Complexité avancée - TD 5

Simon Halfon

October 11, 2016

Exercise 1: On the existence of one-way functions A one-way function is a bijection f from k-bit intergers to k-bit intergers such that f is computable in polynomial time, but f^{-1} is not. Prove that if there exists one-way functions, then

 $A = \{(x, y) \mid f^{-1}(x) < y\} \in (\mathsf{NP} \cap \mathsf{coNP}) \setminus \mathsf{P}$

Exercise 2: Closure under morphisms

Given a finite alphabet Σ , a function $f: \Sigma^* \to \Sigma^*$ is a morphism if $f(\Sigma) \subseteq \Sigma$ and for all $a = a_1 \cdots a_n \in \Sigma^*$, $f(a) = f(a_1) \cdots f(a_n)$ (f is uniquely determined by the value it takes on Σ).

- 1. Show that NP is closed under morphisms, that is: for any language $L \in NP$, and any morphism f on the alphabet of L, $f(L) \in NP$.
- 2. Show that if P is closed under morphisms, then P = NP.

Exercise 3: Prime Numbers

- 1. Show that UNARY-PRIME = $\{1^n \mid n \text{ is a prime number }\}$ is in P.
- 2. Show that $PRIME = \{p | p \text{ is a prime number encoded in binary } \}$ is in coNP
- 3. We want to prove that PRIME is in NP. Use the following characterization of prime numbers to formulate a non-deterministic algorithm runing in polynomial time.

A number p is prime if and only if there exists $a \in [2, p-1]$ such that:

- (a) $a^{p-1} \equiv 1[p]$, and
- (b) for all q prime divisor of p-1, $a^{\frac{p-1}{q}} \neq 1[p]$

To prove that your algorithm runs in polynomial time, you can admit that all common arithmetical operations on $\mathbb{Z}/p\mathbb{Z}$ can be performed in polynomial time.

Therefore, PRIME is in NP \cap coNP. Actually, this problem has recently been shown in P (see the AKS algorithm).

Exercise 4: Unary Languages

1. Prove that if a unary language is NP-complete, then P = NP. Hint: consider a reduction from SAT to this unary language and exhibit a polynomial time recursive algorithm for SAT

- Prove that if every unary language in NP is actually in P, then EXP = NEXP. Hint: remember we can always restrict our attention to Turing machines on alphabet {0,1}.
- 3. Show the converse.

Exercise 5: Planar Circuit Value

Show that CIRCUIT-VALUE remains P-complete when the input graph is planar.

Exercise 6: Complete problems for levels of PH

Prove that the following problem $\Sigma_k QBF$ is Σ_k^P -complete (under polynomial time reductions).

- INPUT: A quantified boolean formula $\exists X_1 \forall X_2 \exists ... Q_k X_k \phi$, where $X_1, ... X_k$ are k disjoint sets of variables, Q_k is the quantifier \forall if k is even, and the quantifier \exists if k is odd, ϕ is a boolean formula over variables $\bigcup_{i=1..k} X_i$;
- QUESTION: is the input formula true ?

Define a similar problem $\Pi_k QBF$ such that $\Pi_k QBF$ is Π_k^P -complete.

Exercise 7: Collapse of PH

- 1. Prove that if $\Sigma_k^P = \Pi_k^P$ for some $k \ge 1$ then $\mathsf{PH} = \Sigma_k^P$.
- 2. Show that if P = NP then P = PH.
- 3. Prove that if $\Sigma_k^P = \Sigma_k^P + 1$ for some $k \ge 0$ then $\mathsf{PH} = \Sigma_k^P$.
- 4. Show that if PH = PSPACE then PH collapses.
- 5. Do you think there is a polynomial time procedure to convert any QBF formula into a QBF formula with at most 10 variables ?