Complexité avancée - TD 9

Simon Halfon

November 16, 2016

Definition 1 Recall that AM[f] for a proper function f denotes the class of languages L such that for any $\ell \ge 0$, there exists a game of Arthur and Merlin (M, A, D) such that for any x of size n, letting prot = $(AM)^{f(n)}$:

- 1. Completeness: if $x \in L$ then $prot[A, M]_D = \top$ with probability at least $1 1/2^{n^{\ell}}$
- 2. Soundness: if $x \notin L$ then for any Merlin's function M', $prot[A, M']_D = \bot$ with probability at least $1 1/2^{n^{\ell}}$

Exercise 1: Arthur-Merlin protocols

Prove the following statements, directly from definition of Arthur-Merlin games:

- M = NP;
- A = BPP;
- $NP^{BPP} \subseteq MA;$
- $AM \subseteq BPP^{NP}$.

Exercise 2: Collapse of the Arthur-Merlin hierarchy

Recall that, for each $\Pi \in \{A, M\}^*$, the class Π is the class of languages recognized by Arthur-Merlin games with protocol Π .

- (a) Without using any result about the collapse of the Arthur-Merlin hierarchy, prove that for all $\Pi_0, \Pi_1, \Pi_2 \in \{A, M\}^*$, we have $\Pi_1 \subseteq \Pi_0 \Pi_1 \Pi_2$.
- (b) Now assume the fact that for all $\Pi \in \{A, M\}^*$, one has $\Pi \subseteq \mathsf{AM}$. Prove the following statement: For all $\Pi \in \{A, M\}^*$ such that Π has a strict alternation of symbols, and $|\Pi| > 2$, we have $\Pi = \mathsf{AM}$.

Exercise 3: The BP operator

We say that a language B reduces to language C under a randomized polynomial time reduction, denoted $B \leq_r C$, if there is a probabilistic polynomial-time Turing machine such that for every x, $Pr[C(M(x)) = B(x)] \geq \frac{2}{3}$.

- 1. Show that $\mathsf{BP} \cdot \mathcal{C} = \{L \mid L \leq_r L', \text{ for some } L' \in \mathcal{C}\}$
- 2. Show that BPP is closed under randomized polynomial time reduction.
- 3. Deduce that $\mathsf{BP} \cdot (\mathsf{BP} \cdot \mathcal{C}) = \mathsf{BP} \cdot \mathcal{C}$.

Exercise 4: The class $BP \cdot NP$

- 1. Show that $\mathsf{BP} \cdot \mathsf{P} = \mathsf{BPP}$
- 2. Show that $\mathsf{BP} \cdot \mathsf{NP} = \mathsf{AM}$
- 3. Show that $\mathsf{BP} \cdot \mathsf{NP} \subseteq \mathsf{NP}/poly$
- 4. Show that $\mathsf{BP} \cdot \mathsf{NP} \subseteq \Sigma_3^P$ (give a direct proof, do not use $\mathsf{AM} \subseteq \Pi_2^\mathsf{P}$).
- 5. Show that if $\overline{\mathbf{3SAT}} \leq_r \mathbf{3SAT}$ then PH collapses to the third level.

Exercise 5: One Merlin to rule them all

Show that the following definition of AM if actually equivalent to the one given in introduction: $L \in AM$ iff for any $\ell \ge 0$, there exists an Arthur A and a polynomial-time-checkable predicate D such that for any x of size n, letting $prot = (AM)^{f(n)}$:

- 1. Completeness: if $x \in L$ then there exists some Merlin M such that $prot[A, M]_D = \top$ with probability at least $1 - 1/2^{n^{\ell}}$
- 2. Soundness: if $x \notin L$ then for any Merlin M', $prot[A, M']_D = \bot$ with probability at least $1 1/2^{n^{\ell}}$

Exercise 6: Unreliable Merlin

Show that allowing Merlin to use randomness (in a private manner) does not change the class AM.