From Büchi Automata to Cyclic and Infinite Proofs

Internship at ITU Copenhagen

Lucca Hirschi

July 10, 2012

Lucca Hirschi directed by

David Baelde

ITU of Copenhagen

ENS Lyon

Introduction

Purpose

Encode Büchi automata as formulas in a proof-theoretical framework with (co)-induction.

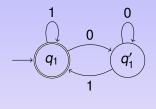
-Introduction

Purpose

Encode Büchi automata as formulas in a proof-theoretical framework with (co)-induction.

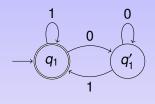
Logics dealing with infinite proofs, cyclic proofs; mixing inductive and co-inductive formulas; strongly related; well describe Büchi Automata.

Big Picture



• Common and used: explicit (co)-induction $\mu \mathsf{LK} \subseteq \mu \mathsf{LK}^{\omega} \subseteq \mu \mathsf{LK}^{\infty}$

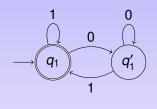
Big Picture



- Infinite proofs: satisfies adequacy, impractical
- Common and used: explicit (co)-induction

 $_{\rightarrow} \mu \mathsf{LK} \subseteq \mu \mathsf{LK}^{\omega} \subseteq \mu \mathsf{LK}^{\infty}^{\ \ \ }$

Big Picture



• Infinite proofs: satisfies adequacy, impractical

Common and used: explicit (co)-induction

Cyclic proofs -

Introduction

Outline

- Introduction
- 2 Büchi Automata
- **3** μLK
- Conclusion

Büchi Automata

Outline

- 1 Introduction
- 2 Büchi Automata
- **3** μLK
- Ψ μ LK $^{\omega}$ and μ LK $^{\infty}$
- 6 Conclusion

Büchi Automata

Definition (Büchi Automata)

A Büchi automaton is a quintuple $\mathcal{A} = (Q, \Sigma, \delta, Q_I, Q_F)$, where

- Q is a finite set (the states);
- Σ is an alphabet;
- $\delta: Q \times \Sigma \to \mathcal{P}(Q)$ the nondeterministic transition function;
- $Q_I \subseteq Q$ the initial states and $Q_F \subseteq Q$ the final states.

Büchi Automata

Definition (Büchi Automata)

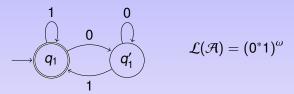
A Büchi automaton is a quintuple $\mathcal{A} = (Q, \Sigma, \delta, Q_I, Q_F)$, where

- Q is a finite set (the states);
- Σ is an alphabet;
- $\delta: Q \times \Sigma \to \mathcal{P}(Q)$ the nondeterministic transition function;
- $Q_I \subseteq Q$ the initial states and $Q_F \subseteq Q$ the final states.

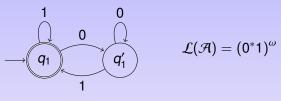
Definition (Acceptance condition)

- A run α on a word is accepting by an automaton $\iff \alpha$ visits a final state infinitely often;

An Example of a Büchi Automaton

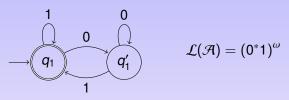


An Example of a Büchi Automaton



$$\vdash$$
? $\llbracket \mathcal{A} \rrbracket \mathbf{1}^{\omega}$

An Example of a Büchi Automaton



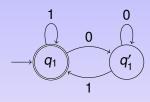
"Proof"

By reading the word 1^{ω} , I can build *step by step* an accepting run in \mathcal{A} :

"From state q_1 , I read 1 and jump to q_1 and so on so forth."

Definition: Büchi Automata

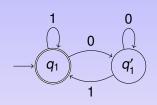
An Example of a Büchi Automaton



$$\vdash$$
? $[q_1]$ 1 $^{\omega}$

Definition: Büchi Automata

An Example of a Büchi Automaton



$$\vdash$$
? $[q_1]$ 1 ω

$$\frac{\frac{\vdots}{\vdash_{?} [q_{1}] 1^{\omega}}?}{\vdash_{?} \exists t l \ (1 :: 1^{\omega} = 1 :: t l \land [q_{1}] t l) \lor (1 :: 1^{\omega} = 0 :: t l \land [q'_{1}] t l)}{?} \exists R, \lor R_{1}$$

Goals

• Adequacy: $w \in \mathcal{L}(\mathcal{A}) \iff \vdash ||\mathcal{A}|| \lfloor w \rfloor$

Goals

• Adequacy: $w \in \mathcal{L}(\mathcal{A}) \iff \vdash ||\mathcal{A}|| ||w||$ and a link between computations in Büchi automata and proofs of their properties;

- Büchi Automata
 - Goals

- Adequacy: $w \in \mathcal{L}(\mathcal{A}) \iff \vdash ||\mathcal{A}|| \lfloor w \rfloor$ and a link between computations in Büchi automata and proofs of their properties;
- Soundness and completeness of inclusion: our main problem is the inclusion. We must show that

$$||A_1||x \vdash ||A_2||x \iff \mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2).$$

- Adequacy: $w \in \mathcal{L}(\mathcal{A}) \iff \vdash ||\mathcal{A}|| \lfloor w \rfloor$ and a link between computations in Büchi automata and proofs of their properties;
- Soundness and completeness of inclusion: our main problem is the inclusion. We must show that

$$||A_1||x + ||A_2||x \iff \mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2).$$

Proof of inclusion → inclusion and a certificate;

- Adequacy: $w \in \mathcal{L}(\mathcal{A}) \iff \vdash ||\mathcal{A}|| \lfloor w \rfloor$ and a link between computations in Büchi automata and proofs of their properties;
- Soundness and completeness of inclusion: our main problem is the inclusion. We must show that

$$||A_1||x + ||A_2||x \iff \mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2).$$

Proof of inclusion → inclusion and a certificate;

 Usable and generic logic: properties over automata are used in a wider context.

Outline

- Introduction
- 2 Büchi Automata
- **3** μLK
- Ψ μ LK $^{\omega}$ and μ LK $^{\infty}$
- Conclusion

$$-\mu$$
LK

μ LK

Definition (Formula of μ LK)

$$P ::= T \mid \bot$$

$$\mid \exists x. P \mid \forall x. P \qquad x \in \mathcal{V}$$

$$\mid P \land P \mid P \lor P \mid P \Rightarrow P$$

$$\mid s = t \qquad t,s \text{ some terms}$$

 $\perp_{\mu LK}$

μ LK

Definition (Formula of μ LK)

```
P ::= T \mid \bot
\mid \exists x. P \mid \forall x. P \qquad x \in \mathcal{V}
\mid P \land P \mid P \lor P \mid P \Rightarrow P
\mid s = t \qquad t,s \text{ some terms}
\mid p \qquad p \in \mathcal{V}_f
\mid \mu(\lambda p.\lambda x_1....\lambda x_n. P) t_1...t_n \quad p \in \mathcal{V}_f, t_i \text{ a term}
\mid \nu(\lambda p.\lambda x_1....\lambda x_n. P) t_1...t_n \quad p \in \mathcal{V}_f, t_i \text{ a term}
```

μ LK

Definition (Formula of μ LK)

$$P ::= T \mid \bot$$

$$\mid \exists x. P \mid \forall x. P \qquad x \in \mathcal{V}$$

$$\mid P \land P \mid P \lor P \mid P \Rightarrow P$$

$$\mid s = t \qquad t,s \text{ some terms}$$

$$\mid p \qquad p \in \mathcal{V}_f$$

$$\mid \mu(\lambda p.\lambda x_1....\lambda x_n. P) t_1...t_n \quad p \in \mathcal{V}_f, \ t_i \text{ a term}$$

$$\mid \nu(\lambda p.\lambda x_1....\lambda x_n. P) t_1...t_n \quad p \in \mathcal{V}_f, \ t_i \text{ a term}$$

$$N = \mu B_{\text{nat}} = \mu (\lambda p_{\text{n}} . \lambda x. \ x = 0 \lor (\exists y \ x = s(y) \land p_{\text{n}} \ y))$$

$$S = \nu B_{\text{stream}} = \nu (\lambda p_{\text{s}} . \lambda w. \ \exists w' \exists n \ w = n : w' \land N \ n \land p_{\text{s}} \ w')$$

Rules of μ LK

Sequent calculus:

- identity group: Ax, cut, = R, = L;
- logical group: \top , \bot , $\land L_i$, $\land R$, $\lor L$, $\lor R_i$, $\Rightarrow L$, $\Rightarrow R$, $\forall L$, $\forall R$, $\exists L$, $\exists R$;
- structural group: WL,WR (weak), Cl,CR (contraction).

