Simon Halfon

November 23, 2016

Exercise 1: NP and BPP

Prove the following:

- if P = NP then BPP = P.
- if $NP \subseteq BPP$ then AM = MA.

Exercise 2: AM with perfect soundness

Define AM_{ps} (resp. $ABPP_{ps}$) as AM (resp. ABPP) with perfect soundness, that is replace $1 - 1/2^{n^l}$ with 1 in the soundness condition of definiton ??. Show that $AM_{ps} = ABPP_{ps} = C \subseteq AM$, where C is a known complexity class.

Exercise 3: Polynomial identity An n-variable algebraic circuit is a directed acyclic graph having exactly one node with out-degree zero, and exactly n nodes with in-degree zero. The latter are called *sources*, and are labelled by variables $x_1, \ldots x_n$; the former is called the *output* of the circuit. Moreover each non-source node is labelled by an operator in the set $\{+, -, \times\}$, and has in-degree two.

An algebraic circuit defines a function from \mathbb{Z}^n to \mathbb{Z} , associating to each integer assignment of the sources the value of the output node, computed through the circuit. It is easy to show that this function can be described by a polynomial in the variables $x_1, \ldots x_n$. Algebraic circuits are indeed a form of implicit representation of multivariate polynomials. Nevertheless algebraic circuits are more compact than polynomials.

An algebraic circuit C is said to be *identically zero* if it evaluates to zero for all possible integer assignments of the sources.

The **Polynomial identity** problem is as follows:

- INPUT: An algebraic circuit C
- QUESTION: is C identically zero?
- 1. Justify the sentence "Algebraic circuits are more compact than polynomials".
- 2. Show that **Polynomial identity** is in coRP (note that it is not known whether **Polynomial identity** is in P).

Hint: you may need the following statements

- Schwartz-Zippel lemma If $p(x_1, \ldots x_n)$ is a nonzero polynomial with coefficients in \mathbb{Z} and total degree at most d, and $S \subseteq \mathbb{Z}$, then the number of roots of p belonging to S^n is at most $d \cdot |S|^{n-1}$.
- Prime number theorem There exists a known integer $X_0 \ge 0$ such that, for all integers $X \ge X_0$, the number of prime numbers in the set $[1..2^X]$ is at least $\frac{2^X}{X}$.

Definition 1 (Multi-prover interactive protocols) Let P_1, \ldots, P_k be infinitely powerful machines whose output is polynomially bounded. Let V be a probabilistic polynomial-time machine. V is called the verifier, and P_1, \ldots, P_k are called the provers.

A round of a multi-prover interactive protocol on input x consists of an exchange of messages (i.e. words over a given alphabet) between the verifier and the provers, and works as follows:

- The verifier V is executed on an input consisting of x, the history of all previous messages exchanged with all provers (both sent and received messages), and a random tape content of size polynomial in |x|. The output of the verifier is computed in time polynomial in |x|, and consists of messages to some or all of the provers.
- Each message q_i sent from the verifier to prover P_i is followed by an answer a_i , of size polynomial in |x|, sent from the prover P_i to the verifier. The answer a_i is computed by P_i on input consisting of x and the history of all messages previously exchanged between the verifier and the prover P_i (and only P_i).
- Alternatively the verifier may decide not to produce messages, and terminates the protocol by either accepting or rejecting, based on the input x and the history of all previous messages exchanged with all provers.

You can view the protocol as executed by the verifier sharing communication tapes with each P_i , where different provers P_i and P_j have no tapes they can both access, besides the input tape. In a round the verifier stores each message q_i to prover P_i on the *i*-th communication tape, shared between the prover and P_i . The answer of P_i is put on tape *i* as well. The verifier has access to the input and all communication tapes, while each prover P_i has access only to the input and tape *i*.

 P_1, \ldots, P_k and V form a multi-prover interactive protocol for a language L if the execution of the protocol between V and P_1, \ldots, P_k terminates after a polynomial number of rounds (in the size of the input x) and:

- if $x \in L$, then $Pr[(V, P_1, ..., P_k) \text{ accepts } x] > 1 2^{-q(n)}$;
- if $x \notin L$, then for all provers P'_1, \ldots, P'_k , $Pr[(V, P'_1, \ldots, P'_k) \ accepts \ x] < 2^{-q(n)}$;

where q is a polynomial and the probability is computed over all possible random choices of V.

In this case, we denote $L \in \mathbf{MIP}_k$. The number of provers k need not be fixed and may be a polynomial in the size of the input x. We say that $L \in \mathbf{MIP}$ if $L \in \mathbf{MIP}_{p(n)}$ for some polynomial p. Clearly $\mathbf{MIP}_1 = \mathbf{IP}$, but allowing more provers makes the interactive protocol model potentially more powerful.

Exercice 3: Characterization of MIP

Prove the following characterizations of the class **MIP**.

- 1. Let M be a probabilistic polynomial-time Turing machine with access to a function oracle. A language L is accepted by M iff:
 - if $x \in L$, then there exists an oracle O s.t. M^O accepts x with probability greater than $1 2^{-q(n)}$;
 - if $x \notin L$, then for any oracle O', $M^{O'}$ accepts x with probability smaller than $2^{-q(n)}$.

Show that $L \in MIP$ if and only if L is accepted by a probabilistic polynomial time oracle machine.

- 2. Show that $MIP = MIP_2$.
- 3. Show that $MIP \subseteq \mathsf{NEXP}$.