf{ZERO} \qquad (\{0\} \uplus \mathcal{P}; \Phi) \xrightarrow{\mathtt{zero}} (\mathcal{P}; \Phi)$$

Properties:

Reachability (e.g., secret, authentification) and

Trace equivalence (*e.g.*, anonymity, unlikability).

(bisimulation: too strong)

Properties:

Reachability (e.g., secret, authentification) and

Trace equivalence (e.g., anonymity, unlikability).

(bisimulation: too strong)

Trace equivalence

►
$$A \approx B \iff \forall A \xrightarrow{t} A', \exists B \xrightarrow{t'} B' \text{ such that } obs(t) = obs(t') \text{ and} \Phi_{A'} \sim \Phi_{B'} \text{ (and conversely)}$$

Properties:

Reachability (e.g., secret, authentification) and

Trace equivalence (e.g., anonymity, unlikability).

(bisimulation: too strong)

Trace equivalence

► $A \approx B \iff \forall A \xrightarrow{t} A', \exists B \xrightarrow{t'} B' \text{ such that } obs(t) = obs(t') \text{ and} \Phi_{A'} \sim \Phi_{B'} \text{ (and conversely)}$

 $\blacktriangleright \ \Phi \sim \Phi' \iff (\forall M, N, \ M\Phi = N\Phi \iff M\Phi' = N\Phi')$

Properties:

Reachability (e.g., secret, authentification) and

Trace equivalence (e.g., anonymity, unlikability).

(bisimulation: too strong)

Trace equivalence

► $A \approx B \iff \forall A \xrightarrow{t} A', \exists B \xrightarrow{t'} B' \text{ such that } obs(t) = obs(t') \text{ and} \Phi_{A'} \sim \Phi_{B'} \text{ (and conversely)}$

 $\blacktriangleright \ \Phi \sim \Phi' \iff (\forall M, N, \ M\Phi = N\Phi \iff M\Phi' = N\Phi')$

Example: unlinkability of WMF

 $\overbrace{\{P_{a};P_{s};P_{b}\}}^{\textit{Alice} \rightarrow S \rightarrow \textit{Bob}} \cup \overbrace{\{P_{a};P_{s};P_{b}\}}^{\textit{Alice} \rightarrow S \rightarrow \textit{Bob}}; \epsilon) \stackrel{?}{\approx} (\overbrace{\{P_{a};P_{s};P_{b}\}}^{\textit{Alice} \rightarrow S \rightarrow \textit{Bob}} \cup \overbrace{\{P_{a}';P_{s}';P_{c}\}}^{\textit{Alice} \rightarrow S \rightarrow \textit{Charlie}}; \epsilon)$

Broken: reusing 1st session on the left, impossible on the right

Outline

1 Introduction

Big Picture

- 4 Compression
- 6 Reduction
- 6 Conclusion

Big Picture

Motivation: Improve algorithms checking trace equivalence

► How: Remove redundant interleavings via a reduced semantics

 \rightarrow_r does not explore all behaviours but sufficiently to ensure $\approx \approx_r$

Big Picture

Required properties

- \rightarrow_r is such that:
 - reachability properties coincide on \rightarrow_r and \rightarrow ;
 - For action-determinate processese, trace-equivalence coincides on →_r and →.

Big Picture

Required properties

 \rightarrow_r is such that:

- reachability properties coincide on \rightarrow_r and \rightarrow ;
- For action-determinate processese, trace-equivalence coincides on →_r and →.

Action-determinsm

A is action-deterministic if $\forall A \xrightarrow{t} (\mathcal{P}; \Phi), \forall P, Q \in \mathcal{P}, P \text{ and } Q \text{ cannot}$ perform an observable action of the same nature on the same channel.

Makes sense in security (e.g., IP of agents)

Lucca Hirschi

Outline

Introduction

2 Model

Big Picture

4 Compression

6 Reduction

6 Conclusion

The Idea

Follow a particular **strategy** that reduces the number of choices by looking at the **nature** of available actions.

Polarities of processes (similar to focusing of LL):

negative: out().P, \Pi, 0 Bring new data or choices, execution independent of the context

The Idea

Follow a particular **strategy** that reduces the number of choices by looking at the **nature** of available actions.

