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Introduction

Purpose

Encode Büchi automata as formulas in a proof-theoretical
framework with (co)-induction.

{

Logics dealing with infinite proofs, cyclic proofs; mixing inductive
and co-inductive formulas; strongly related; well describe Büchi

Automata.
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Introduction

Big Picture
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Infinite proofs: satisfies adequacy, impractical

Common and used: explicit (co)-induction

µLK ⊆ µLKω ⊆ µLK∞

Cyclic proofs

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 3 / 29



Workshop on Abella, Bedwyr, and related systems

Introduction

Big Picture

q1 q′1

1

0

1

0

↓

Infinite proofs: satisfies adequacy, impractical
Common and used: explicit (co)-induction

µLK ⊆ µLKω ⊆ µLK∞

Cyclic proofs

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 3 / 29



Workshop on Abella, Bedwyr, and related systems

Introduction

Big Picture

q1 q′1

1

0

1

0

↓

Infinite proofs: satisfies adequacy, impractical
Common and used: explicit (co)-induction

µLK ⊆ µLKω ⊆ µLK∞

Cyclic proofs

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 3 / 29



Workshop on Abella, Bedwyr, and related systems

Introduction

Outline

1 Introduction

2 Büchi Automata

3 µLK

4 µLKω and µLK∞

5 Conclusion

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 4 / 29



Workshop on Abella, Bedwyr, and related systems

Büchi Automata

Outline

1 Introduction

2 Büchi Automata

3 µLK

4 µLKω and µLK∞

5 Conclusion

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 5 / 29



Workshop on Abella, Bedwyr, and related systems

Büchi Automata

Definition: Büchi Automata

Büchi Automata
Definition (Büchi Automata)
A Büchi automaton is a quintuple A = (Q ,Σ, δ,QI,QF ), where

Q is a finite set (the states);

Σ is an alphabet;

δ : Q × Σ→ P(Q) the nondeterministic transition function;

QI ⊆ Q the initial states and QF ⊆ Q the final states.

Definition (Acceptance condition)
A run α on a word is accepting by an automaton ⇐⇒ α visits
a final state infinitely often;

A word is recognized by an automaton ⇐⇒ there exists an
accepting run on it.
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Büchi Automata

Definition: Büchi Automata

An Example of a Büchi Automaton

q1 q′1

1

0

1

0

L(A) = (0∗1)ω

`? TAU 1ω

“Proof”
By reading the word 1ω, I can build step by step an accepting run
in A:

“From state q1, I read 1 and jump to q1 and so on so forth.”
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Büchi Automata

Definition: Büchi Automata

An Example of a Büchi Automaton

q1 q′1

1

0

1

0

`? [q1] 1ω

...
`? [q1] 1ω ?

`? ∃tl (1 :: 1ω = 1 :: tl ∧ [q1] tl) ∨
(
1 :: 1ω = 0 :: tl ∧ [q′1] tl

) ∃R ,∨R1

`? [q1] 1 :: 1ω ?
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Büchi Automata

Goals

Goals

Adequacy: w ∈ L(A) ⇐⇒ ` TAUbwc

and a link between
computations in Büchi automata and proofs of their properties;

Soundness and completeness of inclusion: our main problem
is the inclusion. We must show that

TA1Ux ` TA2Ux ⇐⇒ L(A1) ⊆ L(A2).

Proof of inclusion{ inclusion and a certificate;

Usable and generic logic: properties over automata are used
in a wider context.
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µLK

Outline

1 Introduction

2 Büchi Automata

3 µLK

4 µLKω and µLK∞

5 Conclusion
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µLK

µLK

Definition (Formula of µLK)

P ::= > | ⊥

| ∃x. P | ∀x. P x ∈ V
| P ∧ P | P ∨ P | P ⇒ P
| s = t t ,s some terms

| p p ∈ Vf

| µ(λp.λx1. . . . λxn. P) t1 . . . tn p ∈ Vf , ti a term
| ν(λp.λx1. . . . λxn. P) t1 . . . tn p ∈ Vf , ti a term

N = µBnat = µ (λpn .λx. x = 0 ∨ (∃y x = s(y) ∧ pn y))

S = νBstream = ν (λps .λw. ∃w′∃n w = n :w′ ∧ N n ∧ ps w′)
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µLK

Rules of µLK
Sequent calculus:

identity group: Ax, cut, = R, = L ;

logical group: >, ⊥, ∧Li , ∧R, ∨L , ∨Ri ,⇒ L ,⇒ R, ∀L , ∀R,
∃L , ∃R;

structural group: WL ,WR (weak), Cl,CR (contraction).

