
From Büchi Automata to Cyclic and Infinite
Proofs

Internship at ITU Copenhagen

Lucca Hirschi

July 10, 2012

Lucca Hirschi David Baelde
directed by

ENS Lyon ITU of Copenhagen

Workshop on Abella, Bedwyr, and related systems

Introduction

Purpose

Encode Büchi automata as formulas in a proof-theoretical
framework with (co)-induction.

{

Logics dealing with infinite proofs, cyclic proofs; mixing inductive
and co-inductive formulas; strongly related; well describe Büchi

Automata.

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 2 / 29

Workshop on Abella, Bedwyr, and related systems

Introduction

Purpose

Encode Büchi automata as formulas in a proof-theoretical
framework with (co)-induction.

{

Logics dealing with infinite proofs, cyclic proofs; mixing inductive
and co-inductive formulas; strongly related; well describe Büchi

Automata.

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 2 / 29

Workshop on Abella, Bedwyr, and related systems

Introduction

Big Picture

q1 q′1

1

0

1

0

↓

Infinite proofs: satisfies adequacy, impractical

Common and used: explicit (co)-induction

µLK ⊆ µLKω ⊆ µLK∞

Cyclic proofs

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 3 / 29

Workshop on Abella, Bedwyr, and related systems

Introduction

Big Picture

q1 q′1

1

0

1

0

↓

Infinite proofs: satisfies adequacy, impractical
Common and used: explicit (co)-induction

µLK ⊆ µLKω ⊆ µLK∞

Cyclic proofs

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 3 / 29

Workshop on Abella, Bedwyr, and related systems

Introduction

Big Picture

q1 q′1

1

0

1

0

↓

Infinite proofs: satisfies adequacy, impractical
Common and used: explicit (co)-induction

µLK ⊆ µLKω ⊆ µLK∞

Cyclic proofs

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 3 / 29

Workshop on Abella, Bedwyr, and related systems

Introduction

Outline

1 Introduction

2 Büchi Automata

3 µLK

4 µLKω and µLK∞

5 Conclusion

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 4 / 29

Workshop on Abella, Bedwyr, and related systems

Büchi Automata

Outline

1 Introduction

2 Büchi Automata

3 µLK

4 µLKω and µLK∞

5 Conclusion

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 5 / 29

Workshop on Abella, Bedwyr, and related systems

Büchi Automata

Definition: Büchi Automata

Büchi Automata
Definition (Büchi Automata)
A Büchi automaton is a quintuple A = (Q ,Σ, δ,QI,QF), where

Q is a finite set (the states);

Σ is an alphabet;

δ : Q × Σ→ P(Q) the nondeterministic transition function;

QI ⊆ Q the initial states and QF ⊆ Q the final states.

Definition (Acceptance condition)
A run α on a word is accepting by an automaton ⇐⇒ α visits
a final state infinitely often;

A word is recognized by an automaton ⇐⇒ there exists an
accepting run on it.

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 6 / 29

Workshop on Abella, Bedwyr, and related systems

Büchi Automata

Definition: Büchi Automata

Büchi Automata
Definition (Büchi Automata)
A Büchi automaton is a quintuple A = (Q ,Σ, δ,QI,QF), where

Q is a finite set (the states);

Σ is an alphabet;

δ : Q × Σ→ P(Q) the nondeterministic transition function;

QI ⊆ Q the initial states and QF ⊆ Q the final states.

Definition (Acceptance condition)
A run α on a word is accepting by an automaton ⇐⇒ α visits
a final state infinitely often;

A word is recognized by an automaton ⇐⇒ there exists an
accepting run on it.

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 6 / 29

Workshop on Abella, Bedwyr, and related systems

Büchi Automata

Definition: Büchi Automata

An Example of a Büchi Automaton

q1 q′1

1

0

1

0

L(A) = (0∗1)ω

`? TAU 1ω

“Proof”
By reading the word 1ω, I can build step by step an accepting run
in A:

“From state q1, I read 1 and jump to q1 and so on so forth.”

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 7 / 29

Workshop on Abella, Bedwyr, and related systems

Büchi Automata

Definition: Büchi Automata

An Example of a Büchi Automaton

q1 q′1

1

0

1

0

L(A) = (0∗1)ω

`? TAU 1ω

“Proof”
By reading the word 1ω, I can build step by step an accepting run
in A:

“From state q1, I read 1 and jump to q1 and so on so forth.”

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 7 / 29

Workshop on Abella, Bedwyr, and related systems

Büchi Automata

Definition: Büchi Automata

An Example of a Büchi Automaton

q1 q′1

1

0

1

0

L(A) = (0∗1)ω

`? TAU 1ω

“Proof”
By reading the word 1ω, I can build step by step an accepting run
in A:

“From state q1, I read 1 and jump to q1 and so on so forth.”

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 7 / 29

Workshop on Abella, Bedwyr, and related systems

Büchi Automata

Definition: Büchi Automata

An Example of a Büchi Automaton

q1 q′1

1

0

1

0

`? [q1] 1ω

...
`? [q1] 1ω ?

`? ∃tl (1 :: 1ω = 1 :: tl ∧ [q1] tl) ∨
(
1 :: 1ω = 0 :: tl ∧ [q′1] tl

) ∃R ,∨R1

`? [q1] 1 :: 1ω ?

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 8 / 29

Workshop on Abella, Bedwyr, and related systems

Büchi Automata

Definition: Büchi Automata

An Example of a Büchi Automaton

q1 q′1

1

0

1

0

`? [q1] 1ω

...
`? [q1] 1ω ?

`? ∃tl (1 :: 1ω = 1 :: tl ∧ [q1] tl) ∨
(
1 :: 1ω = 0 :: tl ∧ [q′1] tl

) ∃R ,∨R1

`? [q1] 1 :: 1ω ?

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 8 / 29

Workshop on Abella, Bedwyr, and related systems

Büchi Automata

Goals

Goals

Adequacy: w ∈ L(A) ⇐⇒ ` TAUbwc

and a link between
computations in Büchi automata and proofs of their properties;

Soundness and completeness of inclusion: our main problem
is the inclusion. We must show that

TA1Ux ` TA2Ux ⇐⇒ L(A1) ⊆ L(A2).

Proof of inclusion{ inclusion and a certificate;

Usable and generic logic: properties over automata are used
in a wider context.

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 9 / 29

Workshop on Abella, Bedwyr, and related systems

Büchi Automata

Goals

Goals

Adequacy: w ∈ L(A) ⇐⇒ ` TAUbwc and a link between
computations in Büchi automata and proofs of their properties;

Soundness and completeness of inclusion: our main problem
is the inclusion. We must show that

TA1Ux ` TA2Ux ⇐⇒ L(A1) ⊆ L(A2).

Proof of inclusion{ inclusion and a certificate;

Usable and generic logic: properties over automata are used
in a wider context.

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 9 / 29

Workshop on Abella, Bedwyr, and related systems

Büchi Automata

Goals

Goals

Adequacy: w ∈ L(A) ⇐⇒ ` TAUbwc and a link between
computations in Büchi automata and proofs of their properties;

Soundness and completeness of inclusion: our main problem
is the inclusion. We must show that

TA1Ux ` TA2Ux ⇐⇒ L(A1) ⊆ L(A2).

Proof of inclusion{ inclusion and a certificate;

Usable and generic logic: properties over automata are used
in a wider context.

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 9 / 29

Workshop on Abella, Bedwyr, and related systems

Büchi Automata

Goals

Goals

Adequacy: w ∈ L(A) ⇐⇒ ` TAUbwc and a link between
computations in Büchi automata and proofs of their properties;

Soundness and completeness of inclusion: our main problem
is the inclusion. We must show that

TA1Ux ` TA2Ux ⇐⇒ L(A1) ⊆ L(A2).

Proof of inclusion{ inclusion and a certificate;

Usable and generic logic: properties over automata are used
in a wider context.

