Complexité avancée - TD 11

Simon Halfon

November 29, 2016

Exercise 1: how big is PP?

Show that:

1. *PP* has complete problems.

2. $\mathsf{BPP} \subseteq \mathsf{PP}$

3. $\mathsf{NP} \subseteq \mathsf{PP}$

4. $MA \subseteq \mathsf{PP}$

Exercise 2: Polynomial Identity Testing

From previous exercise sheet.

Exercise 3: Counting versus Deciding

Define FP to be the class of functions $\Sigma^* \to \Sigma^*$ that are computable by a Turing machine working in polynomial time. Remember the definition of $\#\mathsf{P}$ and PP from this year's homework assignment.

Prove that PP = P iff #P = FP.

Exercise 4: how big is P/poly?

- Show that P/poly = P^{SPARSE}, where SPARSE is the class of all sparse languages. A language L is said to be spare if there is a polynomial p such that for all n ∈ N, |L ∩ Σⁿ| ≤ p(n). Hint: show P/poly ⊆ P^{SPARSE} ⊆ P^P/poly ⊆ P/poly.
- 2. Show that $P/poly = P^{UNARY}$, where UNARY is the class of all unary languages.
- 3. Deduce that $\mathsf{EXPTIME} = \mathsf{EXPSPACE}$ iff $\mathsf{PSPACE} \cap \mathsf{P}/\mathsf{poly} = \mathsf{P}$.
- 4. Deduce that if $P \neq RP$, then $EXPTIME \neq EXPSPACE$.

Exercise 5: P versus RP

Define a random language A as a language such that for every word $w \in \Sigma^*$, $w \in A$ with probability 1/2.

Show that with probability 1 over the choice of a random A, $P^A = RP^A$. Hint: use the random language as a random bit generator.