+ explicit (co)-induction:

Γ ` B(µB) t
Γ ` µB t

µR
Γ, S t ` P BS x ` S x

Γ, µB t ` P
µL

Γ ` St St ` BSt
Γ ` νB t νR

Γ, B(νB) t ` P
Γ, νB t ` P νL
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µLK

Γ ` B(µB) t
Γ ` µB t

µR
Γ, S t ` P BS x ` S x

Γ, µB t ` P
µL

Φ0 or Φn

Γ ` t = 0 ∨ ∃y t = s(y) ∧ µBnat y
Γ ` µBnat t

µR

Π
S t ` P

Ψ0

` S 0
Ψn

S x ` S (s(x))

x = 0 ∨ ∃y x = s(y) ∧ S y ` S x
∨L , (∃L),= L

µBnat t ` P
µL
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µLK

Γ ` St St ` BSt
Γ ` νB t νR

Γ, B(νB) t ` P
Γ, νB t ` P νL

Γ ` S t ∃t ′∃n t = n : t ′ ∧ N n ∧ S t ′ ` S t
Γ ` νBstream t νR

t = n :: t ′ ∧ νBstream t ′

νBstream t ` P νL
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µLK

µLK vs. Büchi automata

q1 q′1

1

0

1

0

[q1] = ν(λq1.λw. ∃w′

(w = 1 :: w′ ∧ q1 w′)∨(
w = 0 :: w′ ∧ [q′1] w′

)
)

[q′1] = µ(λq′1.λw. ∃w′

(w = 1 :: w′ ∧ [q1] w′)∨(
w = 0 :: w′ ∧ q′1 w′

)
)
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Which S? Why?
`µLK [q1] 1ω

νR

[q1] = ν(λq1.λw. ∃w′
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w = 0 :: w′ ∧ [q′1] w′
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µLKω and µLK∞

Outline

1 Introduction

2 Büchi Automata

3 µLK

4 µLKω and µLK∞

5 Conclusion
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µLKω and µLK∞

µLKω and µLK∞

Explicit (co)-induction rules{ replaced by some cycles or infinite
branches.

µBeven = µ (λpn .λx. x = 0 ∨ (∃y x = s(s(y)) ∧ pn y))

t = 0 ` µBnat t

↑ α

µBeven t ′ ` µBnat t ′

µBeven t ′ ` µBnat (s(t ′))

µBeven t ′ ` µBnat (s(s(t ′)))

t = s(s(t ′)) ∧ µBeven t ′ ` µBnat t
µBeven t ` µBnat t

: α

µL ′
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µLKω and µLK∞

Guard Condition

Guard Condition
Litterature:

1 Brotherstone: No co-inductive formula; “infinite descent”;
[Bro06]

2 Santocanale: No cut rule; inductive and co-inductive formula;
[San02]

First bug

P = µ(λp. ν(λq. p))

Q = ν(λq. P)

↑ α

` Q
` P

µR

` Q : α
νR

` P
µR

↑ τ

P ` ⊥
Q ` ⊥ νL

P ` ⊥ : τ
µL

` ⊥
cut
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µLKω and µLK∞

Guard Condition

Guard Condition - interleaved (co)-inductive formulas
First bug

P = µ(λp. ν(λq. p))

Q = ν(λq. P)

↑ α

` Q
` P

µR

` Q : α
νR

` P
µR

↑ τ

P ` ⊥
Q ` ⊥ νL

P ` ⊥ : τ
µL

` ⊥
cut

Fix

P =µ Q

Q =ν P
P > Q

�
�↑ α

` Q
` P

µRP

` Q : α
νRQ

` P
µRP

↑ τ

P ` ⊥
Q ` ⊥

νLQ

P ` ⊥ : τ
µLP

` ⊥
cut
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“Definition”: table of (co)-induction

(Q , ε, D, <)

Q : names of (co)-inductive formulas (defined atoms);

ε : Q → {µ; ν};

P D A : A is the unfolding of P ∈ Q ;

<: Who is on the top of who?