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 9 / 29

Workshop on Abella, Bedwyr, and related systems

Büchi Automata

Goals

Goals

Adequacy: w ∈ L(A) ⇐⇒ ` TAUbwc and a link between
computations in Büchi automata and proofs of their properties;

Soundness and completeness of inclusion: our main problem
is the inclusion. We must show that

TA1Ux ` TA2Ux ⇐⇒ L(A1) ⊆ L(A2).

Proof of inclusion{ inclusion and a certificate;

Usable and generic logic: properties over automata are used
in a wider context.

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 9 / 29

Workshop on Abella, Bedwyr, and related systems

µLK

Outline

1 Introduction

2 Büchi Automata

3 µLK

4 µLKω and µLK∞

5 Conclusion

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 10 / 29

Workshop on Abella, Bedwyr, and related systems

µLK

µLK

Definition (Formula of µLK)

P ::= > | ⊥

| ∃x. P | ∀x. P x ∈ V
| P ∧ P | P ∨ P | P ⇒ P
| s = t t ,s some terms

| p p ∈ Vf

| µ(λp.λx1. . . . λxn. P) t1 . . . tn p ∈ Vf , ti a term
| ν(λp.λx1. . . . λxn. P) t1 . . . tn p ∈ Vf , ti a term

N = µBnat = µ (λpn .λx. x = 0 ∨ (∃y x = s(y) ∧ pn y))

S = νBstream = ν (λps .λw. ∃w′∃n w = n :w′ ∧ N n ∧ ps w′)

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 11 / 29

Workshop on Abella, Bedwyr, and related systems

µLK

µLK

Definition (Formula of µLK)

P ::= > | ⊥

| ∃x. P | ∀x. P x ∈ V
| P ∧ P | P ∨ P | P ⇒ P
| s = t t ,s some terms
| p p ∈ Vf

| µ(λp.λx1. . . . λxn. P) t1 . . . tn p ∈ Vf , ti a term
| ν(λp.λx1. . . . λxn. P) t1 . . . tn p ∈ Vf , ti a term

N = µBnat = µ (λpn .λx. x = 0 ∨ (∃y x = s(y) ∧ pn y))

S = νBstream = ν (λps .λw. ∃w′∃n w = n :w′ ∧ N n ∧ ps w′)

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 11 / 29

Workshop on Abella, Bedwyr, and related systems

µLK

µLK

Definition (Formula of µLK)

P ::= > | ⊥

| ∃x. P | ∀x. P x ∈ V
| P ∧ P | P ∨ P | P ⇒ P
| s = t t ,s some terms
| p p ∈ Vf

| µ(λp.λx1. . . . λxn. P) t1 . . . tn p ∈ Vf , ti a term
| ν(λp.λx1. . . . λxn. P) t1 . . . tn p ∈ Vf , ti a term

N = µBnat = µ (λpn .λx. x = 0 ∨ (∃y x = s(y) ∧ pn y))

S = νBstream = ν (λps .λw. ∃w′∃n w = n :w′ ∧ N n ∧ ps w′)

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 11 / 29

Workshop on Abella, Bedwyr, and related systems

µLK

Rules of µLK
Sequent calculus:

identity group: Ax, cut, = R, = L ;

logical group: >, ⊥, ∧Li , ∧R, ∨L , ∨Ri ,⇒ L ,⇒ R, ∀L , ∀R,
∃L , ∃R;

structural group: WL ,WR (weak), Cl,CR (contraction).

+ explicit (co)-induction:

Γ ` B(µB) t
Γ ` µB t

µR
Γ, S t ` P BS x ` S x

Γ, µB t ` P
µL

Γ ` St St ` BSt
Γ ` νB t νR

Γ, B(νB) t ` P
Γ, νB t ` P νL

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 12 / 29

Workshop on Abella, Bedwyr, and related systems

µLK

Rules of µLK
Sequent calculus:

identity group: Ax, cut, = R, = L ;

logical group: >, ⊥, ∧Li , ∧R, ∨L , ∨Ri ,⇒ L ,⇒ R, ∀L , ∀R,
∃L , ∃R;

structural group: WL ,WR (weak), Cl,CR (contraction).

+ explicit (co)-induction:

Γ ` B(µB) t
Γ ` µB t

µR
Γ, S t ` P BS x ` S x

Γ, µB t ` P
µL

Γ ` St St ` BSt
Γ ` νB t νR

Γ, B(νB) t ` P
Γ, νB t ` P νL

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 12 / 29

Workshop on Abella, Bedwyr, and related systems

µLK

Γ ` B(µB) t
Γ ` µB t

µR
Γ, S t ` P BS x ` S x

Γ, µB t ` P
µL

Φ0 or Φn

Γ ` t = 0 ∨ ∃y t = s(y) ∧ µBnat y
Γ ` µBnat t

µR

Π
S t ` P

Ψ0

` S 0
Ψn

S x ` S (s(x))

x = 0 ∨ ∃y x = s(y) ∧ S y ` S x
∨L , (∃L),= L

µBnat t ` P
µL

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 13 / 29

Workshop on Abella, Bedwyr, and related systems

µLK

Γ ` B(µB) t
Γ ` µB t

µR
Γ, S t ` P BS x ` S x

Γ, µB t ` P
µL

Φ0 or Φn

Γ ` t = 0 ∨ ∃y t = s(y) ∧ µBnat y
Γ ` µBnat t

µR

Π
S t ` P

Ψ0

` S 0
Ψn

S x ` S (s(x))

x = 0 ∨ ∃y x = s(y) ∧ S y ` S x
∨L , (∃L),= L

µBnat t ` P
µL

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 13 / 29

Workshop on Abella, Bedwyr, and related systems

µLK

Γ ` St St ` BSt
Γ ` νB t νR

Γ, B(νB) t ` P
Γ, νB t ` P νL

Γ ` S t ∃t ′∃n t = n : t ′ ∧ N n ∧ S t ′ ` S t
Γ ` νBstream t νR

t = n :: t ′ ∧ νBstream t ′

νBstream t ` P νL

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 14 / 29

Workshop on Abella, Bedwyr, and related systems

µLK

Γ ` St St ` BSt
Γ ` νB t νR

Γ, B(νB) t ` P
Γ, νB t ` P νL

Γ ` S t ∃t ′∃n t = n : t ′ ∧ N n ∧ S t ′ ` S t
Γ ` νBstream t νR

t = n :: t ′ ∧ νBstream t ′

νBstream t ` P νL

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 14 / 29

Workshop on Abella, Bedwyr, and related systems

µLK

µLK vs. Büchi automata

q1 q′1

1

0

1

0

[q1] = ν(λq1.λw. ∃w′

(w = 1 :: w′ ∧ q1 w′)∨(
w = 0 :: w′ ∧ [q′1] w′

)
)

[q′1] = µ(λq′1.λw. ∃w′

(w = 1 :: w′ ∧ [q1] w′)∨(
w = 0 :: w′ ∧ q′1 w′

)
)

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 15 / 29

Workshop on Abella, Bedwyr, and related systems

µLK

µLK vs. Büchi automata

Which S? Why?
`µLK [q1] 1ω

νR

[q1] = ν(λq1.λw. ∃w′

(w = 1 :: w′ ∧ q1 w′)∨(
w = 0 :: w′ ∧ [q′1] w′

)
)

[q′1] = µ(λq′1.λw. ∃w′

(w = 1 :: w′ ∧ [q1] w′)∨(
w = 0 :: w′ ∧ q′1 w′

)
)

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 15 / 29

Workshop on Abella, Bedwyr, and related systems

µLK

µLK vs. Büchi automata

Which S? Why?
`µLK [q1] 1ω

νR

[q1] = ν(λq1.λw. ∃w′

(w = 1 :: w′ ∧ q1 w′)∨(
w = 0 :: w′ ∧ [q′1] w′

)
)

[q′1] = µ(λq′1.λw. ∃w′

(w = 1 :: w′ ∧ [q1] w′)∨(
w = 0 :: w′ ∧ q′1 w′

)
)