Rules of μ LK

Sequent calculus:

- identity group: Ax, cut, = R, = L;
- logical group: \top , \bot , $\land L_i$, $\land R$, $\lor L$, $\lor R_i$, $\Rightarrow L$, $\Rightarrow R$, $\forall L$, $\forall R$, $\exists L$, $\exists R$;
- structural group: WL,WR (weak), Cl,CR (contraction).
- + explicit (co)-induction:

$$\frac{\Gamma \vdash B(\mu B) \mathbf{t}}{\Gamma \vdash \mu B \mathbf{t}} \mu R \qquad \frac{\Gamma, \ S \ \mathbf{t} \vdash P \quad BS \ \mathbf{x} \vdash S \ \mathbf{x}}{\Gamma, \ \mu B \ \mathbf{t} \vdash P} \mu L$$

$$\frac{\Gamma \vdash S \mathbf{t} \quad S \mathbf{t} \vdash BS \mathbf{t}}{\Gamma \vdash \nu B \ \mathbf{t}} \nu R \qquad \frac{\Gamma, \ B(\nu B) \ \mathbf{t} \vdash P}{\Gamma, \ \nu B \ \mathbf{t} \vdash P} \nu L$$

$$\frac{\Gamma \vdash B(\mu B) \mathbf{t}}{\Gamma \vdash \mu B \mathbf{t}} \mu R \qquad \frac{\Gamma, \ S \mathbf{t} \vdash P \quad BS \mathbf{x} \vdash S \mathbf{x}}{\Gamma, \ \mu B \mathbf{t} \vdash P} \mu L$$

$$\frac{\frac{\Phi_0 \text{ or } \Phi_n}{\Gamma \vdash t = 0 \lor \exists y \ t = s(y) \land \mu B_{\text{nat}} \ y}}{\Gamma \vdash \mu B_{\text{nat}} \ t} \mu R$$

$$-\mu$$
LK

$$\frac{\Gamma \vdash B(\mu B) \mathbf{t}}{\Gamma \vdash \mu B \mathbf{t}} \mu R \qquad \frac{\Gamma, \ S \mathbf{t} \vdash P \quad BS \mathbf{x} \vdash S \mathbf{x}}{\Gamma, \ \mu B \mathbf{t} \vdash P} \mu L$$

$$\frac{\frac{\Phi_0 \text{ or } \Phi_n}{\Gamma \vdash t = 0 \lor \exists y \ t = s(y) \land \mu B_{\text{nat}} \ y}}{\Gamma \vdash \mu B_{\text{nat}} \ t} \mu R$$

$$\frac{\prod \frac{\prod}{S \ t + P} \quad \frac{\frac{\Psi_0}{\vdash S \ 0} \quad \frac{\Psi_n}{S \ x \vdash S \ (s(x))}}{x = 0 \lor \exists y \ x = s(y) \land S \ y \vdash S \ x} \underset{\mu B_{\text{nat}}}{\lor L, (\exists L), = L}$$

$$\frac{\Gamma \vdash St \quad St \vdash BSt}{\Gamma \vdash \nu B \ t} \ \nu R \qquad \frac{\Gamma, \ B(\nu B) \ t \vdash P}{\Gamma, \ \nu B \ t \vdash P} \ \nu L$$

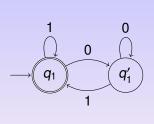
$$\frac{\overline{\Gamma \vdash S t} \quad \overline{\exists t' \exists n \ t = n : t' \land N \ n \land S \ t' \vdash S \ t}}{\Gamma \vdash \nu B_{\text{stream}} \ t} \ \nu R$$

$$-\mu$$
LK

$$\frac{\Gamma \vdash St \quad St \vdash BSt}{\Gamma \vdash \nu B \ t} \ \nu R \qquad \frac{\Gamma, \ B(\nu B) \ t \vdash P}{\Gamma, \ \nu B \ t \vdash P} \ \nu L$$

$$\frac{\overline{\Gamma \vdash S t} \quad \overline{\exists t' \exists n \ t = n : t' \land N \ n \land S \ t' \vdash S \ t}}{\Gamma \vdash \nu B_{\text{stream}} \ t} \ \nu R$$

$$\frac{t = n :: t' \wedge \nu B_{\text{stream}} t'}{\nu B_{\text{stream}} t + P} \nu L$$



```
[q_{1}] = \nu(\lambda q_{1}.\lambda w. \exists w' 
 (w = 1 :: w' \land q_{1} w') \lor 
 (w = 0 :: w' \land [q'_{1}] w') 
) 
[q'_{1}] = \mu(\lambda q'_{1}.\lambda w. \exists w' 
 (w = 1 :: w' \land [q_{1}] w') \lor 
 (w = 0 :: w' \land q'_{1} w') 
)
```

$$\frac{\text{Which S? Why?}}{\vdash_{\mu L K} [q_1] 1^{\omega}} \nu R$$

```
[q_{1}] = \nu(\lambda q_{1}.\lambda w. \exists w' 
 (w = 1 :: w' \land q_{1} w') \lor 
 (w = 0 :: w' \land [q'_{1}] w') 
) 
[q'_{1}] = \mu(\lambda q'_{1}.\lambda w. \exists w' 
 (w = 1 :: w' \land [q_{1}] w') \lor 
 (w = 0 :: w' \land q'_{1} w') 
)
```

$$rac{\mathsf{Which}\;\mathsf{S?}\;\mathsf{Why?}}{\vdash_{\mu\mathsf{LK}}[q_1]\;\mathsf{1}^\omega}\;
u R$$

$$[q_{1}] = \nu(\lambda q_{1}.\lambda w. \exists w' (w = 1 :: w' \land q_{1} w') \lor (w = 0 :: w' \land [q'_{1}] w')) [q'_{1}] = \mu(\lambda q'_{1}.\lambda w. \exists w' (w = 1 :: w' \land [q_{1}] w') \lor (w = 0 :: w' \land q'_{1} w'))$$

$$\frac{ \frac{ \vdash_{?} [q_{1}] \ 1^{\omega} }{ \vdash_{?} \exists w' \ (1^{\omega} = 1 :: w' \land [q_{1}] \ w') \lor \left(1^{\omega} = 0 :: w' \land [q'_{1}] \ w'\right) }{ \vdash_{?} [q_{1}] \ 1^{\omega} } \ \frac{\exists R, \lor R_{2}}{ vR'}$$

$$-\mu$$
LK

$$[q_{1}] = \nu(\lambda q_{1}.\lambda w. \exists w')$$

$$(w = 1 :: w' \land q_{1} w') \lor$$

$$(w = 0 :: w' \land [q'_{1}] w')$$

$$[q'_{1}] = \mu(\lambda q'_{1}.\lambda w. \exists w')$$

$$(w = 1 :: w' \land [q_{1}] w') \lor$$

$$(w = 1 :: w' \land [q_{1}] w') \lor$$

$$(w = 0 :: w' \land q'_{1} w')$$

$$)$$

$$\frac{}{\vdash_{?} \exists w' \ (1^{\omega} = 1 :: w' \land [q_{1}] w') \lor (1^{\omega} = 0 :: w' \land [q'_{1}] w')}$$