Polarities of processes (similar to focusing of LL):

▶ *negative*: out().*P*, ∏*P*_i, 0

Bring new data or choices, execution independent of the context

▶ positive: in().P

Execution depends on the context

The Idea

Follow a particular **strategy** that reduces the number of choices by looking at the **nature** of available actions.

Polarities of processes (similar to focusing of LL):

▶ negative: out().P, ∏P_i, 0

Bring new data or choices, execution independent of the context

 \leadsto to be performed as soon as possible in a given order

▶ positive: in().P

Execution depends on the context

The Idea

Follow a particular **strategy** that reduces the number of choices by looking at the **nature** of available actions.

Polarities of processes (similar to focusing of LL):

▶ negative: out().P, ∏P_i, 0

Bring new **data** or **choices**, execution independent of the context \rightarrow to be performed as soon as possible in a given order

▶ positive: in().P

Execution depends on the context

~ can be performed only if no negative

The Idea

Follow a particular **strategy** that reduces the number of choices by looking at the **nature** of available actions.

Polarities of processes (similar to focusing of LL):

▶ negative: out().P, ∏P_i, 0

Bring new data or choices, execution independent of the context

 \leadsto to be performed as soon as possible in a given order

▶ positive: in().P

Execution depends on the context

 \rightsquigarrow can be performed only if no *negative*

- ~ we make a choice that we must maintain while it is positive
- → the chosen one is *under focus*, released when *negative*

The Idea

Follow a particular **strategy** that reduces the number of choices by looking at the **nature** of available actions.

Polarities of processes (similar to focusing of LL):

▶ negative: out().P, ∏P_i, 0

Bring new data or choices, execution independent of the context

 \leadsto to be performed as soon as possible in a given order

▶ positive: in().P

Execution depends on the context

 \rightsquigarrow can be performed only if no *negative*

- ~ we make a choice that we must maintain while it is positive
- → the chosen one is *under focus*, released when *negative*

Compressed semantics - Definitions

 \mathcal{P} is initial if $\forall P \in \mathcal{P}$, P is positive.

Semantics:

Compressed semantics - Definitions

 \mathcal{P} is **initial** if $\forall P \in \mathcal{P}$, *P* is *positive*.

Semantics:

START/IN $\frac{\mathcal{P} \text{ is initial} \quad (P; \Phi) \xrightarrow{\text{in}(c,M)} (P'; \Phi)}{(\mathcal{P} \uplus \{P\}; \emptyset; \Phi) \xrightarrow{\text{foc}(\text{in}(c,M))} c (\mathcal{P}; P'; \Phi)} \frac{(P; \Phi) \xrightarrow{\text{in}(c,M)} (P'; \Phi)}{(\mathcal{P}; P; \Phi) \xrightarrow{\text{in}(c,M)} c (\mathcal{P} \uplus \{P'\}; \Phi;)}$

Compressed semantics - Definitions

 \mathcal{P} is initial if $\forall P \in \mathcal{P}$, P is positive.

Semantics: \mathcal{P} is initial $(P; \Phi) \xrightarrow{in(c,M)} (P'; \Phi)$ $(\mathcal{P} \uplus \{P\}; \emptyset; \Phi) \xrightarrow{\text{foc}(\text{in}(c,M))} (\mathcal{P}; P'; \Phi)$ START/IN $(P; \Phi) \xrightarrow{in(c,M)} (P'; \Phi)$ $(\mathcal{P}: P; \Phi) \xrightarrow{\operatorname{in}(c,M)} (\mathcal{P} \uplus \{P'\}; \Phi;)$ Pos/IN P negative $(\mathcal{P}: \mathbf{P}: \Phi) \xrightarrow{\text{rel}}_{c} (\mathcal{P} \uplus \{\mathbf{P}\}; \emptyset; \Phi)$ RELEASE $(\{ \mathbb{P} \}; \Phi) \xrightarrow{\alpha} (\mathcal{P}'; \Phi')$ $(\mathcal{P} \uplus \{\overline{\boldsymbol{P}}\}; \varnothing; \Phi) \xrightarrow{\alpha}_{c} (\mathcal{P} \uplus \mathcal{P}'; \varnothing; \Phi') \quad \alpha \in \{\texttt{par}, \texttt{zero}, \texttt{out}(_,_)\}$ NEG/α

CHoCoLa: Partial order reduction for the applied π -calculus

Translations:

 $\lceil (\mathcal{P}; \Phi) \rceil = (\mathcal{P}; \varnothing; \Phi), \quad \lfloor (\mathcal{P}; \varnothing; \Phi) \rfloor = (\mathcal{P}; \Phi), \quad \lfloor (\mathcal{P}; \mathcal{P}; \Phi) \rfloor = (\mathcal{P} \uplus \{ \mathcal{P} \}; \Phi).$

Translations:

 $\lceil (\mathcal{P}; \Phi) \rceil = (\mathcal{P}; \emptyset; \Phi), \quad \lfloor (\mathcal{P}; \emptyset; \Phi) \rfloor = (\mathcal{P}; \Phi), \quad \lfloor (\mathcal{P}; P; \Phi) \rfloor = (\mathcal{P} \uplus \{P\}; \Phi).$

$$\lfloor \epsilon \rfloor = \epsilon$$
, $\lfloor \text{foc}(\alpha).t \rfloor = \alpha.\lfloor t \rfloor$, $\lfloor \text{rel}.t \rfloor = \lfloor t \rfloor$, and $\lfloor \alpha.t \rfloor = \alpha.\lfloor t \rfloor$ for any other α .

Translations:

$$\begin{split} \lceil (\mathcal{P}; \Phi) \rceil &= (\mathcal{P}; \varnothing; \Phi), \quad \lfloor (\mathcal{P}; \varnothing; \Phi) \rfloor = (\mathcal{P}; \Phi), \quad \lfloor (\mathcal{P}; P; \Phi) \rfloor = (\mathcal{P} \uplus \{ P \}; \Phi). \\ \\ \lfloor \epsilon \rfloor &= \epsilon, \ \lfloor \texttt{foc}(\alpha).t \rfloor = \alpha. \lfloor t \rfloor, \ \lfloor \texttt{rel}.t \rfloor = \lfloor t \rfloor, \text{ and} \\ \lfloor \alpha.t \rfloor &= \alpha. \lfloor t \rfloor \text{ for any other } \alpha. \end{split}$$

Lemma: soundness for reachability

Let *A*, *A'*, and *t* be such that $A \xrightarrow{t}_{c} A'$. We have that $\lfloor A \rfloor \xrightarrow{\lfloor t \rfloor} \lfloor A' \rfloor$.

Easy.

Lemma: completeness for reachability

Let *A*, *A'*, and *t* be such that $A \xrightarrow{t} A'$ is complete. There exists a trace t_c such that $\lfloor t_c \rfloor$ is a permutation of *t* and $\lceil A \rceil \xrightarrow{t_c} \lceil A' \rceil$.

Proof: non-trivial. Adapating the "positive trunk" argument. Involving swaps of actions.

Lucca Hirschi

CHoCoLa: Partial order reduction for the applied *π*-calculus

Sequential dependencies

We need to formalize sequential dependencies.

- add syntactical info. on procces and produced actions
- labels: list of integers;
- denote the position of the current action in "the tree of parallel compositions"

Example

Labelled configuration:

$$A = \left(\{ [in(c, x). (in(c, y).out(c, x_y).0 \mid in(d, y).out(d, y_c).0]^1 \} \}; \emptyset \right)$$

Labelled trace : $t = [in(c, x)]^1$

Sequential dependencies

We need to formalize sequential dependencies.

- add syntactical info. on procces and produced actions
- labels: list of integers;
- denote the position of the current action in "the tree of parallel compositions"

Example

Labelled configuration:

```
A = \left( \{ [\operatorname{in}(c, x)]^1 \cdot [(\operatorname{in}(c, y) \cdot \operatorname{out}(c, x_y) \cdot 0 \mid \operatorname{in}(d, y) \cdot \operatorname{out}(d, y_c) \cdot 0)]^1 \}; \emptyset \right)
```

Labelled trace : $t = [in(c, x)]^{1} [par]^{1}$

Sequential dependencies

We need to formalize sequential dependencies.