`? [q1] 1ω

`? ∃w′ (1ω = 1 :: w′ ∧ [q1] w′) ∨
(
1ω = 0 :: w′ ∧ [q′1] w′

) ∃R ,∨R2

`? [q1] 1ω νR ′

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 15 / 29

Workshop on Abella, Bedwyr, and related systems

µLK

µLK vs. Büchi automata

Which S? Why?
`µLK [q1] 1ω

νR

[q1] = ν(λq1.λw. ∃w′

(w = 1 :: w′ ∧ q1 w′)∨(
w = 0 :: w′ ∧ [q′1] w′

)
)

[q′1] = µ(λq′1.λw. ∃w′

(w = 1 :: w′ ∧ [q1] w′)∨(
w = 0 :: w′ ∧ q′1 w′

)
)

α
`? [q1] 1ω

`? ∃w′ (1ω = 1 :: w′ ∧ [q1] w′) ∨
(
1ω = 0 :: w′ ∧ [q′1] w′

) ∃R ,∨R2

`? [q1] 1ω : α
νR ′

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 15 / 29

Workshop on Abella, Bedwyr, and related systems

µLK

µLK vs. Büchi automata

Which S? Why?
`µLK [q1] 1ω

νR

[q1] = ν(λq1.λw. ∃w′

(w = 1 :: w′ ∧ q1 w′)∨(
w = 0 :: w′ ∧ [q′1] w′

)
)

[q′1] = µ(λq′1.λw. ∃w′

(w = 1 :: w′ ∧ [q1] w′)∨(
w = 0 :: w′ ∧ q′1 w′

)
)

↑ α

`? [q1] 1ω

`? ∃w′ (1ω = 1 :: w′ ∧ [q1] w′) ∨
(
1ω = 0 :: w′ ∧ [q′1] w′

) ∃R ,∨R2

`? [q1] 1ω : α
νR ′

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 15 / 29

Workshop on Abella, Bedwyr, and related systems

µLKω and µLK∞

Outline

1 Introduction

2 Büchi Automata

3 µLK

4 µLKω and µLK∞

5 Conclusion

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 16 / 29

Workshop on Abella, Bedwyr, and related systems

µLKω and µLK∞

µLKω and µLK∞

Explicit (co)-induction rules{ replaced by some cycles or infinite
branches.

µBeven = µ (λpn .λx. x = 0 ∨ (∃y x = s(s(y)) ∧ pn y))

t = 0 ` µBnat t

↑ α

µBeven t ′ ` µBnat t ′

µBeven t ′ ` µBnat (s(t ′))

µBeven t ′ ` µBnat (s(s(t ′)))

t = s(s(t ′)) ∧ µBeven t ′ ` µBnat t
µBeven t ` µBnat t

: α

µL ′

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 17 / 29

Workshop on Abella, Bedwyr, and related systems

µLKω and µLK∞

µLKω and µLK∞

Explicit (co)-induction rules{ replaced by some cycles or infinite
branches.

µBeven = µ (λpn .λx. x = 0 ∨ (∃y x = s(s(y)) ∧ pn y))

t = 0 ` µBnat t

↑ α

µBeven t ′ ` µBnat t ′

µBeven t ′ ` µBnat (s(t ′))

µBeven t ′ ` µBnat (s(s(t ′)))

t = s(s(t ′)) ∧ µBeven t ′ ` µBnat t
µBeven t ` µBnat t

: α

µL ′

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 17 / 29

Workshop on Abella, Bedwyr, and related systems

µLKω and µLK∞

µLKω and µLK∞

Explicit (co)-induction rules{ replaced by some cycles or infinite
branches.

µBeven = µ (λpn .λx. x = 0 ∨ (∃y x = s(s(y)) ∧ pn y))

t = 0 ` µBnat t

↑ α

µBeven t ′ ` µBnat t ′

µBeven t ′ ` µBnat (s(t ′))

µBeven t ′ ` µBnat (s(s(t ′)))

t = s(s(t ′)) ∧ µBeven t ′ ` µBnat t
µBeven t ` µBnat t

: α

µL ′

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 17 / 29

Workshop on Abella, Bedwyr, and related systems

µLKω and µLK∞

µLKω and µLK∞

Explicit (co)-induction rules{ replaced by some cycles or infinite
branches.

µBeven = µ (λpn .λx. x = 0 ∨ (∃y x = s(s(y)) ∧ pn y))

t = 0 ` µBnat t

↑ α

µBeven t ′ ` µBnat t ′

µBeven t ′ ` µBnat (s(t ′))

µBeven t ′ ` µBnat (s(s(t ′)))

t = s(s(t ′)) ∧ µBeven t ′ ` µBnat t
µBeven t ` µBnat t : α

µL ′

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 17 / 29

Workshop on Abella, Bedwyr, and related systems

µLKω and µLK∞

Guard Condition

Guard Condition
Litterature:

1 Brotherstone: No co-inductive formula; “infinite descent”;
[Bro06]

2 Santocanale: No cut rule; inductive and co-inductive formula;
[San02]

First bug

P = µ(λp. ν(λq. p))

Q = ν(λq. P)

↑ α

` Q
` P

µR

` Q : α
νR

` P
µR

↑ τ

P ` ⊥
Q ` ⊥ νL

P ` ⊥ : τ
µL

` ⊥
cut

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 18 / 29

Workshop on Abella, Bedwyr, and related systems

µLKω and µLK∞

Guard Condition

Guard Condition
Litterature:

1 Brotherstone: No co-inductive formula; “infinite descent”;
[Bro06]

2 Santocanale: No cut rule; inductive and co-inductive formula;
[San02]

First bug

P = µ(λp. ν(λq. p))

Q = ν(λq. P)

↑ α

` Q
` P

µR

` Q : α
νR

` P
µR

↑ τ

P ` ⊥
Q ` ⊥ νL

P ` ⊥ : τ
µL

` ⊥
cut

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 18 / 29

Workshop on Abella, Bedwyr, and related systems

µLKω and µLK∞

Guard Condition

Guard Condition
Litterature:

1 Brotherstone: No co-inductive formula; “infinite descent”;
[Bro06]

2 Santocanale: No cut rule; inductive and co-inductive formula;
[San02]

First bug

P = µ(λp. ν(λq. p))

Q = ν(λq. P)

↑ α

` Q
` P

µR

` Q : α
νR

` P
µR

↑ τ

P ` ⊥
Q ` ⊥ νL

P ` ⊥ : τ
µL

` ⊥
cut

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 18 / 29

Workshop on Abella, Bedwyr, and related systems

µLKω and µLK∞

Guard Condition

Guard Condition - interleaved (co)-inductive formulas
First bug

P = µ(λp. ν(λq. p))

Q = ν(λq. P)

↑ α

` Q
` P

µR

` Q : α
νR

` P
µR

↑ τ

P ` ⊥
Q ` ⊥ νL

P ` ⊥ : τ
µL

` ⊥
cut

Fix

P =µ Q

Q =ν P
P > Q

�
�↑ α

` Q
` P

µRP

` Q : α
νRQ

` P
µRP

↑ τ

P ` ⊥
Q ` ⊥

νLQ

P ` ⊥ : τ
µLP

` ⊥
cut

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 19 / 29

Workshop on Abella, Bedwyr, and related systems

µLKω and µLK∞

Guard Condition

Guard Condition - interleaved (co)-inductive formulas
First bug

P = µ(λp. ν(λq. p))

Q = ν(λq. P)

↑ α

` Q
` P

µR

` Q : α
νR

` P
µR

↑ τ

P ` ⊥
Q ` ⊥ νL

P ` ⊥ : τ
µL

` ⊥
cut

Fix

P =µ Q

Q =ν P
P > Q

�
�↑ α

` Q
` P

µRP

` Q : α
νRQ

` P
µRP

↑ τ

P ` ⊥
Q ` ⊥

νLQ

P ` ⊥ : τ
µLP

` ⊥
cut

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 19 / 29

Workshop on Abella, Bedwyr, and related systems

µLKω and µLK∞

Guard Condition

Guard Condition - interleaved (co)-inductive formulas
First bug

P = µ(λp. ν(λq. p))

Q = ν(λq. P)

↑ α

` Q
` P

µR

` Q : α
νR

` P
µR

↑ τ

P ` ⊥
Q ` ⊥ νL

P ` ⊥ : τ
µL

` ⊥
cut

Fix

P =µ Q

Q =ν P
P > Q

�
�↑ α

` Q
` P

µRP

` Q : α
νRQ

` P
µRP

↑ τ

P ` ⊥
Q ` ⊥

νLQ

P ` ⊥ : τ
µLP

` ⊥
cut

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 19 / 29

“Definition”: table of (co)-induction

(Q , ε, D, <)

Q : names of (co)-inductive formulas (defined atoms);

ε : Q → {µ; ν};

P D A : A is the unfolding of P ∈ Q ;

<: Who is on the top of who?