$$\vdash_{?} [q_{1}] 1^{\omega} : \alpha$$

$$\vdash_{?} [q_{1}] 1^{\omega} : \alpha$$

$$\vdash_{?} [q_{1}] 1^{\omega} : \alpha$$

$$[q_{1}] = \nu(\lambda q_{1}.\lambda w. \exists w' \\ (w = 1 :: w' \land q_{1} w') \lor \\ (w = 0 :: w' \land [q'_{1}] w')$$

$$[q'_{1}] = \mu(\lambda q'_{1}.\lambda w. \exists w' \\ (w = 1 :: w' \land [q_{1}] w') \lor \\ (w = 1 :: w' \land [q_{1}] w') \lor \\ (w = 0 :: w' \land q'_{1} w')$$

$$[w = 0 :: w' \land q'_{1} w')$$

$$[w = 0 :: w' \land [q'_{1}] w')$$

 $\vdash_2 [q_1] 1^\omega : \alpha$

Outline

- 1 Introduction
- 2 Büchi Automata
- **3** μLK
- Conclusion

$$\perp_{\mu LK^{\omega}}$$
 and μLK^{∞}

Explicit (co)-induction rules \rightarrow replaced by some cycles or infinite branches.

$$\mu$$
LK $^{\omega}$ and μ LK $^{\infty}$

Explicit (co)-induction rules → replaced by some cycles or infinite branches.

$$\mu B_{\text{even}} = \mu \left(\lambda p_n . \lambda x. \ x = 0 \lor (\exists y \ x = s(s(y)) \land p_n \ y) \right)$$

$$\frac{\overline{\mu B_{\text{even}} \ t' \vdash \mu B_{\text{nat}} \ (s(s(t')))}}{t = s(s(t')) \land \mu B_{\text{even}} \ t' \vdash \mu B_{\text{nat}} \ t} \mu L'$$

Explicit (co)-induction rules → replaced by some cycles or infinite branches.

$$\mu B_{\text{even}} = \mu \left(\lambda p_{n} . \lambda x. \ x = 0 \lor \left(\exists y \ x = s(s(y)) \land p_{n} \ y \right) \right)$$

$$\frac{\mu B_{\text{even}} \ t' \vdash \mu B_{\text{nat}} \ t'}{\mu B_{\text{even}} \ t' \vdash \mu B_{\text{nat}} \ (s(t'))}$$

$$\frac{\mu B_{\text{even}} \ t' \vdash \mu B_{\text{nat}} \ (s(s(t')))}{\mu B_{\text{even}} \ t' \vdash \mu B_{\text{nat}} \ t}$$

$$\frac{t = 0 \vdash \mu B_{\text{nat}} \ t}{\mu B_{\text{even}} \ t \vdash \mu B_{\text{nat}} \ t} \mu L'$$

Explicit (co)-induction rules → replaced by some cycles or infinite branches.

$$\mu B_{\text{even}} = \mu \left(\lambda p_n . \lambda x. \ x = 0 \lor \left(\exists y \ x = s(s(y)) \land p_n \ y \right) \right)$$

$$\frac{\frac{\uparrow \alpha}{\mu B_{\text{even}} \ t' \vdash \mu B_{\text{nat}} \ t'}}{\frac{\mu B_{\text{even}} \ t' \vdash \mu B_{\text{nat}} \ (s(t'))}{\mu B_{\text{even}} \ t' \vdash \mu B_{\text{nat}} \ (s(s(t')))}}$$

$$\frac{1}{t = 0 \vdash \mu B_{\text{nat}} \ t} \frac{1}{t = s(s(t')) \land \mu B_{\text{even}} \ t' \vdash \mu B_{\text{nat}} \ t}}{\mu B_{\text{even}} \ t \vdash \mu B_{\text{nat}} \ t} \frac{\mu L'}{\mu L'}$$

```
∟µLK<sup>ω</sup> and µLK<sup>∞</sup>
□ Guard Condition
```

Guard Condition

Litterature:

Brotherstone: No co-inductive formula; "infinite descent"; [Bro06]

```
∟µLK<sup>ω</sup> and µLK<sup>∞</sup>
□ Guard Condition
```

Guard Condition

Litterature:

- Brotherstone: No co-inductive formula; "infinite descent"; [Bro06]
- Santocanale: No cut rule; inductive and co-inductive formula; [San02]

```
∟µLK<sup>ω</sup> and µLK<sup>∞</sup>
□ Guard Condition
```

Guard Condition

Litterature:

- Brotherstone: No co-inductive formula; "infinite descent"; [Bro06]
- Santocanale: No cut rule; inductive and co-inductive formula; [San02]

First bug

$$P = \mu(\lambda p. \nu(\lambda q. p))$$

$$Q = \nu(\lambda q. P)$$

$$\frac{\frac{|\alpha|}{P} \mu R}{|P| \mu R} \frac{|\gamma|}{|P| \mu L} \nu L$$

$$\frac{|P|}{P| \mu R} \mu R \frac{|\gamma|}{|P| \mu L} \nu L$$

$$\frac{|P|}{|P| \mu L} \nu L$$

$$\frac{|P|}{|P| \mu L} \nu L$$

$$\frac{|P|}{|P| \mu L} \nu L$$

```
∟µLK<sup>ω</sup> and µLK<sup>∞</sup>
□ Guard Condition
```

Guard Condition - interleaved (co)-inductive formulas

First bug

$$P = \mu(\lambda p. \ \nu(\lambda q. \ p))$$

$$Q = \nu(\lambda q. \ P)$$

$$\frac{\frac{P}{P} \mu R}{\frac{P}{P} \mu R} \frac{\frac{\uparrow \tau}{P + \bot}}{\frac{P}{P} \mu R} \frac{\nu L}{\frac{Q}{P} + \bot} \frac{\nu L}{\nu L}$$

$$\frac{P}{P} \mu R} \frac{\frac{P}{P} \mu L}{\frac{Q}{P} + \bot} \frac{\nu L}{\nu L}$$

Fix

$$\begin{array}{ccc}
P & =_{\mu} & Q \\
Q & =_{\nu} & P
\end{array} \qquad P > Q$$

```
\muLK^{\omega} and \muLK^{\infty}
```

Guard Condition - interleaved (co)-inductive formulas

First bug

$$P = \mu(\lambda p. \nu(\lambda q. p))$$

$$Q = \nu(\lambda q. P)$$

$$\frac{P = \mu(\lambda p. \nu(\lambda q. p))}{P + \mu P} \mu R$$

$$\frac{P + \mu}{P + \mu} \mu R$$

Fix

$$P =_{\mu} Q$$

$$Q =_{\nu} P$$

$$P > Q$$

$$\frac{\frac{\vdash Q}{\vdash P} \mu R_{P}}{\vdash Q : \alpha} \frac{\overline{P \vdash \bot}}{\mu R_{P}} \nu L_{Q}$$

$$\frac{P \vdash \bot}{P \vdash \bot : \tau} \nu L_{Q}$$

$$\frac{\vdash Q}{\vdash P} \mu R_{P}$$

$$\frac{P \vdash \bot}{P \vdash \bot : \tau} \nu L_{Q}$$

$$\frac{\vdash Q}{\vdash P} \mu R_{P}$$

$$\frac{P \vdash \bot}{P \vdash \bot : \tau} \nu L_{Q}$$

$$\frac{\vdash Q}{\vdash P} \mu R_{P}$$

$$\frac{P \vdash \bot}{P \vdash \bot} \nu L_{Q}$$

$$\frac{\vdash Q}{\vdash P} \mu R_{P}$$

$$\frac{\vdash Q}{\vdash Q} \vdash \frac{\vdash Q}{\vdash Q} \mu R_{P}$$

$$\frac{\vdash Q}{\vdash Q} \vdash \frac{\vdash Q}{\vdash Q} \vdash \frac{\vdash Q}{\vdash Q} \mu R_{P}$$

$$\frac{\vdash Q}{\vdash Q} \vdash \frac{\vdash Q}{$$

```
\muLK^{\omega} and \muLK^{\infty}
```