- add syntactical info. on procces and produced actions
- labels: list of integers;
- denote the position of the current action in "the tree of parallel compositions"

Example

Labelled configuration:

$$A = ([in(c, y).out(c, x_y).0]^{1.1}; [in(d, y).out(d, y_c).0]^{1.2}; \emptyset)$$

Labelled trace :

$$\begin{split} t = [in(c, x)]^{1} [par]^{1} [in(c, y)]^{1.1} [out(c, w_{0})]^{1.1} [zero]^{1.1} \\ [in(d, y)]^{1.2} [out(d, w_{1})]^{1.2} [zero]^{1.2} \end{split}$$

Swapping actions

Definition

 $[\alpha]^{\ell}$ and $[\beta]^{\ell'}$ are *sequentially dependent* if ℓ is a prefix of ℓ' (or the converse).

Definition

 $[\alpha]^{\ell}$ and $[\beta]^{\ell'}$ are *recipe dependent* if $\{\alpha; \beta\} = \{in(c, M); out(d, w)\}$ with $w \in fv(M)$.

We note $[\alpha]^\ell \parallel [\beta]^{\ell'}$ when they are recipe and sequentially independent.

Swapping Lemma

Consider a labelled configuration A and two actions $[\alpha]^{\ell} \parallel [\beta]^{\ell'}$. We have that

$$A \xrightarrow{[\alpha]^{\ell}[\beta]^{\ell'}} A' \iff A \xrightarrow{[\beta]^{\ell'}[\alpha]^{\ell}} A'$$

Let *A*, *A'*, and *t* be such that $A \xrightarrow{t} A'$ is complete. There exists a trace t_c such that $\lfloor t_c \rfloor$ is a permutation of *t* and $\lceil A \rceil \xrightarrow{t_c} \lceil A' \rceil$.

Using the swapping Lemma we translate iteratively $A = (\mathcal{P}; \Phi_0) \xrightarrow{tr} (\emptyset; \Phi)$ into

$$\left[\boldsymbol{A} \right] \xrightarrow{\dots tr_{\text{pos.rel.tr}_{$$

 \rightsquigarrow Induction on the length of the derivation.

Let *A*, *A'*, and *t* be such that $A \xrightarrow{t} A'$ is complete. There exists a trace t_c such that $\lfloor t_c \rfloor$ is a permutation of *t* and $\lceil A \rceil \xrightarrow{t_c} \lceil A' \rceil$.

Using the swapping Lemma we translate iteratively $A = (\mathcal{P}; \Phi_0) \xrightarrow{tr} (\emptyset; \Phi)$ into

$$\lceil A \rceil \xrightarrow{\dots tr_{pos}.rel.tr_{pos}.tr_{pos}.rel.tr_{pos}.rel.tr_{pos}.rel.tr_{pos}.rel.tr_{pos}}_{c} (\emptyset; \varnothing; \Phi)$$

→ Induction on the length of the derivation.

▶ If there is a *negative* $P \in \mathcal{P}$. This *P* performs α_P at some point.

$$A \xrightarrow{\text{tr}_1.\alpha_P.\text{tr}_2} (\emptyset; \Phi) \quad \rightsquigarrow \quad A \xrightarrow{\alpha_P} A_1 \xrightarrow{\text{tr}_1.\text{tr}_2} (\emptyset; \Phi)$$

Let *A*, *A'*, and *t* be such that $A \xrightarrow{t} A'$ is complete. There exists a trace t_c such that $\lfloor t_c \rfloor$ is a permutation of *t* and $\lceil A \rceil \xrightarrow{t_c} \lceil A' \rceil$.

Using the swapping Lemma we translate iteratively $A = (\mathcal{P}; \Phi_0) \xrightarrow{tr} (\emptyset; \Phi)$ into

$$\lceil A \rceil \xrightarrow{\dots tr_{pos}.rel.tr_{pos}.tr_{pos}.rel.tr_{pos}.rel.tr_{pos}.rel.tr_{pos}.rel.tr_{pos}}_{c} (\emptyset; \varnothing; \Phi)$$

 \rightsquigarrow Induction on the length of the derivation.