Second bug

Nat D Bnat Nat ε(Nat) = µ

Bnat = λpn. λn. n = 0 ∨ ∃n′ n = s(n′) ∧ pn n′

Bnat Nat t ` Bnat Nat t Ax

Bnat Nat t ` Nat t
µR

↑ α

Nat t ` ⊥
Bnat Nat t ` ⊥ cut

Nat t ` ⊥ : α
µL

“Definition”: table of (co)-induction

(Q , ε, D, <)

Q : names of (co)-inductive formulas (defined atoms);

ε : Q → {µ; ν};

P D A : A is the unfolding of P ∈ Q ;

<: Who is on the top of who?

Second bug

Nat D Bnat Nat ε(Nat) = µ

Bnat = λpn. λn. n = 0 ∨ ∃n′ n = s(n′) ∧ pn n′

Bnat Nat t ` Bnat Nat t Ax

Bnat Nat t ` Nat t
µR

↑ α

Nat t ` ⊥
Bnat Nat t ` ⊥ cut

Nat t ` ⊥ : α
µL

“Definition”: table of (co)-induction

(Q , ε, D, <)

Q : names of (co)-inductive formulas (defined atoms);

ε : Q → {µ; ν};

P D A : A is the unfolding of P ∈ Q ;

<: Who is on the top of who?

Second bug

Nat D Bnat Nat ε(Nat) = µ

Bnat = λpn. λn. n = 0 ∨ ∃n′ n = s(n′) ∧ pn n′

Bnat Nat t ` Bnat Nat t Ax

Bnat Nat t ` Nat t
µR

↑ α

Nat t ` ⊥
Bnat Nat t ` ⊥ cut

Nat t ` ⊥ : α
µL

Guard Condition - observation

t = 0 ` Nat t

↑ α

s5 : Even t ′ ` Nat t ′

s4 : Even t ′ ` Nat (s(t ′))

s3 : Even t ′ ` Nat (s(s(t ′)))

s2 : t = s(s(t ′)) ∧ Even t ′ ` Nat t
s1 : (A =)Even t ` Nat t : α

µL

OA (α) =
(µL ,Even)

“Definition”: Observations
The trace of A ∈ s0 in the branch s0, s1, . . . is a serie of
formulas A0,A1, . . . such that:

Ai ∈ si (on the same side);
if Ai is active in the conclusion si then Ai+1 is active in the
premise of si+1.

The observation of a formula in a branch is the serie of (r , A)
where r is a (co)-inductive rules applied to A appearing in the
trace.

Guard Condition - observation

t = 0 ` Nat t

↑ α

s5 : Even t ′ ` Nat t ′

s4 : Even t ′ ` Nat (s(t ′))

s3 : Even t ′ ` Nat (s(s(t ′)))

s2 : t = s(s(t ′)) ∧ Even t ′ ` Nat t
s1 : (A =)Even t ` Nat t : α

µL

OA (α) =
(µL ,Even)

“Definition”: Observations
The trace of A ∈ s0 in the branch s0, s1, . . . is a serie of
formulas A0,A1, . . . such that:

Ai ∈ si (on the same side);
if Ai is active in the conclusion si then Ai+1 is active in the
premise of si+1.

The observation of a formula in a branch is the serie of (r , A)
where r is a (co)-inductive rules applied to A appearing in the
trace.

Guard Condition - observation

t = 0 ` Nat t

↑ α

s5 : Even t ′ ` Nat t ′

s4 : Even t ′ ` Nat (s(t ′))

s3 : Even t ′ ` Nat (s(s(t ′)))

s2 : t = s(s(t ′)) ∧ Even t ′ ` Nat t
s1 : (A =)Even t ` Nat t : α

µL

OA (α) =
(µL ,Even)

“Definition”: Observations
The trace of A ∈ s0 in the branch s0, s1, . . . is a serie of
formulas A0,A1, . . . such that:

Ai ∈ si (on the same side);
if Ai is active in the conclusion si then Ai+1 is active in the
premise of si+1.

The observation of a formula in a branch is the serie of (r , A)
where r is a (co)-inductive rules applied to A appearing in the
trace.

Workshop on Abella, Bedwyr, and related systems

µLKω and µLK∞

Guard Condition

Bnat Nat t ` Bnat Nat t Ax

Bnat Nat t ` Nat t
µR

�
�↑ α

Nat t ` Nat t
Bnat Nat t ` ⊥ cut

Nat t ` ⊥ : α
µL

“Definition”: Refinement of Guard Condition
A proof is valid ⇐⇒ each infinite brach is either inductive or
co-inductive.

inductive branch: there is an observation o on the left such
that that ε

(
max(r ,n)∈Inf(o) {n}

)
= µ;

co-inductive branch: there is an observation o on the right
such that that ε

(
max(r ,n)∈Inf(o) {n}

)
= ν.

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 22 / 29

Workshop on Abella, Bedwyr, and related systems

µLKω and µLK∞

Guard Condition

Bnat Nat t ` Bnat Nat t Ax

Bnat Nat t ` Nat t
µR �

�↑ α

Nat t ` Nat t
Bnat Nat t ` ⊥ cut

Nat t ` ⊥ : α
µL

“Definition”: Refinement of Guard Condition
A proof is valid ⇐⇒ each infinite brach is either inductive or
co-inductive.

inductive branch: there is an observation o on the left such
that that ε

(
max(r ,n)∈Inf(o) {n}

)
= µ;

co-inductive branch: there is an observation o on the right
such that that ε

(
max(r ,n)∈Inf(o) {n}

)
= ν.

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 22 / 29

Workshop on Abella, Bedwyr, and related systems

µLKω and µLK∞

Guard Condition

Bnat Nat t ` Bnat Nat t Ax

Bnat Nat t ` Nat t
µR �

�↑ α

Nat t ` Nat t
Bnat Nat t ` ⊥ cut

Nat t ` ⊥ : α
µL

“Definition”: Refinement of Guard Condition
A proof is valid ⇐⇒ each infinite brach is either inductive or
co-inductive.

inductive branch: there is an observation o on the left such
that that ε

(
max(r ,n)∈Inf(o) {n}

)
= µ;

co-inductive branch: there is an observation o on the right
such that that ε

(
max(r ,n)∈Inf(o) {n}

)
= ν.

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 22 / 29

Workshop on Abella, Bedwyr, and related systems

µLKω and µLK∞

Guard Condition

Bnat Nat t ` Bnat Nat t Ax

Bnat Nat t ` Nat t
µR �

�↑ α

Nat t ` Nat t
Bnat Nat t ` ⊥ cut

Nat t ` ⊥ : α
µL

“Definition”: Refinement of Guard Condition
A proof is valid ⇐⇒ each infinite brach is either inductive or
co-inductive.

inductive branch: there is an observation o on the left such
that that ε

(
max(r ,n)∈Inf(o) {n}

)
= µ;

co-inductive branch: there is an observation o on the right
such that that ε

(
max(r ,n)∈Inf(o) {n}

)
= ν.

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 22 / 29

Workshop on Abella, Bedwyr, and related systems

µLKω and µLK∞

Guard Condition

µLK∞

Bijection between observations of [q] t and runs starting with
q;

completeness and soundness of acceptance;

completeness and soundness of inclusion.