Guard Condition - interleaved (co)-inductive formulas

First bug

$$P = \mu(\lambda p. \nu(\lambda q. p))$$

$$Q = \nu(\lambda q. P)$$

$$\frac{P = \mu(\lambda p. \nu(\lambda q. p))}{P = P}$$

$$\frac{P = \mu(\lambda p. \nu(\lambda q. p))}{P = P}$$

$$\frac{\frac{\frac{1}{P} \alpha}{\frac{1}{P} \mu R}}{\frac{1}{P} \alpha \frac{1}{\mu R}} \frac{\frac{\uparrow \tau}{P + \bot}}{\frac{Q + \bot}{P + \bot} \nu L} \nu L$$

$$\frac{\frac{1}{P} \alpha}{\frac{1}{P} \mu R} \frac{\mu L}{\frac{P}{P} + \bot} \nu L \cot \theta$$

Fix

$$P =_{\mu} Q$$
 $Q =_{\nu} P$
 $P > Q$

$$\frac{\frac{\vdash Q}{\vdash P} \mu R_{P}}{\frac{\vdash Q : \alpha}{\vdash P} \mu R_{P}} \frac{\frac{\uparrow \tau}{P \vdash \bot}}{\frac{Q \vdash \bot}{P \vdash \bot} \nu L_{Q}} \frac{}{\mu L_{P}}$$

$$\frac{\vdash P}{\vdash \bot} \text{ cut}$$

"Definition": table of (co)-induction

$$(Q, \epsilon, \geq, <)$$

- Q: names of (co)-inductive formulas (defined atoms);
- \bullet ϵ : $Q \rightarrow \{\mu; \nu\}$;
- $P \succeq A$: A is the unfolding of $P \in Q$;
- <: Who is on the top of who?</p>

"Definition": table of (co)-induction

$$(Q, \epsilon, \geq, <)$$

- Q: names of (co)-inductive formulas (defined atoms);
- \bullet ϵ : $Q \rightarrow \{\mu; \nu\}$;
- $P \succeq A$: A is the unfolding of $P \in Q$;
- <: Who is on the top of who?</p>

Second bug

Nat
$$\trianglerighteq$$
 B_{nat} Nat $\epsilon(\text{Nat}) = \mu$
 $B_{\text{nat}} = \lambda p_n. \ \lambda n. \ n = 0 \lor \exists n' \ n = s(n') \land p_n \ n'$

$$\frac{}{\text{Nat } t \vdash \bot : \alpha} \mu \mathsf{L}$$

"Definition": table of (co)-induction

$$(Q, \epsilon, \succeq, <)$$

- Q: names of (co)-inductive formulas (defined atoms);
- $\bullet \in : Q \to \{\mu; \nu\};$
- $P \succeq A$: A is the unfolding of $P \in Q$;
- <: Who is on the top of who?</p>

Second bug

Nat
$$\trianglerighteq$$
 B_{nat} Nat $\epsilon(\text{Nat}) = \mu$

$$B_{\text{nat}} = \lambda p_n. \ \lambda n. \ n = 0 \lor \exists n' \ n = s(n') \land p_n \ n'$$

$$\frac{\overline{B_{\text{nat}} \text{ Nat } t \vdash B_{\text{nat}} \text{ Nat } t}}{B_{\text{nat}} \text{ Nat } t \vdash \text{Nat } t} \ \frac{Ax}{\mu R} \ \frac{\uparrow \alpha}{\text{Nat } t \vdash \bot} \ cut$$

$$\frac{B_{\text{nat}} \text{ Nat } t \vdash \bot}{\text{Nat } t \vdash \bot} \ \frac{B_{\text{nat}} \text{ Nat } t \vdash \bot}{\text{Nat } t \vdash \bot} \ \epsilon ut$$

Guard Condition - observation

```
\frac{\frac{\uparrow \alpha}{s_5 : \text{Even } t' + \text{Nat } t'}}{\frac{s_4 : \text{Even } t' + \text{Nat } (s(t'))}{s_3 : \text{Even } t' + \text{Nat } (s(s(t')))}}
\frac{t = 0 + \text{Nat } t}{s_2 : t = s(s(t')) \land \text{Even } t' + \text{Nat } t} \mu L
\frac{\downarrow \alpha}{s_3 : \text{Even } t' + \text{Nat } t : \alpha}
```

Guard Condition - observation

```
\frac{\frac{}{s_5 : \text{Even } t' \vdash \text{Nat } t'}{}}{\frac{s_4 : \text{Even } t' \vdash \text{Nat } (s(t'))}{s_3 : \text{Even } t' \vdash \text{Nat } (s(s(t')))}} 
\frac{}{s_3 : \text{Even } t' \vdash \text{Nat } (s(s(t')))} 
\frac{}{s_2 : t = s(s(t')) \land \text{Even } t' \vdash \text{Nat } t}}{s_1 : (A =) \text{Even } t \vdash \text{Nat } t : \alpha} 
\mu L
```

Guard Condition - observation

```
\frac{\frac{\uparrow \alpha}{s_5 : \text{Even } t' \vdash \text{Nat } t'}}{\frac{s_4 : \text{Even } t' \vdash \text{Nat } (s(t'))}{s_3 : \text{Even } t' \vdash \text{Nat } (s(s(t')))}} O_A(\alpha) = \frac{1}{s_3 : \text{Even } t' \vdash \text{Nat } (s(s(t')))} O_A(\alpha) = \frac{1}{s_3 : \text{Even } t' \vdash \text{Nat } t} O_A(\alpha) = \frac{1}{s_3 : \text{Even } t' \vdash \text{Nat } t} O_A(\alpha) = \frac{1}{s_3 : \text{Even } t' \vdash \text{Nat } t} O_A(\alpha) = \frac{1}{s_3 : \text{Even } t' \vdash \text{Nat } t} O_A(\alpha) = \frac{1}{s_3 : \text{Even } t' \vdash \text{Nat } t} O_A(\alpha) = \frac{1}{s_3 : \text{Even } t' \vdash \text{Nat } t} O_A(\alpha) = \frac{1}{s_3 : \text{Even } t' \vdash \text{Nat } t} O_A(\alpha) = \frac{1}{s_3 : \text{Even } t' \vdash \text{Nat } t} O_A(\alpha) = \frac{1}{s_3 : \text{Even } t' \vdash \text{Nat } t} O_A(\alpha) = \frac{1}{s_3 : \text{Even } t' \vdash \text{Nat } t} O_A(\alpha) = \frac{1}{s_3 : \text{Even } t' \vdash \text{Nat } t} O_A(\alpha) = \frac{1}{s_3 : \text{Even } t' \vdash \text{Nat } t} O_A(\alpha) = \frac{1}{s_3 : \text{Even } t' \vdash \text{Nat } t} O_A(\alpha) = \frac{1}{s_3 : \text{Even } t' \vdash \text{Nat } t} O_A(\alpha) = \frac{1}{s_3 : \text{Even } t' \vdash \text{Nat } t} O_A(\alpha) = \frac{1}{s_3 : \text{Even } t' \vdash \text{Nat } t} O_A(\alpha) = \frac{1}{s_3 : \text{Even } t' \vdash \text{Nat } t} O_A(\alpha) = \frac{1}{s_3 : \text{Even } t' \vdash \text{Nat } t} O_A(\alpha) = \frac{1}{s_3 : \text{Even } t' \vdash \text{Nat } t} O_A(\alpha) = \frac{1}{s_3 : \text{Even } t' \vdash \text{Nat } t} O_A(\alpha) = \frac{1}{s_3 : \text{Even } t' \vdash \text{Nat } t} O_A(\alpha) = \frac{1}{s_3 : \text{Even } t' \vdash \text{Nat } t} O_A(\alpha) = \frac{1}{s_3 : \text{Even } t' \vdash \text{Nat } t} O_A(\alpha) = \frac{1}{s_3 : \text{Even } t' \vdash \text{Nat } t} O_A(\alpha) = \frac{1}{s_3 : \text{Even } t' \vdash \text{Nat } t} O_A(\alpha) = \frac{1}{s_3 : \text{Even } t' \vdash \text{Nat } t} O_A(\alpha) = \frac{1}{s_3 : \text{Even } t' \vdash \text{Nat } t} O_A(\alpha) = \frac{1}{s_3 : \text{Even } t' \vdash \text{Nat } t} O_A(\alpha) = \frac{1}{s_3 : \text{Even } t' \vdash \text{Nat } t} O_A(\alpha) = \frac{1}{s_3 : \text{Even } t' \vdash \text{Nat } t} O_A(\alpha) = \frac{1}{s_3 : \text{Even } t' \vdash \text{Nat } t} O_A(\alpha) = \frac{1}{s_3 : \text{Even } t' \vdash \text{Nat } t} O_A(\alpha) = \frac{1}{s_3 : \text{Even } t' \vdash \text{Nat } t} O_A(\alpha) = \frac{1}{s_3 : \text{Even } t' \vdash \text{Nat } t} O_A(\alpha) = \frac{1}{s_3 : \text{Even } t' \vdash \text{Nat } t} O_A(\alpha) = \frac{1}{s_3 : \text{Even } t' \vdash \text{Nat } t} O_A(\alpha) = \frac{1}{s_3 : \text{Even } t' \vdash \text{Nat } t} O_A(\alpha) = \frac{1}{s_3 : \text{Even } t' \vdash \text{Nat } t} O_A(\alpha) = \frac{1}{s_3 : \text{Even } t' \vdash \text{Nat } t} O_A(\alpha) = \frac{1}{s_3 : \text{Even } t' \vdash \text{Nat } t} O_A(\alpha) = \frac{1}{s_3 : \text{Even } t' \vdash \text{Nat } t} O_A(\alpha) = \frac{1}{s_3 : \text{E
```