▶ If there is a *negative* $P \in \mathcal{P}$. This *P* performs α_P at some point.

$$\begin{array}{ccc} A \xrightarrow{\operatorname{tr}_{1}.\alpha_{P}.\operatorname{tr}_{2}} (\emptyset; \Phi) & \rightsquigarrow & A \xrightarrow{\alpha_{P}} A_{1} \xrightarrow{\operatorname{tr}_{1}.\operatorname{tr}_{2}} (\emptyset; \Phi) \\ & \rightsquigarrow & A \xrightarrow{\alpha_{P}} A_{1}, \ \lceil A_{1} \rceil \xrightarrow{\operatorname{tr}'}_{c} (\emptyset; \Phi) \\ & \rightsquigarrow & \lceil A \rceil \xrightarrow{\alpha_{P}}_{c} \lceil A_{1} \rceil \xrightarrow{\operatorname{tr}'}_{c} (\emptyset; \Phi) \end{array}$$

Let *A*, *A'*, and *t* be such that $A \xrightarrow{t} A'$ is complete. There exists a trace t_c such that $\lfloor t_c \rfloor$ is a permutation of *t* and $\lceil A \rceil \xrightarrow{t_c} \lceil A' \rceil$.

Using the swapping Lemma we translate iteratively $A = (\mathcal{P}; \Phi_0) \xrightarrow{tr} (\emptyset; \Phi)$ into

$$\left\lceil A \right\rceil \xrightarrow{\dots tr_{\text{pos.rel.}tr_{\text{p$$

 \rightsquigarrow Induction on the length of the derivation.

- ▶ If there is a *negative* $P \in \mathcal{P}$. Done.
- Otherwise, A is initial. Only positive actions leading to a negative process P⁻.

$$\begin{array}{l} A \xrightarrow{\mathrm{tr}_{\mathrm{in}}} \left(\mathcal{P}' \uplus \{ \boldsymbol{P}^{-} \}; \Phi \right) \xrightarrow{\mathrm{tr}_{0}} \left(\emptyset; \Phi \right) \\ \rightsquigarrow \quad A = \left(\{ \boldsymbol{P} \} \uplus \boldsymbol{\mathcal{P}}_{0}; \Phi \right) \xrightarrow{\mathrm{tr}_{\boldsymbol{\mathcal{P}}}} \left(\{ \boldsymbol{P}^{-} \} \uplus \boldsymbol{\mathcal{P}}_{0}; \Phi \right) \xrightarrow{\mathrm{tr}_{\mathrm{in}}'} \left(\mathcal{P}' \uplus \{ \boldsymbol{P}^{-} \}; \Phi \right) \xrightarrow{\mathrm{tr}_{0}} \left(\emptyset; \Phi \right) \end{array}$$

Let *A*, *A'*, and *t* be such that $A \xrightarrow{t} A'$ is complete. There exists a trace t_c such that $\lfloor t_c \rfloor$ is a permutation of *t* and $\lceil A \rceil \xrightarrow{t_c} \lceil A' \rceil$.

Using the swapping Lemma we translate iteratively $A = (\mathcal{P}; \Phi_0) \xrightarrow{tr} (\emptyset; \Phi)$ into

$$\left\lceil A \right\rceil \xrightarrow{\dots tr_{\text{pos.rel.}tr_{\text{p$$

 \rightsquigarrow Induction on the length of the derivation.

- ▶ If there is a *negative* $P \in \mathcal{P}$. Done.
- Otherwise, A is initial. Only positive actions leading to a negative process P⁻.

$$\begin{array}{l} A \xrightarrow{\mathrm{tr}_{\mathrm{in}}} \left(\mathcal{P}' \uplus \{ \boldsymbol{P}^{-} \}; \Phi \right) \xrightarrow{\mathrm{tr}_{0}} \left(\emptyset; \Phi \right) \\ \rightsquigarrow \quad A = \left(\{ P \} \uplus \mathcal{P}_{0}; \Phi \right) \xrightarrow{\mathrm{tr}_{\rho}} \left(\{ \boldsymbol{P}^{-} \} \uplus \mathcal{P}_{0}; \Phi \right) \xrightarrow{\mathrm{tr}'_{\mathrm{in}}} \left(\mathcal{P}' \uplus \{ \boldsymbol{P}^{-} \}; \Phi \right) \xrightarrow{\mathrm{tr}_{0}} \left(\emptyset; \Phi \right) \\ \rightsquigarrow \quad \left(\{ P \} \uplus \mathcal{P}_{0}; \Phi \right) \xrightarrow{\mathrm{tr}_{\rho}} \left(\{ \boldsymbol{P}^{-} \} \uplus \mathcal{P}_{0}; \Phi \right), \left(\{ \boldsymbol{P}^{-} \} \uplus \mathcal{P}_{0}; \varnothing; \Phi \right) \xrightarrow{\mathrm{tr}'_{\sigma}} c \left(\emptyset; \Phi \right) \end{array}$$

Let *A*, *A'*, and *t* be such that $A \xrightarrow{t} A'$ is complete. There exists a trace t_c such that $\lfloor t_c \rfloor$ is a permutation of *t* and $\lceil A \rceil \xrightarrow{t_c} \lceil A' \rceil$.