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 23 / 29

Workshop on Abella, Bedwyr, and related systems

µLKω and µLK∞

Guard Condition

µLK∞

Bijection between observations of [q] t and runs starting with
q;

completeness and soundness of acceptance;

completeness and soundness of inclusion.

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 23 / 29

Workshop on Abella, Bedwyr, and related systems

µLKω and µLK∞

Guard Condition

µLK∞

Bijection between observations of [q] t and runs starting with
q;

completeness and soundness of acceptance;

completeness and soundness of inclusion.

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 23 / 29

Workshop on Abella, Bedwyr, and related systems

µLKω and µLK∞

Guard Condition

“Definition”: Refinement of Guard Condition
A proof is valid ⇐⇒ each cycle is either inductive or co-inductive.

inductive cycle: there is an observation o on the left such that
that ε

(
max(r ,n)∈o {n}

)
= µ;

co-inductive cycle: there is an observation o on the right such
that that ε

(
max(r ,n)∈o {n}

)
= ν.

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 24 / 29

Workshop on Abella, Bedwyr, and related systems

µLKω and µLK∞

Guard Condition

“Definition”: Refinement of Guard Condition
A proof is valid ⇐⇒ each cycle is either inductive or co-inductive.

inductive cycle: there is an observation o on the left such that
that ε

(
max(r ,n)∈o {n}

)
= µ;

co-inductive cycle: there is an observation o on the right such
that that ε

(
max(r ,n)∈o {n}

)
= ν.

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 24 / 29

Unexpected bug

q0

1 :: 1

0 :: 0

*

p

p1

q q′

p′

q1

0

0

1

1

0

0
1

1

L(L) * L(A) (0 :: 0 :: 1 :: 1)ω < L(A)

α
L y ` p y, q y

L y ` p′ (0 : y), q1 (0 : y)
νR

L y ` p (0 : 0 : y),�q (0 : 0 : y)

α
L y ` p y, q y

L y ` p1 (1 : y),q′ (1 : y)
νR

L y ` �p (1 : 1 : y), q (1 : 1 : y)

L x ` p x, q x : α

Validity condition holds but does not respect the Büchi automata
semantics.Traces are broken.

Unexpected bug

q0

1 :: 1

0 :: 0

*

p

p1

q q′

p′

q1

0

0

1

1

0

0
1

1

L(L) * L(A) (0 :: 0 :: 1 :: 1)ω < L(A)

α
L y ` p y, q y

L y ` p′ (0 : y), q1 (0 : y)
νR

L y ` p (0 : 0 : y),�q (0 : 0 : y)

α
L y ` p y, q y

L y ` p1 (1 : y),q′ (1 : y)
νR

L y ` �p (1 : 1 : y), q (1 : 1 : y)

L x ` p x, q x : α

Validity condition holds but does not respect the Büchi automata
semantics.

Traces are broken.

Unexpected bug

q0

1 :: 1

0 :: 0

*

p

p1

q q′

p′

q1

0

0

1

1

0

0
1

1

L(L) * L(A) (0 :: 0 :: 1 :: 1)ω < L(A)

α
L y ` p y, q y

L y ` p′ (0 : y), q1 (0 : y)
νR

L y ` p (0 : 0 : y),�q (0 : 0 : y)

α
L y ` p y, q y

L y ` p1 (1 : y),q′ (1 : y)
νR

L y ` �p (1 : 1 : y), q (1 : 1 : y)

L x ` p x, q x : α

Validity condition holds but does not respect the Büchi automata
semantics.Traces are broken.

Workshop on Abella, Bedwyr, and related systems

µLKω and µLK∞

Guard Condition

A few counter-examples later

“Definition”: Refinement2 of Guard Condition
A proof is valid ⇐⇒ each cycle is either inductive or co-inductive.

inductive cycle: there is an observation o = o1, o2, . . . op on
the left such that:

o1 = op ;
max(r ,n)∈o {n} = n1 and ε(n1) = µ;

co-inductive cycle: there is an observation o = o1, o2, . . . op
on the right such that:

o1 = op ;
max(r ,n)∈o {n} = n1 and ε(n1) = ν.

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 26 / 29

Workshop on Abella, Bedwyr, and related systems

Conclusion

Outline

1 Introduction

2 Büchi Automata

3 µLK

4 µLKω and µLK∞

5 Conclusion

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 27 / 29

Workshop on Abella, Bedwyr, and related systems

Conclusion

µLK= µLKω ⊆ µLK∞

1 New logic µLKω and µLK∞ supporting mutual inductive and
coinductive definitions with implicit (co)induction;

2 they are strongly related with µLK: we can translate back and
forth between µLK proofs and cyclic proofs;

3 they mirror closely the mathematical structure of Büchi
automata and their computations: adequacy;

4 soundness and completeness of Büchi acceptance and
inclusion;

5 first result for cut-elimination of infinite proofs.

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 28 / 29

Workshop on Abella, Bedwyr, and related systems

Conclusion

µLK= µLKω ⊆ µLK∞

1 New logic µLKω and µLK∞ supporting mutual inductive and
coinductive definitions with implicit (co)induction;

2 they are strongly related with µLK: we can translate back and
forth between µLK proofs and cyclic proofs;

3 they mirror closely the mathematical structure of Büchi
automata and their computations: adequacy;

4 soundness and completeness of Büchi acceptance and
inclusion;

5 first result for cut-elimination of infinite proofs.

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 28 / 29

Workshop on Abella, Bedwyr, and related systems

Conclusion

µLK= µLKω ⊆ µLK∞

1 New logic µLKω and µLK∞ supporting mutual inductive and
coinductive definitions with implicit (co)induction;

2 they are strongly related with µLK: we can translate back and
forth between µLK proofs and cyclic proofs;

3 they mirror closely the mathematical structure of Büchi
automata and their computations: adequacy;

4 soundness and completeness of Büchi acceptance and
inclusion;

5 first result for cut-elimination of infinite proofs.

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 28 / 29

Workshop on Abella, Bedwyr, and related systems

Conclusion

µLK= µLKω ⊆ µLK∞

1 New logic µLKω and µLK∞ supporting mutual inductive and
coinductive definitions with implicit (co)induction;

2 they are strongly related with µLK: we can translate back and
forth between µLK proofs and cyclic proofs;

3 they mirror closely the mathematical structure of Büchi
automata and their computations: adequacy;

4 soundness and completeness of Büchi acceptance and
inclusion;

5 first result for cut-elimination of infinite proofs.

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 28 / 29

Workshop on Abella, Bedwyr, and related systems

Conclusion

µLK= µLKω ⊆ µLK∞

1 New logic µLKω and µLK∞ supporting mutual inductive and
coinductive definitions with implicit (co)induction;

2 they are strongly related with µLK: we can translate back and
forth between µLK proofs and cyclic proofs;

3 they mirror closely the mathematical structure of Büchi
automata and their computations: adequacy;

4 soundness and completeness of Büchi acceptance and
inclusion;

5 first result for cut-elimination of infinite proofs.

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 28 / 29

Workshop on Abella, Bedwyr, and related systems

Conclusion

The End

Thanks for listening !

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 29 / 29

Workshop on Abella, Bedwyr, and related systems

References I

[Bro06] James Brotherston. Sequent Calculus Proof Systems for
Inductive Definitions. PhD thesis, University of Edinburgh,
November 2006.

[San02] Luigi Santocanale. A calculus of circular proofs and its
categorical semantics. In Proceedings of Foundations of
Software Science and Computation Structures (FOSSACS02),
number 2303 in LNCS, pages 357–371. Springer, January 2002.