"Definition": Observations

- The trace of $A \in s_0$ in the branch $s_0, s_1, ...$ is a serie of formulas $A_0, A_1, ...$ such that:
 - $A_i \in s_i$ (on the same side);
 - if A_i is active in the conclusion s_i then A_{i+1} is active in the premise of s_{i+1} .
- The observation of a formula in a branch is the serie of (r, A) where r is a (co)-inductive rules applied to A appearing in the trace.

```
∟µLK<sup>ω</sup> and µLK<sup>∞</sup>
□ Guard Condition
```

$$\frac{\frac{B_{\text{nat}} \text{ Nat } t \vdash B_{\text{nat}} \text{ Nat } t}{B_{\text{nat}} \text{ Nat } t \vdash \text{ Nat } t} \overset{Ax}{\mu R} \frac{Ax}{\text{Nat } t \vdash \text{Nat } t}}{\frac{B_{\text{nat}} \text{ Nat } t \vdash \bot}{\text{Nat } t \vdash \bot} \overset{\mu L}{\mu}} cut$$

```
∟µLK<sup>ω</sup> and µLK<sup>∞</sup>
□ Guard Condition
```

$$\frac{\overline{B_{\text{nat}} \text{ Nat } t \vdash B_{\text{nat}} \text{ Nat } t}}{\underline{B_{\text{nat}} \text{ Nat } t \vdash \text{ Nat } t}} \xrightarrow{Ax} \underbrace{\frac{Ax}{\text{Nat } t \vdash \text{Nat } t}}_{\text{Nat } t \vdash \text{ Nat } t} \text{ cut}$$

$$\frac{B_{\text{nat}} \text{ Nat } t \vdash B_{\text{nat}} \text{ Nat } t}{B_{\text{nat}} \text{ Nat } t \vdash \text{ Nat } t} \xrightarrow{\mu R} \frac{\Delta x}{\text{Nat } t \vdash \text{Nat } t} cut$$

$$\frac{B_{\text{nat}} \text{ Nat } t \vdash \bot}{\text{Nat } t \vdash \bot} \xrightarrow{\mu L}$$

"Definition": Refinement of Guard Condition

A proof is valid \iff each infinite brach is either inductive or co-inductive.

• inductive branch: there is an observation o on the left such that that $\epsilon \left(\max_{(r,n) \in Inf(o)} \{n\} \right) = \mu$;

$$\frac{\overline{B_{\text{nat}} \text{ Nat } t \vdash B_{\text{nat}} \text{ Nat } t}}{\underline{B_{\text{nat}} \text{ Nat } t \vdash \text{ Nat } t}} \underbrace{\frac{Ax}{\mu R}} \underbrace{\frac{\Delta x}{\text{Nat } t \vdash \text{ Nat } t}}_{\text{Nat } t \vdash \text{ Nat } t} cut$$

"Definition": Refinement of Guard Condition

A proof is valid \iff each infinite brach is either inductive or co-inductive.

- inductive branch: there is an observation o on the left such that that $\epsilon \left(\max_{(r,n) \in Inf(o)} \{n\} \right) = \mu$;
- co-inductive branch: there is an observation o on the right such that that $\epsilon \left(\max_{(r,n) \in Inf(o)} \{n\} \right) = \nu$.

```
\muLK^{\omega} and \muLK^{\infty}
```

$$\mu\mathsf{LK}^{\infty}$$

 Bijection between observations of [q] t and runs starting with q;

```
\muLK\omega and \muLK\omega
```


- Bijection between observations of [q] t and runs starting with q;
- completeness and soundness of acceptance;

```
∟µLK<sup>ω</sup> and µLK<sup>∞</sup>
□ Guard Condition
```


- Bijection between observations of [q] t and runs starting with q;
- completeness and soundness of acceptance;
- completeness and soundness of inclusion.

```
∟µLK<sup>ω</sup> and µLK<sup>∞</sup>
□ Guard Condition
```

"Definition": Refinement of Guard Condition

A proof is valid \iff each cycle is either inductive or co-inductive.

• inductive cycle: there is an observation o on the left such that that $\epsilon \left(\max_{(r,n) \in o} \{n\} \right) = \mu$;

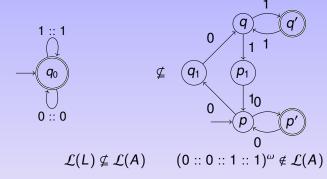
```
∟µLK<sup>ω</sup> and µLK<sup>∞</sup>
□ Guard Condition
```

"Definition": Refinement of Guard Condition

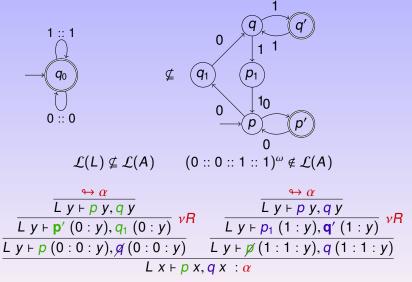
A proof is valid \iff each cycle is either inductive or co-inductive.

- inductive cycle: there is an observation o on the left such that that $\epsilon \left(\max_{(r,n) \in o} \{n\} \right) = \mu$;
- co-inductive cycle: there is an observation o on the right such that that $\epsilon \left(\max_{(r,n) \in o} \{n\} \right) = v$.

Unexpected bug

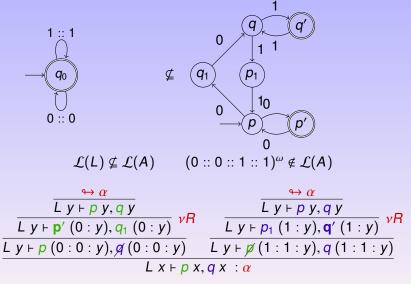


Unexpected bug



Validity condition holds but does not respect the Büchi automata semantics.