Using the swapping Lemma we translate iteratively $A = (\mathcal{P}; \Phi_0) \xrightarrow{tr} (\emptyset; \Phi)$ into

$$\left\lceil A \right\rceil \xrightarrow{\dots tr_{\text{pos.rel.}tr_{\text{p$$

 \rightsquigarrow Induction on the length of the derivation.

- ▶ If there is a *negative* $P \in \mathcal{P}$. Done.
- Otherwise, A is initial. Only positive actions leading to a negative process P⁻.

$$\begin{array}{l} A \xrightarrow{\operatorname{tr}_{in}} \left(\mathcal{P}' \uplus \{ \boldsymbol{P}^{-} \}; \Phi \right) \xrightarrow{\operatorname{tr}_{0}} \left(\emptyset; \Phi \right) \\ \rightsquigarrow \quad A = \left(\{ \boldsymbol{P} \} \uplus \mathcal{P}_{0}; \Phi \right) \xrightarrow{\operatorname{tr}_{\rho}} \left(\{ \boldsymbol{P}^{-} \} \uplus \mathcal{P}_{0}; \Phi \right) \xrightarrow{\operatorname{tr}'_{in}} \left(\mathcal{P}' \uplus \{ \boldsymbol{P}^{-} \}; \Phi \right) \xrightarrow{\operatorname{tr}_{0}} \left(\emptyset; \Phi \right) \\ \rightsquigarrow \quad \left(\{ \boldsymbol{P} \} \uplus \mathcal{P}_{0}; \Phi \right) \xrightarrow{\operatorname{tr}_{\rho}} \left(\{ \boldsymbol{P}^{-} \} \uplus \mathcal{P}_{0}; \Phi \right), \left(\{ \boldsymbol{P}^{-} \} \uplus \mathcal{P}_{0}; \varnothing; \Phi \right) \xrightarrow{\operatorname{tr}'_{\sigma}} \left(\emptyset; \Phi \right) \\ \rightsquigarrow \quad \left[\boldsymbol{A} \right] \xrightarrow{\operatorname{foc}(\operatorname{tr}_{\rho}) \cdot \operatorname{rel}}_{c} \left(\{ \boldsymbol{P}^{-} \} \uplus \mathcal{P}_{0}; \varnothing; \Phi \right) \xrightarrow{\operatorname{tr}'_{\sigma}} \left(\emptyset; \Phi \right) \end{array}$$

Lucca Hirschi

CHoCoLa: Partial order reduction for the applied π -calculus

Results - Equivalence

Compressed trace equivalence

 $A \approx_c B$ if for any labelled trace *t* and execution $A \xrightarrow{t}_c (\mathcal{P}; \emptyset; \Phi)$ there is $B \xrightarrow{t}_c (\mathcal{P}'; \emptyset; \Phi')$ such that $\Phi \sim \Phi'$ (and the converse).

Results - Equivalence

Compressed trace equivalence

 $A \approx_c B$ if for any labelled trace *t* and execution $A \xrightarrow{t}_c (\mathcal{P}; \emptyset; \Phi)$ there is $B \xrightarrow{t}_c (\mathcal{P}'; \emptyset; \Phi')$ such that $\Phi \sim \Phi'$ (and the converse).

We assume A and B to be labelled consistently.

Theorem: Soundness of \approx_c

Let *A* and *B* be two initial action-deterministic configurations. If $A \approx B$ then $\lceil A \rceil \approx_c \lceil B \rceil$.

Ingredients:

- ► A ≈ B concides with trace equivalence for labelled trace (including non-observable actions);
- \blacktriangleright + and phases of *A* and *B* are sync.

Results - Equivalence - Completeness

Theorem: Completeness of \approx_c

Let *A* and *B* be two initial action-deterministic configurations. If $[A] \approx_c [B]$ then $A \approx B$.