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 30 / 29

Workshop on Abella, Bedwyr, and related systems

More

Nondeterministic

Nondeterministic

q

0, 1

qi

q1

q0

q′1

q′0

0, 1

0, 1

0

1

0

1

1

0

1

0

L(A1) = (0|1)ω ⊆ L(A2) = (0|1)ω

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 31 / 29

Workshop on Abella, Bedwyr, and related systems

More

Encoding

Encoding

Encoding of A = (Q ,Σ, δ,QI,QF):

[A] = λw.
∨
q∈QI

[q]∅ w

[q]γ =



q if q ∈ γ

µ

λq.λw.∃w′
∨

q′∈δ(q,α), α∈Σ

w = α · w′ ∧ [q′]γ∪{q} w′
 if q ∈ QF

ν

λq.λw.∃w′
∨

q′∈δ(q,α), α∈Σ

w = α · w′ ∧ [q′]γ∪{q} w′
 else

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 32 / 29

Workshop on Abella, Bedwyr, and related systems

More

Adequacy

Adequacy

w ∈ L(A) ⇐⇒ ` TAUbwc: The proof tries all the possible
runs in parallel.

w ∈ L(A) ⇐⇒ there is at least one accepted run ⇐⇒ there
is at least on valid observation ⇐⇒ TAUbwc is provable;

There is a bijection between the runs and the observations of
the proof ` TAUbwc.

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 33 / 29

Workshop on Abella, Bedwyr, and related systems

More

Adequacy

Adequacy

w ∈ L(A) ⇐⇒ ` TAUbwc: The proof tries all the possible
runs in parallel.
w ∈ L(A) ⇐⇒ there is at least one accepted run ⇐⇒ there
is at least on valid observation ⇐⇒ TAUbwc is provable;

There is a bijection between the runs and the observations of
the proof ` TAUbwc.

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 33 / 29

L(A1) ⊆ L(A2)⇒ TA1Ux ` TA2Ux:
We prove the inclusion in µLK∞:

on the right we test all the runs in A2 in parallel;
on the left we branch at each disjunction: each infinite branch
denotes a run in A1;
for each branch of the proof:

if the run on the left is valid, then the word is in L(A1) so is in
L(A2). Then one of the run on the right is valid;
else the observation of TA1U in this branch is valid.

then these proofs are regular so are in µLKω;
then we can build a proof in µLK.

TA1Ux ` TA2Ux ⇒ L(A1) ⊆ L(A2):

If we prove the inclusion in one of the logics we can prove it in
µLK∞;
if w ∈ L(A1) then Π1 : ` TA1Ubwc and:

Π1

` TA1Ubwc
Π2

TA1Ubwc ` TA2Ubwc
` TA2Ubwc

cut

L(A1) ⊆ L(A2)⇒ TA1Ux ` TA2Ux:
We prove the inclusion in µLK∞:

on the right we test all the runs in A2 in parallel;

on the left we branch at each disjunction: each infinite branch
denotes a run in A1;
for each branch of the proof:

if the run on the left is valid, then the word is in L(A1) so is in
L(A2). Then one of the run on the right is valid;
else the observation of TA1U in this branch is valid.

then these proofs are regular so are in µLKω;
then we can build a proof in µLK.

TA1Ux ` TA2Ux ⇒ L(A1) ⊆ L(A2):

If we prove the inclusion in one of the logics we can prove it in
µLK∞;
if w ∈ L(A1) then Π1 : ` TA1Ubwc and:

Π1

` TA1Ubwc
Π2

TA1Ubwc ` TA2Ubwc
` TA2Ubwc

cut

L(A1) ⊆ L(A2)⇒ TA1Ux ` TA2Ux:
We prove the inclusion in µLK∞:

on the right we test all the runs in A2 in parallel;
on the left we branch at each disjunction: each infinite branch
denotes a run in A1;

for each branch of the proof:

if the run on the left is valid, then the word is in L(A1) so is in
L(A2). Then one of the run on the right is valid;
else the observation of TA1U in this branch is valid.

then these proofs are regular so are in µLKω;
then we can build a proof in µLK.

TA1Ux ` TA2Ux ⇒ L(A1) ⊆ L(A2):

If we prove the inclusion in one of the logics we can prove it in
µLK∞;
if w ∈ L(A1) then Π1 : ` TA1Ubwc and:

Π1

` TA1Ubwc
Π2

TA1Ubwc ` TA2Ubwc
` TA2Ubwc

cut

L(A1) ⊆ L(A2)⇒ TA1Ux ` TA2Ux:
We prove the inclusion in µLK∞:

on the right we test all the runs in A2 in parallel;
on the left we branch at each disjunction: each infinite branch
denotes a run in A1;
for each branch of the proof:

if the run on the left is valid, then the word is in L(A1) so is in
L(A2). Then one of the run on the right is valid;
else the observation of TA1U in this branch is valid.

then these proofs are regular so are in µLKω;
then we can build a proof in µLK.

TA1Ux ` TA2Ux ⇒ L(A1) ⊆ L(A2):

If we prove the inclusion in one of the logics we can prove it in
µLK∞;
if w ∈ L(A1) then Π1 : ` TA1Ubwc and:

Π1

` TA1Ubwc
Π2

TA1Ubwc ` TA2Ubwc
` TA2Ubwc

cut

L(A1) ⊆ L(A2)⇒ TA1Ux ` TA2Ux:
We prove the inclusion in µLK∞:

on the right we test all the runs in A2 in parallel;
on the left we branch at each disjunction: each infinite branch
denotes a run in A1;
for each branch of the proof:

if the run on the left is valid, then the word is in L(A1) so is in
L(A2). Then one of the run on the right is valid;

else the observation of TA1U in this branch is valid.

then these proofs are regular so are in µLKω;
then we can build a proof in µLK.

TA1Ux ` TA2Ux ⇒ L(A1) ⊆ L(A2):

If we prove the inclusion in one of the logics we can prove it in
µLK∞;
if w ∈ L(A1) then Π1 : ` TA1Ubwc and:

Π1

` TA1Ubwc
Π2

TA1Ubwc ` TA2Ubwc
` TA2Ubwc

cut

L(A1) ⊆ L(A2)⇒ TA1Ux ` TA2Ux:
We prove the inclusion in µLK∞:

on the right we test all the runs in A2 in parallel;
on the left we branch at each disjunction: each infinite branch
denotes a run in A1;
for each branch of the proof:

if the run on the left is valid, then the word is in L(A1) so is in
L(A2). Then one of the run on the right is valid;
else the observation of TA1U in this branch is valid.

then these proofs are regular so are in µLKω;
then we can build a proof in µLK.

TA1Ux ` TA2Ux ⇒ L(A1) ⊆ L(A2):

If we prove the inclusion in one of the logics we can prove it in
µLK∞;
if w ∈ L(A1) then Π1 : ` TA1Ubwc and:

Π1

` TA1Ubwc
Π2

TA1Ubwc ` TA2Ubwc
` TA2Ubwc

cut

L(A1) ⊆ L(A2)⇒ TA1Ux ` TA2Ux:
We prove the inclusion in µLK∞:

on the right we test all the runs in A2 in parallel;
on the left we branch at each disjunction: each infinite branch
denotes a run in A1;
for each branch of the proof:

if the run on the left is valid, then the word is in L(A1) so is in
L(A2). Then one of the run on the right is valid;
else the observation of TA1U in this branch is valid.

then these proofs are regular so are in µLKω;

then we can build a proof in µLK.

TA1Ux ` TA2Ux ⇒ L(A1) ⊆ L(A2):

If we prove the inclusion in one of the logics we can prove it in
µLK∞;
if w ∈ L(A1) then Π1 : ` TA1Ubwc and:

Π1

` TA1Ubwc
Π2

TA1Ubwc ` TA2Ubwc
` TA2Ubwc

cut

L(A1) ⊆ L(A2)⇒ TA1Ux ` TA2Ux:
We prove the inclusion in µLK∞:

on the right we test all the runs in A2 in parallel;
on the left we branch at each disjunction: each infinite branch
denotes a run in A1;
for each branch of the proof:

if the run on the left is valid, then the word is in L(A1) so is in
L(A2). Then one of the run on the right is valid;
else the observation of TA1U in this branch is valid.

then these proofs are regular so are in µLKω;
then we can build a proof in µLK.