Second bug

Nat D Bnat Nat ε(Nat) = µ

Bnat = λpn. λn. n = 0 ∨ ∃n′ n = s(n′) ∧ pn n′

Bnat Nat t ` Bnat Nat t Ax

Bnat Nat t ` Nat t
µR

↑ α

Nat t ` ⊥
Bnat Nat t ` ⊥ cut

Nat t ` ⊥ : α
µL
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Guard Condition - observation

t = 0 ` Nat t

↑ α

s5 : Even t ′ ` Nat t ′

s4 : Even t ′ ` Nat (s(t ′))

s3 : Even t ′ ` Nat (s(s(t ′)))

s2 : t = s(s(t ′)) ∧ Even t ′ ` Nat t
s1 : (A =)Even t ` Nat t : α

µL

OA (α) =
(µL ,Even)

“Definition”: Observations
The trace of A ∈ s0 in the branch s0, s1, . . . is a serie of
formulas A0,A1, . . . such that:

Ai ∈ si (on the same side);
if Ai is active in the conclusion si then Ai+1 is active in the
premise of si+1.

The observation of a formula in a branch is the serie of (r , A )
where r is a (co)-inductive rules applied to A appearing in the
trace.
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µLKω and µLK∞

Guard Condition

Bnat Nat t ` Bnat Nat t Ax

Bnat Nat t ` Nat t
µR

�
�↑ α

Nat t ` Nat t
Bnat Nat t ` ⊥ cut

Nat t ` ⊥ : α
µL

“Definition”: Refinement of Guard Condition
A proof is valid ⇐⇒ each infinite brach is either inductive or
co-inductive.

inductive branch: there is an observation o on the left such
that that ε

(
max(r ,n)∈Inf(o) {n}

)
= µ;

co-inductive branch: there is an observation o on the right
such that that ε

(
max(r ,n)∈Inf(o) {n}

)
= ν.
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µLKω and µLK∞

Guard Condition

µLK∞

Bijection between observations of [q] t and runs starting with
q;

completeness and soundness of acceptance;

completeness and soundness of inclusion.

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 23 / 29



Workshop on Abella, Bedwyr, and related systems

µLKω and µLK∞

Guard Condition

µLK∞

Bijection between observations of [q] t and runs starting with
q;

completeness and soundness of acceptance;

completeness and soundness of inclusion.

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 23 / 29



Workshop on Abella, Bedwyr, and related systems

µLKω and µLK∞

Guard Condition

µLK∞

Bijection between observations of [q] t and runs starting with
q;

completeness and soundness of acceptance;

completeness and soundness of inclusion.

Lucca Hirschi Workshop on Abella, Bedwyr, and related systems 23 / 29



Workshop on Abella, Bedwyr, and related systems

µLKω and µLK∞

Guard Condition

“Definition”: Refinement of Guard Condition
A proof is valid ⇐⇒ each cycle is either inductive or co-inductive.

inductive cycle: there is an observation o on the left such that
that ε

(
max(r ,n)∈o {n}

)
= µ;

co-inductive cycle: there is an observation o on the right such
that that ε

(
max(r ,n)∈o {n}

)
= ν.
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Unexpected bug

q0

1 :: 1

0 :: 0

*

p

p1

q q′

p′

q1

0

0

1

1

0

0
1

1

L(L) * L(A) (0 :: 0 :: 1 :: 1)ω < L(A)

# α
L y ` p y, q y

L y ` p′ (0 : y), q1 (0 : y)
νR

L y ` p (0 : 0 : y),�q (0 : 0 : y)

