Exercise 1: Alternating Turing machines with negations

Let us define an alternating Turing machine with negations as a Turing machine where the set of non-halting states is partitioned into the set of existential states, the set of universal states and the set of negation states. Moreover there is the restriction that each configuration on a negation state has exactly one successor configuration. Remark that we do not require that the machine always halts.

For such a machine M we define the set of eventually accepting configurations, and the set of eventually rejecting configurations as the minimal sets of configurations satisfying the following conditions:

- if C is an accepting configuration, then C is eventually accepting;
- if C is an existential configuration and there exists a successor configuration C' of C (i.e., $C \rightarrow_{M} C'$) which is eventually accepting, then C is eventually accepting;
- if C is a universal configuration, and all successor configurations C' of C are eventually accepting, then C is eventually accepting;
- if C is a negation configuration and the (unique) successor configuration C' of C is eventually rejecting, then C is eventually accepting;
- if C is a rejecting configuration, then C is eventually rejecting;
- if C is an existential configuration and all successor configuration C' of C are eventually rejecting, then C is eventually rejecting;
- if C is universal configuration, and there exists a successor configuration C' of C which is eventually rejecting, then C is eventually rejecting;
- if C is a negation configuration and the (unique) successor configuration C' of C is eventually accepting, then C is eventually rejecting.

The machine accepts an input x iff the initial configuration on input x is eventually accepting. The language accepted by an alternating Turing machine with negations M is the set of all x accepted by M.

Prove that any alternating Turing machine M with negations can be simulated by an alternating Turing machine M^* without negations, with no extra cost in time or space. More precisely prove that there exists a configuration reachable in n steps and using m working tape cells in M iff there exists a configuration reachable in n steps and using m working tape units in M^*. Do not assume any space or time bound on M.
Exercise 2: Alternating logarithmic time vs logarithmic space
Show that \(\text{ATIME}(\log n) \neq \text{L} \).
\(\text{Hint: show that the language of palindromes is in one class but not the other} \)

Exercise 3: Yet another padding argument
Show that \(\text{EXPSPACE} = \text{AEXPTIME} \). (skip this exercise if you have seen it in class)

Exercise 4: Linearly and logarithmically bounded alternations
Let \(\text{AP}(O(n)) \) (resp. \(\text{AP}(O(\log n)) \)) be the class of problems which can be decided by an alternating polynomial time Turing machine whose computations have a linear (resp. logarithmic) number of alternations (in the size of the input).

- Is \(\text{QBF} \) in \(\text{AP}(O(n)) \) ? In \(\text{AP}(O(\log n)) \) ?
- Can we conclude \(\text{PSPACE} = \text{AP}(O(n)) \)? \(\text{PSPACE} = \text{AP}(O(\log n)) \) ?

Exercise 5: \(\text{P} \)-complete problems
Show the following problems to be \(\text{P} \)-complete:

- INPUT: \(G \) a context-free grammar
 - QUESTION: \(\mathcal{L}(G) = \emptyset \) ?

- INPUT: \(G \) a context-free grammar, and \(w \) a word
 - QUESTION: \(w \in \mathcal{L}(G) \) ?
 \(\text{Hint: use the Chomsky Normal Form: given a grammar, one can compute in logarithmic space an equivalent grammar with production rule of the form} \ X \rightarrow YZ; X \rightarrow a \text{ or } S \rightarrow \varepsilon. \)

- INPUT: A planar circuit \(C \)
 - QUESTION: Does \(C \) evaluate to true ?

Exercise 6: Closure under morphisms
Given a finite alphabet \(\Sigma \), a function \(f : \Sigma^* \rightarrow \Sigma^* \) is a morphism if \(f(\Sigma) \subseteq \Sigma \) and for all \(a = a_1 \cdots a_n \in \Sigma^* \), \(f(a) = f(a_1) \cdots f(a_n) \) (\(f \) is uniquely determined by the value it takes on \(\Sigma \)).

1. Show that \(\text{NP} \) is closed under morphisms, that is: for any language \(L \in \text{NP} \), and any morphism \(f \) on the alphabet of \(L \), \(f(L) \in \text{NP} \).
2. Show that if \(\text{P} \) is closed under morphisms, then \(\text{P} = \text{NP} \).

Exercise 6: Unary Languages

1. Prove that if a unary language is \(\text{NP} \)-complete, then \(\text{P} = \text{NP} \).
 \(\text{Hint: consider a reduction from SAT to this unary language and exhibit a polynomial time recursive algorithm for SAT} \)

2. Prove that if every unary language in \(\text{NP} \) is actually in \(\text{P} \), then \(\text{EXP} = \text{NEXP} \).
 \(\text{Hint: remember we can always restrict our attention to Turing machines on alphabet \{0,1\}.} \)

3. Show the converse.