- "complete" witnesses of non-equivalence are sufficient;
- undo permutations of $(\stackrel{\text{tr}}{\rightarrow}) \rightsquigarrow (\stackrel{\text{tr}_c}{\rightarrow}_c)$ in [B]'s answer

Outline

1 Introduction

2 Model

Big Picture

Compression

6 Conclusion

Intuitions

By building upon \rightarrow_c, \approx_c :

compressed semantics produces *blocks* of actions of the form:

$$b = foc(a).t^{in}.rel.t^{-}$$

- but we still need to make choices (which positive process, block?)
- some of them are redundant.

Intuitions

compressed semantics produces *blocks* of actions of the form:

$$b = \text{foc}(a).t^{\text{in}}.\text{rel}.t^{-}$$

but we still need to make choices (which positive process, block?)

some of them are redundant.

$$P = in(c_1, x_1).out(c_1, k_1).P_1 \mid in(c_2, x_2).out(c_2, k_2).P_2$$

Intuitions

compressed semantics produces *blocks* of actions of the form:

$$b = foc(a).t^{in}.rel.t^{-}$$

but we still need to make choices (which positive process, block?)

some of them are redundant.

$$P = in(c_1, x_1).out(c_1, k_1).P_1 \mid in(c_2, x_2).out(c_2, k_2).P_2$$

CHoCoLa: Partial order reduction for the applied *π*-calculus

P = IO(a)|IO(b)|IO(c) where $IO(I) = in(c_I, X_I).out(c_I, w_I)$

P = IO(a)|IO(b)|IO(c) where $IO(I) = in(c_I, X_I).out(c_I, w_I)$

P = IO(a)|IO(b)|IO(c) where $IO(I) = in(c_I, X_I).out(c_I, w_I)$

CHoCoLa: Partial order reduction for the applied *π*-calculus

P = IO(a)|IO(b)|IO(c) where $IO(I) = in(c_I, X_I).out(c_I, w_I)$

CHoCoLa: Partial order reduction for the applied *π*-calculus

Monoid of traces

Definition

Given a frame Φ , the relation \equiv_{Φ} is the smallest equivalence over compressed traces such that:

- tr. $b_1.b_2.tr' \equiv_{\Phi} tr.b_2.b_1.tr'$ when $b_1 \parallel b_2$, and
- tr. b_1 .tr' \equiv_{Φ} tr. b_2 .tr' when $(b_1 =_{\mathsf{E}} b_2)\Phi$.

Monoid of traces

Definition

Given a frame Φ , the relation \equiv_{Φ} is the smallest equivalence over compressed traces such that:

- tr. $b_1.b_2.$ tr' \equiv_{Φ} tr. $b_2.b_1.$ tr' when $b_1 \parallel b_2$, and
- tr. b_1 .tr' \equiv_{Φ} tr. b_2 .tr' when $(b_1 =_{\mathsf{E}} b_2)\Phi$.

Lemma

Let *A* and *A'* be two initial configurations such that $A \xrightarrow{\text{tr}}_{c} A'$. Then $A \xrightarrow{\text{tr}'}_{c} A'$ for any $\text{tr}' \equiv_{\Phi(A')} \text{tr}$.

Goal: explore on trace per equivalence class.

Reduced semantics

We assume an arbitrary order \prec over blocks (without recipes/messages): priority order.

Semantics

$$\frac{A \xrightarrow{\epsilon}_{r} A}{\frac{A \xrightarrow{\text{tr}}_{r} (\mathcal{P}; \emptyset; \Phi) \quad (\mathcal{P}; \emptyset; \Phi) \xrightarrow{b}_{c} A'}{A \xrightarrow{\text{tr.}b}_{r} A'} \quad \text{if } \text{tr} \ltimes b' \text{ for all } b' \text{ with } (b' =_{\mathsf{E}} b) \Phi$$

transparent=0

Availability

A block b is available after tr, denoted tr $\ltimes b$, if:

- either $tr = \epsilon$
- or tr = tr₀. b_0 with $\neg(b_0 || b)$
- or tr = tr₀. b_0 with $b_0 || b, b_0 \prec b$ and tr₀ $\ltimes b$.

Done: explore on trace per equivalence class.

t is Φ -minimal if there is no $t' \prec_{\text{lex}} t$ such that $t \equiv_{\Phi} t'$

Lemma: completeness for reachability

If *A* and $A' = (\mathcal{P}'; \Phi')$ are initial and $\lceil A \rceil \xrightarrow{t}_{c} \lceil A' \rceil$ then *t* is $\Phi(A')$ -minimal if, and only if, $A \xrightarrow{t}_{r} A'$.