# α
L y ` p y, q y

L y ` p1 (1 : y),q′ (1 : y)
νR

L y ` �p (1 : 1 : y), q (1 : 1 : y)

L x ` p x, q x : α

Validity condition holds but does not respect the Büchi automata
semantics.Traces are broken.
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µLKω and µLK∞

Guard Condition

A few counter-examples later

“Definition”: Refinement2 of Guard Condition
A proof is valid ⇐⇒ each cycle is either inductive or co-inductive.

inductive cycle: there is an observation o = o1, o2, . . . op on
the left such that:

o1 = op ;
max(r ,n)∈o {n} = n1 and ε(n1) = µ;

co-inductive cycle: there is an observation o = o1, o2, . . . op
on the right such that:

o1 = op ;
max(r ,n)∈o {n} = n1 and ε(n1) = ν.
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Conclusion

Outline

1 Introduction

2 Büchi Automata

3 µLK

4 µLKω and µLK∞

5 Conclusion
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Conclusion

µLK= µLKω ⊆ µLK∞

1 New logic µLKω and µLK∞ supporting mutual inductive and
coinductive definitions with implicit (co)induction;

2 they are strongly related with µLK: we can translate back and
forth between µLK proofs and cyclic proofs;

3 they mirror closely the mathematical structure of Büchi
automata and their computations: adequacy;

4 soundness and completeness of Büchi acceptance and
inclusion;

5 first result for cut-elimination of infinite proofs.
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Conclusion

The End

Thanks for listening !
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More

Nondeterministic

Nondeterministic

q

0, 1

qi

q1

q0

q′1

q′0

0, 1

0, 1

0

1

0

1

1

0

1

0

L(A1) = (0|1)ω ⊆ L(A2) = (0|1)ω
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More

Encoding

Encoding

Encoding of A = (Q ,Σ, δ,QI,QF ):

[A] = λw.
∨
q∈QI

[q]∅ w

[q]γ =



q if q ∈ γ

µ

λq.λw.∃w′
∨

q′∈δ(q,α), α∈Σ

w = α · w′ ∧ [q′]γ∪{q} w′
 if q ∈ QF

ν

λq.λw.∃w′
∨

q′∈δ(q,α), α∈Σ

w = α · w′ ∧ [q′]γ∪{q} w′
 else
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More

Adequacy

Adequacy

w ∈ L(A) ⇐⇒ ` TAUbwc: The proof tries all the possible
runs in parallel.

w ∈ L(A) ⇐⇒ there is at least one accepted run ⇐⇒ there
is at least on valid observation ⇐⇒ TAUbwc is provable;

There is a bijection between the runs and the observations of
the proof ` TAUbwc.
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L(A1) ⊆ L(A2)⇒ TA1Ux ` TA2Ux:
We prove the inclusion in µLK∞:

on the right we test all the runs in A2 in parallel;
on the left we branch at each disjunction: each infinite branch
denotes a run in A1;
for each branch of the proof:

if the run on the left is valid, then the word is in L(A1) so is in
L(A2). Then one of the run on the right is valid;
else the observation of TA1U in this branch is valid.

then these proofs are regular so are in µLKω;
then we can build a proof in µLK.

TA1Ux ` TA2Ux ⇒ L(A1) ⊆ L(A2):

If we prove the inclusion in one of the logics we can prove it in
µLK∞;
if w ∈ L(A1) then Π1 : ` TA1Ubwc and:

Π1

` TA1Ubwc
Π2

TA1Ubwc ` TA2Ubwc
` TA2Ubwc

cut
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Results

µLK ⊆ µLKω ⊆ µLK∞

Inclusions of the Logics

Theorem 1

µLK ⊆ µLKω ⊆ µLK∞

LKω ⊆ µLK∞:

unfold the cycles infinitly often.

Ψ
# α
Γ ` P
Π

Γ ` P : α =⇒

Ψ

Ψ
...