TA1Ux ` TA2Ux ⇒ L(A1) ⊆ L(A2):

If we prove the inclusion in one of the logics we can prove it in
µLK∞;
if w ∈ L(A1) then Π1 : ` TA1Ubwc and:

Π1

` TA1Ubwc
Π2

TA1Ubwc ` TA2Ubwc
` TA2Ubwc

cut

L(A1) ⊆ L(A2)⇒ TA1Ux ` TA2Ux:
We prove the inclusion in µLK∞:

on the right we test all the runs in A2 in parallel;
on the left we branch at each disjunction: each infinite branch
denotes a run in A1;
for each branch of the proof:

if the run on the left is valid, then the word is in L(A1) so is in
L(A2). Then one of the run on the right is valid;
else the observation of TA1U in this branch is valid.

then these proofs are regular so are in µLKω;
then we can build a proof in µLK.

TA1Ux ` TA2Ux ⇒ L(A1) ⊆ L(A2):
If we prove the inclusion in one of the logics we can prove it in
µLK∞;

if w ∈ L(A1) then Π1 : ` TA1Ubwc and:

Π1

` TA1Ubwc
Π2

TA1Ubwc ` TA2Ubwc
` TA2Ubwc

cut

L(A1) ⊆ L(A2)⇒ TA1Ux ` TA2Ux:
We prove the inclusion in µLK∞:

on the right we test all the runs in A2 in parallel;
on the left we branch at each disjunction: each infinite branch
denotes a run in A1;
for each branch of the proof:

if the run on the left is valid, then the word is in L(A1) so is in
L(A2). Then one of the run on the right is valid;
else the observation of TA1U in this branch is valid.

then these proofs are regular so are in µLKω;
then we can build a proof in µLK.

TA1Ux ` TA2Ux ⇒ L(A1) ⊆ L(A2):
If we prove the inclusion in one of the logics we can prove it in
µLK∞;
if w ∈ L(A1) then Π1 : ` TA1Ubwc and:

Π1

` TA1Ubwc
Π2

TA1Ubwc ` TA2Ubwc
` TA2Ubwc

cut

Workshop on Abella, Bedwyr, and related systems

Results

Outline

6 Results

7 Mental Repository

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 35 / 29

Workshop on Abella, Bedwyr, and related systems

Results

µLK ⊆ µLKω ⊆ µLK∞

Inclusions of the Logics

Theorem 1

µLK ⊆ µLKω ⊆ µLK∞

LKω ⊆ µLK∞:

unfold the cycles infinitly often.

Ψ
α
Γ ` P
Π

Γ ` P : α =⇒

Ψ

Ψ
...

Π
Γ ` P �
Π

Γ ` P �

µLK ⊆ µLKω: not the same language. We need a translation
and a table of (co)-induction.

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 36 / 29

Workshop on Abella, Bedwyr, and related systems

Results

µLK ⊆ µLKω ⊆ µLK∞

Inclusions of the Logics

Theorem 1

µLK ⊆ µLKω ⊆ µLK∞

LKω ⊆ µLK∞: unfold the cycles infinitly often.

Ψ
α
Γ ` P
Π

Γ ` P : α =⇒

Ψ

Ψ
...

Π
Γ ` P �
Π

Γ ` P �

µLK ⊆ µLKω: not the same language. We need a translation
and a table of (co)-induction.

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 36 / 29

Workshop on Abella, Bedwyr, and related systems

Results

µLK ⊆ µLKω ⊆ µLK∞

Inclusions of the Logics

Theorem 1

µLK ⊆ µLKω ⊆ µLK∞

LKω ⊆ µLK∞: unfold the cycles infinitly often.

Ψ
α
Γ ` P
Π

Γ ` P : α =⇒

Ψ

Ψ
...

Π
Γ ` P �
Π

Γ ` P �

µLK ⊆ µLKω: not the same language. We need a translation
and a table of (co)-induction.

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 36 / 29

Workshop on Abella, Bedwyr, and related systems

Results

µLK ⊆ µLKω ⊆ µLK∞

Table of (co)-induction:

Q =
{
ε̂B | B closed operator of µLK , ε ∈ {µ; ν}

}
; ε(ε̂B) = ε;

〈_〉 : µLK formula → µLKω formula

〈P � Q〉 = 〈P〉 � 〈Q〉 � ∈ {∧;∨;⇒}

〈~x B〉 = ~x 〈B〉 ~ ∈ {∀;∃}

〈εB〉 = ε̂B ε ∈ {µ; ν}

〈a〉 = a

ε̂B D 〈B εB〉;

ε̂B < ε̂′B′ ⇐⇒ ε′B′ sub-formula of B

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 37 / 29

Workshop on Abella, Bedwyr, and related systems

Results

µLK ⊆ µLKω ⊆ µLK∞

Table of (co)-induction:

Q =
{
ε̂B | B closed operator of µLK , ε ∈ {µ; ν}

}
; ε(ε̂B) = ε;

〈_〉 : µLK formula → µLKω formula

〈P � Q〉 = 〈P〉 � 〈Q〉 � ∈ {∧;∨;⇒}

〈~x B〉 = ~x 〈B〉 ~ ∈ {∀;∃}

〈εB〉 = ε̂B ε ∈ {µ; ν}

〈a〉 = a

ε̂B D 〈B εB〉;

ε̂B < ε̂′B′ ⇐⇒ ε′B′ sub-formula of B

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 37 / 29

Workshop on Abella, Bedwyr, and related systems

Results

µLK ⊆ µLKω ⊆ µLK∞

Table of (co)-induction:

Q =
{
ε̂B | B closed operator of µLK , ε ∈ {µ; ν}

}
; ε(ε̂B) = ε;

〈_〉 : µLK formula → µLKω formula

〈P � Q〉 = 〈P〉 � 〈Q〉 � ∈ {∧;∨;⇒}

〈~x B〉 = ~x 〈B〉 ~ ∈ {∀;∃}

〈εB〉 = ε̂B ε ∈ {µ; ν}

〈a〉 = a

ε̂B D 〈B εB〉;

ε̂B < ε̂′B′ ⇐⇒ ε′B′ sub-formula of B

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 37 / 29

Workshop on Abella, Bedwyr, and related systems

Results

µLK ⊆ µLKω ⊆ µLK∞

Table of (co)-induction:

Q =
{
ε̂B | B closed operator of µLK , ε ∈ {µ; ν}

}
; ε(ε̂B) = ε;

〈_〉 : µLK formula → µLKω formula

〈P � Q〉 = 〈P〉 � 〈Q〉 � ∈ {∧;∨;⇒}

〈~x B〉 = ~x 〈B〉 ~ ∈ {∀;∃}

〈εB〉 = ε̂B ε ∈ {µ; ν}

〈a〉 = a

ε̂B D 〈B εB〉;

ε̂B < ε̂′B′ ⇐⇒ ε′B′ sub-formula of B

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 37 / 29

Workshop on Abella, Bedwyr, and related systems

Results

µLK ⊆ µLKω ⊆ µLK∞

µLK ⊆ µLKω

Lemma: Functoriality in µLKω

If B is monotonic (i.e. the pi appears only in positive positions in B)
then for all predicates P1,P2, . . .Pn this rule is admissible in µLKω:
Let B a predicate operator: B = λp.λx. A and P and Q some
predicates then this rule is admissible in µLKω:

〈P〉 x ` 〈Q〉 x
〈B P〉 t ` 〈B Q〉 t functo

and all the observations involve names n such that for all names m
appearing in 〈P〉 or 〈Q〉, n < m.

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 38 / 29

Theorem 1

Γ `µLK ∆ ⇒ 〈Γ〉 `µLKω 〈∆〉

By induction on the size of the proof then case analysis on the first
rule.

