
Complexité avancée - TD 4

Simon Halfon

October 4, 2016

Exercise 1: Alternating Turing machines with negations
Let us define an alternating Turing machine with negations as a Turing machine where

the set of non-halting states is partitioned into the set of existential states, the set of
universal states and the set of negation states. Moreover there is the restriction that each
configuration on a negation state has exactly one successor configuration. Remark that we
do not require that the machine always halts.

For such a machineM we define the set of eventually accepting configurations, and the
set of eventually rejecting configurations as the minimal sets of configurations satisfying
the following conditions:

• if C is an accepting configuration, then C is eventually accepting ;

• if C is an existential configuration and there exists a successor configuration C ′ of C
(i.e, C →M C ′) which is eventually accepting, then C is eventually accepting ;

• if C is a universal configuration, and all successor configurations C ′ of C are eventually
accepting, then C is eventually accepting ;

• if C is a negation configuration and the (unique) successor configuration C ′ of C is
eventually rejecting, then C is eventually accepting ;

• if C is a rejecting configuration, then C is eventually rejecting ;

• if C is an existential configuration and all successor configuration C ′ of C are even-
tually rejecting, then C is eventually rejecting ;

• If C is universal configuration, and there exists a successor configuration C ′ of C
which is eventually rejecting, then C is eventually rejecting ;

• if C is a negation configuration and the (unique) successor configuration C ′ of C is
eventually accepting, then C is eventually rejecting.

The machine accepts an input x iff the initial configuration on input x is eventually
accepting. The language accepted by an alternating Turing machine with negations M is
the set of all x accepted by M.

Prove that any alternating Turing machine M with negations can be simulated by an
alternating Turing machine M∗ without negations, with no extra cost in time or space.
More precisely prove that there exists a configuration reachable in n steps and using m
working tape cells in M iff there exists a configuration reachable in n steps and using m
working tape units in M∗. Do not assume any space or time bound on M.

1



Exercise 2: Alternating logarithmic time vs logarithmic space
Show that ATIME(log n) 6= L.

Hint: show that the language of palindromes is in one class but not the other

Exercise 3: Yet another padding argument
Show that EXPSPACE = AEXPTIME. (skip this exercise if you have seen it in class)

Exercise 4: Linearly and logarithmically bounded alternations
Let AP(O(n)) (resp. AP(O(log n))) be the class of problems which can be decided by

an alternating polynomial time Turing machine whose computations have a linear (resp.
logarithmic) number of alternations (in the size of the input).

• Is QBF in AP(O(n)) ? In AP(O(log n)) ?

• Can we conclude PSPACE = AP(O(n))? PSPACE = AP(O(log n)) ?

Exercise 5: P-complete problems Show the following problems to be P-complete:

• – INPUT: G a context-free gramar

– QUESTION: L(G) = ∅ ?

• – INPUT: G a context-free grammar, and w a word

– QUESTION: w ∈ L(G) ?

Hint: use the Chomsky Normal Form: given a grammar, one can compute in logarith-
mic space an equivalent grammar with production rule of the form X → Y Z;X → a
or S → ε.

• – INPUT: A planar circuit C
– QUESTION: Does C evaluate to true ?

Exercise 6: Closure under morphisms
Given a finite alphabet Σ, a function f : Σ∗ → Σ∗ is a morphism if f(Σ) ⊆ Σ and for all

a = a1 · · · an ∈ Σ∗, f(a) = f(a1) · · · f(an) (f is uniquely determined by the value it takes
on Σ).

1. Show that NP is closed under morphisms, that is: for any language L ∈ NP, and any
morphism f on the alphabet of L, f(L) ∈ NP.

2. Show that if P is closed under morphisms, then P = NP.

Exercise 6: Unary Languages

1. Prove that if a unary language is NP-complete, then P = NP.
Hint: consider a reduction from SAT to this unary language and exhibit a polynomial
time recursive algorithm for SAT

2. Prove that if every unary language in NP is actually in P, then EXP = NEXP.
Hint: remember we can always restrict our attention to Turing machines on alphabet
{0, 1}.

3. Show the converse.

2