Π
Γ ` P �
Π

Γ ` P �

µLK ⊆ µLKω: not the same language. We need a translation
and a table of (co)-induction.
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Results

µLK ⊆ µLKω ⊆ µLK∞

Table of (co)-induction:

Q =
{
ε̂B | B closed operator of µLK , ε ∈ {µ; ν}

}
; ε(ε̂B) = ε;

〈_〉 : µLK formula → µLKω formula

〈P � Q〉 = 〈P〉 � 〈Q〉 � ∈ {∧;∨;⇒}

〈~x B〉 = ~x 〈B〉 ~ ∈ {∀;∃}

〈εB〉 = ε̂B ε ∈ {µ; ν}

〈a〉 = a

ε̂B D 〈B εB〉;

ε̂B < ε̂′B′ ⇐⇒ ε′B′ sub-formula of B
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Results

µLK ⊆ µLKω ⊆ µLK∞

µLK ⊆ µLKω

Lemma: Functoriality in µLKω

If B is monotonic (i.e. the pi appears only in positive positions in B)
then for all predicates P1,P2, . . .Pn this rule is admissible in µLKω:
Let B a predicate operator: B = λp.λx. A and P and Q some
predicates then this rule is admissible in µLKω:

〈P〉 x ` 〈Q〉 x
〈B P〉 t ` 〈B Q〉 t functo

and all the observations involve names n such that for all names m
appearing in 〈P〉 or 〈Q〉, n < m.
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Theorem 1

Γ `µLK ∆ ⇒ 〈Γ〉 `µLKω 〈∆〉

By induction on the size of the proof then case analysis on the first
rule.

Π1

Γ ` ∆,S t
Π2

S x ` BS x
Γ ` ∆, νB t νR

↓

Π∗1
〈Γ〉 ` 〈∆〉, 〈S〉 t

Π∗2
〈S〉 x ` 〈BS〉 x

# α

〈S〉 x ` ν̂B x

〈S〉 x, 〈S〉 x ` ν̂B x
WL

〈S〉 x, 〈BS〉 x ` 〈B(νB)〉 x
functo

〈S〉 x ` 〈B(νB)〉 x
cut

〈S〉 x ` ν̂B x : α
νR

〈Γ〉 ` 〈∆〉, ν̂B t
cut, cut,∀R ,⇒ R , ...
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Results

µLKω ⊆ µLK

Theorem 2

µLKω ⊆ µLK

Soon a complete proof.
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Results

Cut Elimination

Cut Elimination

Proof of normalisation of µLK∞.

We must show:
1 normalisation: the reduction rules provides a limit proof;

d(Π,Π′) =
1

1 + minimum depth of two different nodes

2 validity: the limit proof is also valid.

We focus on a sub-logic containing only (co)-inductive formula:
µL0.
{ given a formula: unique infinite observation.

Exploration of the reduction
The sub-part of the proof which is explored by the reduction.
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Results

Cut Elimination

Strategy of reduction
Always reduce the first cut rule which is no followed by another cut
rule.

Lemma 1: Exploration
With this strategy, the exploration is connex.

Lemma 2: Dual observations
Two dual observations can not be both valid.

Lemma 3

For a cut rule:
Π1 Π2

s cut . If there is an infinite observation of the
cut formula in Πi contained in the exploration, then there is a dual
observation in Π1−i in the exploration.
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Results

Cut Elimination

Lemma 4
There exists an infinite branch in the exploration which has a valid
observation of a formula in the root.

Lemma 5
If there exists an observation from the root in the exploration, then
the reduction produces at least the sequents of it.

Lemma 4 + Lemma 5 { Normalisation + Validity !
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Results

Cut Elimination

Results

Infinite proofs: cut-elimination, regular proofs = µLKω

µLK: cut-elimination; as expressive as µLKω

µLK = µLKω ⊆ µLK∞

Cyclic proofs: consistent, as expressive as µLK
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Outline

6 Results

7 Mental Repository
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Mental Repository

Encoding

Encoding from the Büchi automata to formulas of a logic so as to
reason over the automata within the logic.

We must trust the encoding (and the logic) for working within the
logic instead of manipulating automata directly.
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