Π1

Γ ` ∆,S t
Π2

S x ` BS x
Γ ` ∆, νB t νR

↓

Π∗1
〈Γ〉 ` 〈∆〉, 〈S〉 t

Π∗2
〈S〉 x ` 〈BS〉 x

α

〈S〉 x ` ν̂B x

〈S〉 x, 〈S〉 x ` ν̂B x
WL

〈S〉 x, 〈BS〉 x ` 〈B(νB)〉 x
functo

〈S〉 x ` 〈B(νB)〉 x
cut

〈S〉 x ` ν̂B x : α
νR

〈Γ〉 ` 〈∆〉, ν̂B t
cut, cut,∀R ,⇒ R , ...

Workshop on Abella, Bedwyr, and related systems

Results

µLKω ⊆ µLK

Theorem 2

µLKω ⊆ µLK

Soon a complete proof.

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 40 / 29

Workshop on Abella, Bedwyr, and related systems

Results

Cut Elimination

Cut Elimination

Proof of normalisation of µLK∞.

We must show:
1 normalisation: the reduction rules provides a limit proof;

d(Π,Π′) =
1

1 + minimum depth of two different nodes

2 validity: the limit proof is also valid.

We focus on a sub-logic containing only (co)-inductive formula:
µL0.
{ given a formula: unique infinite observation.

Exploration of the reduction
The sub-part of the proof which is explored by the reduction.

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 41 / 29

Workshop on Abella, Bedwyr, and related systems

Results

Cut Elimination

Cut Elimination

Proof of normalisation of µLK∞. We must show:
1 normalisation: the reduction rules provides a limit proof;

d(Π,Π′) =
1

1 + minimum depth of two different nodes

2 validity: the limit proof is also valid.

We focus on a sub-logic containing only (co)-inductive formula:
µL0.
{ given a formula: unique infinite observation.

Exploration of the reduction
The sub-part of the proof which is explored by the reduction.

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 41 / 29

Workshop on Abella, Bedwyr, and related systems

Results

Cut Elimination

Cut Elimination

Proof of normalisation of µLK∞. We must show:
1 normalisation: the reduction rules provides a limit proof;

d(Π,Π′) =
1

1 + minimum depth of two different nodes

2 validity: the limit proof is also valid.

We focus on a sub-logic containing only (co)-inductive formula:
µL0.

{ given a formula: unique infinite observation.

Exploration of the reduction
The sub-part of the proof which is explored by the reduction.

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 41 / 29

Workshop on Abella, Bedwyr, and related systems

Results

Cut Elimination

Cut Elimination

Proof of normalisation of µLK∞. We must show:
1 normalisation: the reduction rules provides a limit proof;

d(Π,Π′) =
1

1 + minimum depth of two different nodes

2 validity: the limit proof is also valid.

We focus on a sub-logic containing only (co)-inductive formula:
µL0.
{ given a formula: unique infinite observation.

Exploration of the reduction
The sub-part of the proof which is explored by the reduction.

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 41 / 29

Workshop on Abella, Bedwyr, and related systems

Results

Cut Elimination

Cut Elimination

Proof of normalisation of µLK∞. We must show:
1 normalisation: the reduction rules provides a limit proof;

d(Π,Π′) =
1

1 + minimum depth of two different nodes

2 validity: the limit proof is also valid.

We focus on a sub-logic containing only (co)-inductive formula:
µL0.
{ given a formula: unique infinite observation.

Exploration of the reduction
The sub-part of the proof which is explored by the reduction.

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 41 / 29

Workshop on Abella, Bedwyr, and related systems

Results

Cut Elimination

Strategy of reduction
Always reduce the first cut rule which is no followed by another cut
rule.

Lemma 1: Exploration
With this strategy, the exploration is connex.

Lemma 2: Dual observations
Two dual observations can not be both valid.

Lemma 3

For a cut rule:
Π1 Π2

s cut . If there is an infinite observation of the
cut formula in Πi contained in the exploration, then there is a dual
observation in Π1−i in the exploration.

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 42 / 29

Workshop on Abella, Bedwyr, and related systems

Results

Cut Elimination

Strategy of reduction
Always reduce the first cut rule which is no followed by another cut
rule.

Lemma 1: Exploration
With this strategy, the exploration is connex.

Lemma 2: Dual observations
Two dual observations can not be both valid.

Lemma 3

For a cut rule:
Π1 Π2

s cut . If there is an infinite observation of the
cut formula in Πi contained in the exploration, then there is a dual
observation in Π1−i in the exploration.

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 42 / 29

Workshop on Abella, Bedwyr, and related systems

Results

Cut Elimination

Strategy of reduction
Always reduce the first cut rule which is no followed by another cut
rule.

Lemma 1: Exploration
With this strategy, the exploration is connex.

Lemma 2: Dual observations
Two dual observations can not be both valid.

Lemma 3

For a cut rule:
Π1 Π2

s cut . If there is an infinite observation of the
cut formula in Πi contained in the exploration, then there is a dual
observation in Π1−i in the exploration.

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 42 / 29

Workshop on Abella, Bedwyr, and related systems

Results

Cut Elimination

Strategy of reduction
Always reduce the first cut rule which is no followed by another cut
rule.

Lemma 1: Exploration
With this strategy, the exploration is connex.

Lemma 2: Dual observations
Two dual observations can not be both valid.

Lemma 3

For a cut rule:
Π1 Π2

s cut . If there is an infinite observation of the
cut formula in Πi contained in the exploration, then there is a dual
observation in Π1−i in the exploration.

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 42 / 29

Workshop on Abella, Bedwyr, and related systems

Results

Cut Elimination

Lemma 4
There exists an infinite branch in the exploration which has a valid
observation of a formula in the root.

Lemma 5
If there exists an observation from the root in the exploration, then
the reduction produces at least the sequents of it.

Lemma 4 + Lemma 5 { Normalisation + Validity !

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 43 / 29

Workshop on Abella, Bedwyr, and related systems

Results

Cut Elimination

Lemma 4
There exists an infinite branch in the exploration which has a valid
observation of a formula in the root.

Lemma 5
If there exists an observation from the root in the exploration, then
the reduction produces at least the sequents of it.

Lemma 4 + Lemma 5 { Normalisation + Validity !

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 43 / 29

Workshop on Abella, Bedwyr, and related systems

Results

Cut Elimination

Lemma 4
There exists an infinite branch in the exploration which has a valid
observation of a formula in the root.

Lemma 5
If there exists an observation from the root in the exploration, then
the reduction produces at least the sequents of it.

Lemma 4 + Lemma 5 { Normalisation + Validity !

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 43 / 29

Workshop on Abella, Bedwyr, and related systems

Results

Cut Elimination

Results

Infinite proofs: cut-elimination, regular proofs = µLKω

µLK: cut-elimination; as expressive as µLKω

µLK = µLKω ⊆ µLK∞

Cyclic proofs: consistent, as expressive as µLK

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 44 / 29

Workshop on Abella, Bedwyr, and related systems

Results

Cut Elimination

Results

Infinite proofs: cut-elimination, regular proofs = µLKω

µLK: cut-elimination; as expressive as µLKω

µLK = µLKω ⊆ µLK∞

Cyclic proofs: consistent, as expressive as µLK

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 44 / 29

Workshop on Abella, Bedwyr, and related systems

Results

Cut Elimination

Results

Infinite proofs: cut-elimination, regular proofs = µLKω

µLK: cut-elimination; as expressive as µLKω

µLK = µLKω ⊆ µLK∞

Cyclic proofs: consistent, as expressive as µLK

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 44 / 29

Workshop on Abella, Bedwyr, and related systems

Mental Repository

Outline

6 Results

7 Mental Repository

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 45 / 29

Workshop on Abella, Bedwyr, and related systems

Mental Repository

Encoding

Encoding from the Büchi automata to formulas of a logic so as to
reason over the automata within the logic.

We must trust the encoding (and the logic) for working within the
logic instead of manipulating automata directly.

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 46 / 29

	Introduction
	Büchi Automata
	Definition: Büchi Automata
	Goals

	 LK
	LK and LK
	Guard Condition

	Conclusion
	Appendix
	Nondeterministic
	Encoding
	Adequacy
	Provability of Inclusion

	Results
	LK LK LK
	LK LK
	Cut Elimination

	Mental Repository