Done: explore on trace per equivalence class.

t is Φ -minimal if there is no $t' \prec_{\text{lex}} t$ such that $t \equiv_{\Phi} t'$

Lemma: completeness for reachability

If *A* and $A' = (\mathcal{P}'; \Phi')$ are initial and $\lceil A \rceil \xrightarrow{t}_{c} \lceil A' \rceil$ then *t* is $\Phi(A')$ -minimal if, and only if, $A \xrightarrow{t}_{r} A'$.

- reduced semantics explores one trace per equivalence class
- ▶ with "swapping lemma" \rightsquigarrow completeness of reachability for \rightarrow_r

Results - Equivalence

Definition: Reduced trace equivalence

 $A \approx_r B$ if for any $A \xrightarrow{t}_r A'$ there is $B \xrightarrow{t}_r B'$ such that $\Phi_{A'} \sim \Phi_{B'}$ (and the conv.).

Theorem

Let A and B be two initial action-deterministic configurations.

 $A \approx B$ if, and only if, $A \approx_r B$.

Results - Equivalence

Definition: Reduced trace equivalence

 $A \approx_r B$ if for any $A \xrightarrow{t}_r A'$ there is $B \xrightarrow{t}_r B'$ such that $\Phi_{A'} \sim \Phi_{B'}$ (and the conv.).

Theorem

Let A and B be two initial action-deterministic configurations.

 $A \approx B$ if, and only if, $A \approx_r B$.

Reachabilty lemmas +:

Lemma: Static equivalent frames induce same \equiv_{Φ}

For any static equivalent frames $\Phi \sim \Phi'$ and traces t_1, t_2 , we have that $t_1 \equiv_{\Phi} t_2$ if and only if $t_1 \equiv_{\Phi'} t_2$.

Outline

Introduction

2 Model

- Big Picture
- 4 Compression
- 5 Reduction

Adapting well established techniques based on:

- symbolic semantics (abstract inputs);
- constraint solving procedures.

Adapting well established techniques based on:

- symbolic semantics (abstract inputs);
- constraint solving procedures.

trkb (availability) as a new type of constraints

Difficulties:

decide them exactly is too costly ...

Adapting well established techniques based on:

- symbolic semantics (abstract inputs);
- constraint solving procedures.

 $tr \ltimes b$ (availability) as a new type of constraints

Difficulties:

- decide them exactly is too costly ...
- ~> over-approximation;
- ► in a symmetrical way (otherwise false-attacks).

Adapting well established techniques based on:

- symbolic semantics (abstract inputs);
- constraint solving procedures.

 $tr \ltimes b$ (availability) as a new type of constraints

Difficulties:

- decide them exactly is too costly ...
- ~> over-approximation;
- ► in a symmetrical way (otherwise false-attacks).

Results in APTE & SPEC:

Tool	Protocol	Size	Ref (s)	Comp (s)	Red (s)
APTE	PA 1 Sess.	2/9/5	0.164	0.012	0.004
	PA 2 Sess.	4/15/5	> 237h	16.72	11.856
	PA 3 Sess.	6/21/5	> 237h	379696	91266
SPEC	2 par	2/22/10	> 20 hours	13853	122.27
	2 par 7 par	7/14/2	> 20 hours	13853	370.65

Conclusion

- New optimizations: compression and reduction;
- applied to trace equivalence checking;
- early implementation in SPEC and Apte.

Conclusion

- New optimizations: compression and reduction;
- applied to trace equivalence checking;
- early implementation in SPEC and Apte.

Future Work

- drop action-deterministic assumption
- Preducing search space:
 - study others redundancies ~→ recognize symmetries ?
 - study constraint solving in more details
- introduce interactivity into the verification process (sub-lemmas, annotations)

Conclusion

- New optimizations: compression and reduction;
- applied to trace equivalence checking;
- early implementation in SPEC and Apte.

Future Work

- drop action-deterministic assumption
- Preducing search space:
 - study others redundancies ~→ recognize symmetries ?
 - study constraint solving in more details
- introduce interactivity into the verification process (sub-lemmas, annotations)

Any question?