Unexpected bug



Validity condition holds but does not respect the Büchi automata semantics. Traces are broken.

```
∟µLK<sup>ω</sup> and µLK<sup>∞</sup>
□ Guard Condition
```

A few counter-examples later

"Definition": Refinement² of Guard Condition

A proof is $valid \iff each cycle is either inductive or co-inductive.$

- inductive cycle: there is an observation $o = o_1, o_2, \dots o_p$ on the left such that:
 - $o_1 = o_p$;
 - $\max_{(r,n)\in o} \{n\} = n_1 \text{ and } \epsilon(n_1) = \mu;$
- co-inductive cycle: there is an observation $o = o_1, o_2, \dots o_p$ on the right such that:
 - $o_1 = o_p$;
 - $\max_{(r,n)\in o} \{n\} = n_1 \text{ and } \epsilon(n_1) = \nu.$

Conclusion

Outline

- 1 Introduction
- 2 Büchi Automata
- **3** μLK
- $_{\mu}$ LK^ω and $_{\mu}$ LK[∞]
- 6 Conclusion

- Conclusion

$$\mu \mathsf{L} \mathsf{K} = \mu \mathsf{L} \mathsf{K}^{\omega} \subseteq \mu \mathsf{L} \mathsf{K}^{\infty}$$

• New logic μLK^{ω} and μLK^{∞} supporting mutual inductive and coinductive definitions with implicit (co)induction;

$$\mu \mathsf{L} \mathsf{K} = \mu \mathsf{L} \mathsf{K}^{\omega} \subseteq \mu \mathsf{L} \mathsf{K}^{\infty}$$

- New logic μLK^{ω} and μLK^{∞} supporting mutual inductive and coinductive definitions with implicit (co)induction;
- 2 they are strongly related with μ LK: we can translate back and forth between μ LK proofs and cyclic proofs;

$$\mu \mathsf{L} \mathsf{K} = \mu \mathsf{L} \mathsf{K}^{\omega} \subseteq \mu \mathsf{L} \mathsf{K}^{\infty}$$

- New logic μLK^{ω} and μLK^{∞} supporting mutual inductive and coinductive definitions with implicit (co)induction;
- 2 they are strongly related with μ LK: we can translate back and forth between μ LK proofs and cyclic proofs;
- they mirror closely the mathematical structure of Büchi automata and their computations: adequacy;

$$\mu \mathsf{L} \mathsf{K} = \mu \mathsf{L} \mathsf{K}^{\omega} \subseteq \mu \mathsf{L} \mathsf{K}^{\infty}$$

- New logic μLK^{ω} and μLK^{∞} supporting mutual inductive and coinductive definitions with implicit (co)induction;
- 2 they are strongly related with μ LK: we can translate back and forth between μ LK proofs and cyclic proofs;
- they mirror closely the mathematical structure of Büchi automata and their computations: adequacy;
- soundness and completeness of Büchi acceptance and inclusion;

$$\mu \mathsf{L} \mathsf{K} = \mu \mathsf{L} \mathsf{K}^{\omega} \subseteq \mu \mathsf{L} \mathsf{K}^{\infty}$$

- New logic μLK^{ω} and μLK^{∞} supporting mutual inductive and coinductive definitions with implicit (co)induction;
- 2 they are strongly related with μ LK: we can translate back and forth between μ LK proofs and cyclic proofs;
- they mirror closely the mathematical structure of Büchi automata and their computations: adequacy;
- soundness and completeness of Büchi acceptance and inclusion;
- first result for cut-elimination of infinite proofs.

Conclusion

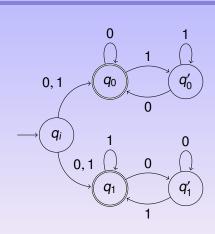
The End

Thanks for listening!

References I

- [Bro06] James Brotherston. Sequent Calculus Proof Systems for Inductive Definitions. PhD thesis, University of Edinburgh, November 2006.
- [San02] Luigi Santocanale. A calculus of circular proofs and its categorical semantics. In *Proceedings of Foundations of Software Science and Computation Structures (FOSSACS02)*, number 2303 in LNCS, pages 357–371. Springer, January 2002.

Nondeterministic



$$\mathcal{L}(\mathcal{A}_1) = (0|1)^{\omega}$$

$$\mathcal{L}(\mathcal{A}_2) = (0|1)^{\omega}$$

Encoding

Encoding of $\mathcal{A} = (Q, \Sigma, \delta, Q_I, Q_F)$:

$$[\mathcal{A}] = \lambda w. \bigvee_{q \in Q_I} [q]^{\varnothing} w$$

$$[q]^{\gamma} = \begin{cases} q & \text{if } q \in \gamma \\ \mu \left(\lambda q. \lambda w. \exists w' \bigvee_{q' \in \delta(q,\alpha), \ \alpha \in \Sigma} w = \alpha \cdot w' \wedge [q']^{\gamma \cup \{q\}} \ w' \right) & \text{if } q \in Q_F \\ \nu \left(\lambda q. \lambda w. \exists w' \bigvee_{q' \in \delta(q,\alpha), \ \alpha \in \Sigma} w = \alpha \cdot w' \wedge [q']^{\gamma \cup \{q\}} \ w' \right) & \text{else} \end{cases}$$

Adequacy

• $w \in \mathcal{L}(\mathcal{A}) \iff \vdash ||\mathcal{A}|| \lfloor w \rfloor$: The proof tries all the possible runs in parallel.

```
- Adequacy
```

Adequacy

- $w \in \mathcal{L}(\mathcal{A}) \iff \vdash ||\mathcal{A}|| \lfloor w \rfloor$: The proof tries all the possible runs in parallel.
 - $w \in \mathcal{L}(\mathcal{A}) \iff$ there is at least one accepted run \iff there is at least on valid observation $\iff ||\mathcal{A}|| ||w||$ is provable;
- There is a bijection between the runs and the observations of the proof ⊢ || ℋ|| [w].

$$\mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2) \Rightarrow ||A_1||x \vdash ||A_2||x:$$
• We prove the inclusion in μLK^{∞} :

$$||A_1||x \vdash ||A_2||x \Rightarrow \mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2)$$
:

$$\mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2) \Rightarrow ||A_1||x + ||A_2||x|$$

- We prove the inclusion in μLK^{∞} :
 - on the right we test all the runs in \mathcal{A}_2 in parallel;

 $||A_1||x \vdash ||A_2||x \Rightarrow \mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2)$:

$$\mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2) \Rightarrow ||A_1||x + ||A_2||x$$
:

- We prove the inclusion in μLK^{∞} :
 - on the right we test all the runs in \mathcal{A}_2 in parallel;
 - on the left we branch at each disjunction: each infinite branch denotes a run in \mathcal{A}_1 ;

$$||A_1||x + ||A_2||x \Rightarrow \mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2)$$
:

$$\mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2) \Rightarrow ||A_1||x \vdash ||A_2||x$$
:

- We prove the inclusion in $\mu L K^{\infty}$:
 - on the right we test all the runs in \mathcal{A}_2 in parallel;
 - on the left we branch at each disjunction: each infinite branch denotes a run in \mathcal{A}_1 ;
 - for each branch of the proof:

$$||A_1||x \vdash ||A_2||x \Rightarrow \mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2)$$
:

$$\mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2) \Rightarrow ||A_1||x \vdash ||A_2||x$$
:

- We prove the inclusion in $\mu L K^{\infty}$:
 - on the right we test all the runs in \mathcal{A}_2 in parallel;
 - on the left we branch at each disjunction: each infinite branch denotes a run in \mathcal{A}_1 ;
 - for each branch of the proof:
 - if the run on the left is valid, then the word is in $\mathcal{L}(\mathcal{A}_1)$ so is in $\mathcal{L}(\mathcal{A}_2)$. Then one of the run on the right is valid;

$$||A_1||x \vdash ||A_2||x \Rightarrow \mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2)$$
:

$$\mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2) \Rightarrow ||A_1||x \vdash ||A_2||x$$
:

- We prove the inclusion in $\mu L K^{\infty}$:
 - on the right we test all the runs in \mathcal{A}_2 in parallel;
 - on the left we branch at each disjunction: each infinite branch denotes a run in \mathcal{A}_1 ;
 - for each branch of the proof:
 - if the run on the left is valid, then the word is in $\mathcal{L}(\mathcal{A}_1)$ so is in $\mathcal{L}(\mathcal{A}_2)$. Then one of the run on the right is valid;
 - else the observation of $\|\mathcal{A}_1\|$ in this branch is valid.

$$||A_1||x + ||A_2||x \Rightarrow \mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2)$$
:

$$\mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2) \Rightarrow ||A_1||x \vdash ||A_2||x$$
:

- We prove the inclusion in $\mu L K^{\infty}$:
 - on the right we test all the runs in \mathcal{A}_2 in parallel;
 - on the left we branch at each disjunction: each infinite branch denotes a run in \mathcal{A}_1 ;
 - for each branch of the proof:
 - if the run on the left is valid, then the word is in $\mathcal{L}(\mathcal{A}_1)$ so is in $\mathcal{L}(\mathcal{A}_2)$. Then one of the run on the right is valid;
 - else the observation of $\|\mathcal{A}_1\|$ in this branch is valid.
- then these proofs are regular so are in μLK^{ω} ;

$$||A_1||x + ||A_2||x \Rightarrow \mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2)$$
:

$$\mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2) \Rightarrow ||A_1||x + ||A_2||x$$
:

- We prove the inclusion in $\mu L K^{\infty}$:
 - on the right we test all the runs in \mathcal{A}_2 in parallel;
 - on the left we branch at each disjunction: each infinite branch denotes a run in \mathcal{A}_1 ;
 - for each branch of the proof:
 - if the run on the left is valid, then the word is in $\mathcal{L}(\mathcal{A}_1)$ so is in $\mathcal{L}(\mathcal{A}_2)$. Then one of the run on the right is valid;
 - else the observation of $\|\mathcal{A}_1\|$ in this branch is valid.
- then these proofs are regular so are in μLK^{ω} ;
- then we can build a proof in μ LK.

$$||A_1||x + ||A_2||x \Rightarrow \mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2)$$
:

$$\mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2) \Rightarrow ||A_1||x + ||A_2||x$$
:

- We prove the inclusion in μLK^{∞} :
 - on the right we test all the runs in \mathcal{A}_2 in parallel;
 - on the left we branch at each disjunction: each infinite branch denotes a run in \mathcal{A}_1 ;
 - for each branch of the proof:
 - if the run on the left is valid, then the word is in $\mathcal{L}(\mathcal{A}_1)$ so is in $\mathcal{L}(\mathcal{A}_2)$. Then one of the run on the right is valid;
 - else the observation of $\|\mathcal{A}_1\|$ in this branch is valid.
- then these proofs are regular so are in μLK^{ω} ;
- then we can build a proof in μ LK.

$$||A_1||x \vdash ||A_2||x \Rightarrow \mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2)$$
:

• If we prove the inclusion in one of the logics we can prove it in μLK^{∞} ;

$$\mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2) \Rightarrow ||A_1||x \vdash ||A_2||x$$
:

- We prove the inclusion in μLK^{∞} :
 - on the right we test all the runs in \mathcal{A}_2 in parallel;
 - on the left we branch at each disjunction: each infinite branch denotes a run in \mathcal{A}_1 ;
 - for each branch of the proof:
 - if the run on the left is valid, then the word is in $\mathcal{L}(\mathcal{R}_1)$ so is in $\mathcal{L}(\mathcal{R}_2)$. Then one of the run on the right is valid;
 - else the observation of $\|\mathcal{A}_1\|$ in this branch is valid.
- then these proofs are regular so are in μLK^{ω} ;
- then we can build a proof in μLK.

$$||A_1||x + ||A_2||x \Rightarrow \mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2)$$
:

- If we prove the inclusion in one of the logics we can prove it in μLK^{∞} ;
- if $w \in \mathcal{L}(\mathcal{A}_1)$ then $\Pi_1 : \vdash ||\mathcal{A}_1|| \lfloor w \rfloor$ and:

$$\frac{\prod_{1} \prod_{l \in \mathcal{A}_{1} \rfloor \lfloor w \rfloor} \prod_{l \in \mathcal{A}_{1} \rfloor \lfloor w \rfloor + \lfloor l \in \mathcal{A}_{2} \rfloor \lfloor w \rfloor} \prod_{l \in \mathcal{A}_{2} \rfloor \lfloor w \rfloor} cut$$

Results

Outline

- 6 Results
- Mental Repository

```
Results
```

$$\mu$$
LK $\subseteq \mu$ LK $^{\omega} \subseteq \mu$ LK $^{\infty}$

Inclusions of the Logics

Theorem 1

$$\mu \mathsf{L}\mathsf{K} \subseteq \mu \mathsf{L}\mathsf{K}^{\omega} \subseteq \mu \mathsf{L}\mathsf{K}^{\infty}$$

• $\mathsf{L}\mathsf{K}^{\omega} \subseteq \mu \mathsf{L}\mathsf{K}^{\infty}$:

$$\bigsqcup_{\mu \mathsf{LK} \subseteq \mu \mathsf{LK}^{\omega} \subseteq \mu \mathsf{LK}^{\infty}}$$

Inclusions of the Logics

Theorem 1

$$\mu \mathsf{L}\mathsf{K} \subseteq \mu \mathsf{L}\mathsf{K}^{\omega} \subseteq \mu \mathsf{L}\mathsf{K}^{\infty}$$

• $LK^{\omega} \subseteq \mu LK^{\infty}$: unfold the cycles infinitly often.

$$\begin{array}{ccc}
 & & & & & & \frac{\Psi :}{\Pi} \\
 & & & & & & \frac{\Psi :}{\Pi} \\
 & & & & & & \frac{\Pi}{\Pi + P : \alpha}
\end{array}$$

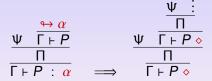
$$\bigsqcup_{\mu \mathsf{LK} \subseteq \mu \mathsf{LK}^{\omega} \subseteq \mu \mathsf{LK}^{\infty}}$$

Inclusions of the Logics

Theorem 1

$$\mu \mathsf{L}\mathsf{K} \subseteq \mu \mathsf{L}\mathsf{K}^{\omega} \subseteq \mu \mathsf{L}\mathsf{K}^{\infty}$$

• $LK^{\omega} \subseteq \mu LK^{\infty}$: unfold the cycles infinitly often.



• $\mu LK \subseteq \mu LK^{\omega}$: not the same language. We need a translation and a table of (co)-induction.

•
$$Q = \{\widehat{\varepsilon B} \mid B \text{ closed operator of } \mu LK, \varepsilon \in \{\mu; \nu\}\}; \ \epsilon(\widehat{\varepsilon B}) = \varepsilon;$$

•
$$Q = \{\widehat{\varepsilon B} \mid B \text{ closed operator of } \mu LK, \, \varepsilon \in \{\mu; \nu\}\}; \ \ \epsilon(\widehat{\varepsilon B}) = \varepsilon;$$

 $\langle \ \rangle : \mu LK \text{ formula } \rightarrow \mu LK^{\omega} \text{ formula}$

$$\langle P \boxdot Q \rangle = \langle P \rangle \boxdot \langle Q \rangle$$

$$\langle \otimes x \ B \rangle = \otimes x \langle B \rangle$$

$$\langle \varepsilon B \rangle = \widehat{\varepsilon B}$$

$$\langle \varepsilon B \rangle = \widehat{\varepsilon}$$

$$\langle \varepsilon B \rangle = a$$

$$(\exists \in \{ \land; \lor; \Rightarrow \}$$

$$\otimes \in \{ \forall; \exists \}$$

$$\varepsilon \in \{ \mu; \nu \}$$

$$\langle a \rangle = a$$

$$\mu$$
LK $\subseteq \mu$ LK $^{\omega} \subseteq \mu$ LK $^{\infty}$

•
$$Q = \{\widehat{\varepsilon B} \mid B \text{ closed operator of } \mu LK, \, \varepsilon \in \{\mu; \nu\}\}; \quad \epsilon(\widehat{\varepsilon B}) = \varepsilon;$$

