
L3 Programming September 8, 2015

OCaml Cheatsheet

Note: this document comes from a previous course (by Sylvain Schmitz).
The explanations of the OCaml syntax in this sheet are by no means intended to be
complete or even sufficient; check http://mirror.ocamlcore.org/ocaml-tutorial.

org/ for further information.

1 The let Keyword, Functions

Defining constants and functions in Caml is done through the let keyword.

• let x = 2;; defines a constant x with value 2.

• let double a = 2 ∗ a;; defines a function double that returns the double of its pa-
rameter. Another possible syntax is let double = fun a → 2 ∗ a;;.

• let x = 〈value〉 in 〈expr〉 ;; binds x to value, but only in expr.

2 The OCaml interpreter

The command ocaml (without parameters) launches the Caml interpreter. You can type
Caml instructions inside and immediately get their result—it is highly recommended to
use the ledit command with ocaml as argument to make interacting with this inter-
preter bearable.

For instance, you can type:

let x = 2 ; ;
val x : i n t = 2
let double = fun a→ 2 ∗ a ; ;
val double : i n t → i n t = 〈 fun 〉

The shell returns information about the newly defined object in the form val 〈name〉 : 〈type〉 = 〈value〉.
Function types are of the form 〈type param〉 → 〈 type result 〉.

You may want to import a source file in the interpreter. You can do so by using the
command #use ”file .ml”;;. You can also directly run a file outside the interpreter by:
ocaml file.ml. If you are using an external module, you might need to provide the
ocaml command with a path, e.g. ocaml -I +labltk to add the LablTK library.

3 Polymorphism, Pairs

Let us look at the identity function:

let id = fun x→ x
val id : ’ a→ ’ a = 〈 fun 〉

1

http://mirror.ocamlcore.org/ocaml-tutorial.org/
http://mirror.ocamlcore.org/ocaml-tutorial.org/

L3 Programming September 8, 2015

This is a polymorphic function. It can take any type as input, and returns a value
of the same type.

Given x and y, a pair can be built by using the notation (x, y). If x is of type ’a and
y of type ’b, then (x, y) is of product type ’a ∗ ’b.

Exercise 1. Write a function dup of type ’a → (’a ∗ ’a) that, given a value, returns a
pair with the input value as both first and second elements.

4 Curryfication

Let us redefine addition:

let add i t i on x y = x + y ; ;
val add i t i on : i n t → i n t → i n t = 〈 fun 〉
add i t i on 2 ; ;
− : i n t → i n t = 〈 fun 〉

Defined like this, addition is a function of type int → (int → int), that is, a function
that takes an integer and returns ‘a function that takes an integer and returns an integer’.
This is called curryfication. This is the preferred way of defining functions with more
than one parameter (instead of using pairs).

Exercise 2. Write a function curry of type ((’ a ∗ ’b) → ’c) → ’a → ’b → ’c, that, given
a function that uses a pair to encode parameters, returns a currified function.

Exercise 3. Write a function decurry of type (’a → ’b → ’c) → (’a ∗ ’b) → ’c that per-
forms the opposite operation.

Exercise 4. The function List .map of type (’a → ’b) → ’a list → ’b list takes a function
and a list and returns the list obtained by applying the function to each element of the
initial list. Write a function add1 that takes a list and adds 1 to each element of this list.

5 Recursion

If you want to define a recursive function, then the rec keyword must be added:

let f x = i f x = 0 then 0 else (1 + f (x − 1)) ; ;
Error : Unbound value f
let rec f x = i f x=0 then 0 else (1 + f (x − 1)) ; ;
val f : i n t → i n t = 〈 fun 〉

Exercise 5. Write a function fibonacci such that fibonacci n returns the nth term of the
Fibonacci sequence.

Exercise 6. Test your Fibonacci function with n = 5, then n = 400. If this does not
terminate within a reasonable time, improve your function!

2

L3 Programming September 8, 2015

6 Sum Types, Pattern Matching

A sum type can be defined by the following syntax:

type sumtype = Firs tCase [of type] |
> SecondCase [of type] . . . |
> LastCase [of type]

This can be recursive. For example, Caml lists could be defined by:

type ’ a l i s t = Ni l | Cons of ’ a ∗ ’ a l i s t

Then, you could build a list by using the syntax Cons(1, Cons(2, Nil)).

Exercise 7. Define a type that can represent propositional formulæ with the Not, And,
and Or connectives and a Var constructor for variable names (using strings for names).

The interest of sum types lies with pattern matching. You can use the following
constructions to filter x based on its type:

match (x) with
> | Firs tCase [(v1)] → . . .
> . . .
> | LastCase [(vn)] → . . .

An extremely useful construction is function x, which is syntactic sugar for fun x → match x with.

Exercise 8. A propositional formula is in negative normal form if the negation operator
is only applied to propositions.

Define a fonction nnf that turns a propositional formula into an equivalent formula
in negative normal form.

Exercise 9. A litteral is either a variable or the negation of a variable. A propositional
formula is in conjunctive normal form if it is of the form:∧

i

∨
j

`i,j (where `i,j are litterals)

Define a function cnf that turns a propositional formula into an equivalent expression
in conjunctive normal form.

Exercise 10. A list of variable assignements can be given in the following form (this
uses the Caml notation for lists):

let as soc = [(”x” , true) ; (”y” , fa l se) ; (”z” , true)] ; ;
val as soc : (s t r i n g ∗ bool) l i s t = 〈 val 〉

Define a function eval of type (string ∗ bool) list → propform → bool that evaluates a
propositional formula given a variable assignement. You might want to use the function
List .assoc; check its documentation using man List.

Exercise 11. Define a function fv that, given a propositional formula, returns the list
of variables that appear inside, without duplicates.

3

L3 Programming September 8, 2015

Exercise 12. Define a function compile that, given a propositional formula, prints on the
standard output a Caml function that has the behaviour of the formula. For example,
you should be able to have something like:

compi le (And(Or(Var ”x” , Var ”y”) , Or(Var ”x” , Var ”z”))) ; ;
fun x y z → ((x) | | (y)) && ((x) | | (z))
− : un i t

7 References

Up to now, we only used constants, and never mutable variables. So, how can we modify
a variable value? A possible answer could be that you should never use mutable variables
in Caml, but their use can sometimes be justified. To define a mutable variable (called
a reference), do:

let x = ref (0) ; ;
val x : i n t ref = { contents = 0}

You can assign and retrieve the value of a reference by using := and !:

x := 1 ; ;
! x ; ;
− i n t = 1

Exercise 13. Translate the following functions into Caml by trying to stick as close as
possible to C style.

int
f a c t o r i e l l e (int n)
{

int y = 1 , r e s = 1 ;
while (y <= n)
{

r e s ∗= y ;
y++;

}
return r e s ;

}

int
findmax (int [] array , int l ength)
{

int max , i = 1 ;
a s s e r t (l ength > 0) ;
max = array [0] ;
while (i < l ength)
{

i f (array [i] > max)
max = array [i] ;

4

L3 Programming September 8, 2015

i ++;
}
return max ;

}

Exercise 14. Rewrite these functions in Caml style (use a list instead of an array for
findmax).

5

	The let Keyword, Functions
	The OCaml interpreter
	Polymorphism, Pairs
	Curryfication
	Recursion
	Sum Types, Pattern Matching
	References