 $\langle _ \rangle : \mu L K$ formula $\rightarrow \mu L K^{\omega}$ formula

•
$$\widehat{\varepsilon B} \trianglerighteq \langle B \varepsilon B \rangle$$
;

•
$$Q = \{\widehat{\varepsilon B} \mid B \text{ closed operator of } \mu LK, \, \varepsilon \in \{\mu; \nu\}\}; \ \ \epsilon(\widehat{\varepsilon B}) = \varepsilon;$$

$$\langle _ \rangle : \mu LK \text{ formula } \rightarrow \mu LK^{\omega} \text{ formula }$$

- $\widehat{\varepsilon B} \trianglerighteq \langle B \varepsilon B \rangle$;
- $\widehat{\varepsilon B} < \widehat{\varepsilon' B'} \iff \varepsilon' B'$ sub-formula of B

$$\bigsqcup_{\mu \mathsf{LK} \subseteq \mu \mathsf{LK}^{\omega} \subseteq \mu \mathsf{LK}^{\infty}}$$

$$\mu \mathsf{L}\mathsf{K} \subseteq \mu \mathsf{L}\mathsf{K}^{\omega}$$

Lemma: Functoriality in μLK^{ω}

If B is monotonic (i.e. the p_i appears only in positive positions in B) then for all predicates $P_1, P_2, \ldots P_n$ this rule is admissible in μLK^{ω} : Let B a predicate operator: $B = \lambda p.\lambda \mathbf{x}$. A and P and Q some predicates then this rule is admissible in μLK^{ω} :

$$\frac{\langle P \rangle \mathbf{x} \vdash \langle Q \rangle \mathbf{x}}{\langle B P \rangle \mathbf{t} \vdash \langle B Q \rangle \mathbf{t}} \text{ functo}$$

and all the observations involve names n such that for all names m appearing in $\langle P \rangle$ or $\langle Q \rangle$, n < m.

Theorem 1

$$\Gamma \vdash_{\mu L K} \Delta \quad \Rightarrow \quad \langle \Gamma \rangle \vdash_{\mu L K^{\omega}} \langle \Delta \rangle$$

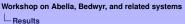
By induction on the size of the proof then case analysis on the first rule.

rule.
$$\frac{\Pi_{1}}{\frac{\Gamma + \Delta, S\,t}{\Gamma + \Delta, \nu B\,t}} \frac{\Pi_{2}}{\frac{S\,x + BS\,x}{\Gamma + \Delta, \nu B\,t}} \nu R$$

$$\frac{\Pi_{2}^{*}}{\frac{\langle S\rangle\,x + \overline{\nu B}\,x}{\langle S\rangle\,x, \langle S\rangle\,x + \overline{\nu B}\,x}} WL$$

$$\frac{\Pi_{1}^{*}}{\frac{\langle S\rangle\,x + \langle BS\rangle\,x}{\langle S\rangle\,x, \langle BS\rangle\,x + \langle B(\nu B)\rangle\,x}} \frac{\langle S\rangle\,x + \langle B(\nu B)\rangle\,x}{\langle S\rangle\,x + \overline{\nu B}\,x : \alpha} tuncto$$

$$\frac{\langle S\rangle\,x + \langle B(\nu B)\rangle\,x}{\langle S\rangle\,x + \overline{\nu B}\,x : \alpha} cut, cut, \forall R, \Rightarrow R, ...$$



Theorem 2

$$\mu \mathsf{L}\mathsf{K}^{\omega} \subseteq \mu \mathsf{L}\mathsf{K}$$

Soon a complete proof.

Cut Elimination

Proof of normalisation of μLK^{∞} .

Proof of normalisation of μLK^{∞} . We must show:

normalisation: the reduction rules provides a limit proof;

$$d(\Pi, \Pi') = \frac{1}{1 + \text{ minimum depth of two different nodes}}$$

validity: the limit proof is also valid.

Proof of normalisation of μLK^{∞} . We must show:

normalisation: the reduction rules provides a limit proof;

$$d(\Pi, \Pi') = \frac{1}{1 + \text{ minimum depth of two different nodes}}$$

validity: the limit proof is also valid.

We focus on a sub-logic containing only (co)-inductive formula: μL_0 .

Proof of normalisation of μLK^{∞} . We must show:

normalisation: the reduction rules provides a limit proof;

$$d(\Pi, \Pi') = \frac{1}{1 + \text{ minimum depth of two different nodes}}$$

validity: the limit proof is also valid.

We focus on a sub-logic containing only (co)-inductive formula: μL_0 .

→ given a formula: unique infinite observation.

Proof of normalisation of μLK^{∞} . We must show:

normalisation: the reduction rules provides a limit proof;

$$d(\Pi, \Pi') = \frac{1}{1 + \text{ minimum depth of two different nodes}}$$

validity: the limit proof is also valid.

We focus on a sub-logic containing only (co)-inductive formula: μL_0 .

→ given a formula: unique infinite observation.

Exploration of the reduction

The sub-part of the proof which is explored by the reduction.

Strategy of reduction

Always reduce the first cut rule which is no followed by another cut rule.

Strategy of reduction

Always reduce the first cut rule which is no followed by another cut rule.

Lemma 1: Exploration

With this strategy, the exploration is connex.

Strategy of reduction

Always reduce the first cut rule which is no followed by another cut rule.

Lemma 1: Exploration

With this strategy, the exploration is connex.

Lemma 2: Dual observations

Two dual observations can not be both valid.

Strategy of reduction

Always reduce the first cut rule which is no followed by another cut rule.

Lemma 1: Exploration

With this strategy, the exploration is connex.

Lemma 2: Dual observations

Two dual observations can not be both valid.

Lemma 3

For a cut rule: $\frac{\Pi_1}{s} \frac{\Pi_2}{cut}$. If there is an infinite observation of the cut formula in Π_i contained in the exploration, then there is a dual observation in Π_{1-i} in the exploration.

Lemma 4

There exists an infinite branch in the exploration which has a valid observation of a formula in the root.

Results

Cut Elimination

Lemma 4

There exists an infinite branch in the exploration which has a valid observation of a formula in the root.

Lemma 5

If there exists an observation from the root in the exploration, then the reduction produces at least the sequents of it. - Results

Cut Elimination

Lemma 4

There exists an infinite branch in the exploration which has a valid observation of a formula in the root.

Lemma 5

If there exists an observation from the root in the exploration, then the reduction produces at least the sequents of it.

Lemma 4 + Lemma 5 → Normalisation + Validity!

Results

• Infinite proofs: cut-elimination, regular proofs = $\mu LK^{\omega}_{/}$

$$\mu \mathsf{LK} \ = \ \mu \mathsf{LK}^{\omega} \ \subseteq \ \mu \mathsf{LK}^{\infty}$$

```
Cut Elimination
```

Results

• Infinite proofs: cut-elimination, regular proofs = μ LK° • μ LK: cut-elimination; as expressive as μ LK° • μ LK = μ LK° $\subseteq \mu$ LK°

Results

• Infinite proofs: cut-elimination, regular proofs = μLK^{ω}

ullet μ LK: cut-elimination; as expressive as μ LK $^\omega$

$$_{\rightarrow}\,\mu\mathsf{LK}\ =\ \mu\mathsf{LK}^{\omega}\ \subseteq\ \mu\mathsf{LK}^{\infty}$$

ullet Cyclic proofs: consistent, as expressive as μLK

Outline

- 6 Results
- Mental Repository

Encoding

Encoding from the Büchi automata to formulas of a logic so as to reason over the automata within the logic.

We must trust the encoding (and the logic) for working within the logic instead of manipulating automata directly.