Exercise 1: NP and BPP
Prove the following:

- if $P = NP$ then $BPP = P$.
- if $NP \subseteq BPP$ then $AM = MA$.

Exercise 2: AM with perfect soundness
Define AM_{ps} (resp. ABPP_{ps}) as AM (resp. ABPP) with perfect soundness, that is replace $1 - 1/2^n$ with 1 in the soundness condition of definiton ???. Show that $\text{AM}_{ps} = \text{ABPP}_{ps} = C \subseteq \text{AM}$, where C is a known complexity class.

Exercise 3: Polynomial identity
An n-variable algebraic circuit is a directed acyclic graph having exactly one node with out-degree zero, and exactly n nodes with in-degree zero. The latter are called sources, and are labelled by variables x_1, \ldots, x_n; the former is called the output of the circuit. Moreover each non-source node is labelled by an operator in the set $\{+, -, \times\}$, and has in-degree two.

An algebraic circuit defines a function from \mathbb{Z}^n to \mathbb{Z}, associating to each integer assignment of the sources the value of the output node, computed through the circuit. It is easy to show that this function can be described by a polynomial in the variables x_1, \ldots, x_n. Algebraic circuits are indeed a form of implicit representation of multivariate polynomials. Nevertheless algebraic circuits are more compact than polynomials.

An algebraic circuit C is said to be identically zero if it evaluates to zero for all possible integer assignments of the sources.

The Polynomial identity problem is as follows:

- INPUT: An algebraic circuit C
- QUESTION: is C identically zero?

1. Justify the sentence “Algebraic circuits are more compact than polynomials”.

2. Show that Polynomial identity is in coRP (note that it is not known whether Polynomial identity is in P).

 Hint: you may need the following statements

- **Schwartz-Zippel lemma** If $p(x_1, \ldots, x_n)$ is a nonzero polynomial with coefficients in \mathbb{Z} and total degree at most d, and $S \subseteq \mathbb{Z}$, then the number of roots of p belonging to S^n is at most $d \cdot |S|^{n-1}$.

- **Prime number theorem** There exists a known integer $X_0 \geq 0$ such that, for all integers $X \geq X_0$, the number of prime numbers in the set $[1, 2^X]$ is at least $\frac{2^X}{X}$.

Definition 1 (Multi-prover interactive protocols) Let P_1, \ldots, P_k be infinitely powerful machines whose output is polynomially bounded. Let V be a probabilistic polynomial-time machine. V is called the verifier, and P_1, \ldots, P_k are called the provers.

A round of a multi-prover interactive protocol on input x consists of an exchange of messages (i.e. words over a given alphabet) between the verifier and the provers, and works as follows:
The verifier V is executed on an input consisting of x, the history of all previous messages exchanged with all provers (both sent and received messages), and a random tape content of size polynomial in $|x|$. The output of the verifier is computed in time polynomial in $|x|$, and consists of messages to some or all of the provers.

Each message q_i sent from the verifier to prover P_i is followed by an answer a_i, of size polynomial in $|x|$, sent from the prover P_i to the verifier. The answer a_i is computed by P_i on input consisting of x and the history of all messages previously exchanged between the verifier and the prover P_i (and only P_i).

Alternatively the verifier may decide not to produce messages, and terminates the protocol by either accepting or rejecting, based on the input x and the history of all previous messages exchanged with all provers.

You can view the protocol as executed by the verifier sharing communication tapes with each P_i, where different provers P_i and P_j have no tapes they can both access, besides the input tape. In a round the verifier stores each message q_i to prover P_i on the i-th communication tape, shared between the prover and P_i. The answer of P_i is put on tape i as well. The verifier has access to the input and all communication tapes, while each prover P_i has access only to the input and tape i.

P_1, \ldots, P_k and V form a multi-prover interactive protocol for a language L if the execution of the protocol between V and $P_1, \ldots P_k$ terminates after a polynomial number of rounds (in the size of the input x) and:

- if $x \in L$, then $Pr[(V, P_1, \ldots, P_k) \text{ accepts } x] > 1 - 2^{-q(n)}$;
- if $x \notin L$, then for all provers P'_1, \ldots, P'_k, $Pr[(V, P'_1, \ldots, P'_k) \text{ accepts } x] < 2^{-q(n)}$;

where q is a polynomial and the probability is computed over all possible random choices of V.

In this case, we denote $L \in \text{MIP}_k$. The number of provers k need not be fixed and may be a polynomial in the size of the input x. We say that $L \in \text{MIP}$ if $L \in \text{MIP}_{p(n)}$ for some polynomial p. Clearly $\text{MIP}_1 = \text{IP}$, but allowing more provers makes the interactive protocol model potentially more powerful.

Exercice 3: Characterization of MIP

Prove the following characterizations of the class MIP.

1. Let M be a probabilistic polynomial-time Turing machine with access to a function oracle. A language L is accepted by M iff:
 - if $x \in L$, then there exists an oracle O s.t. M^O accepts x with probability greater than $1 - 2^{-q(n)}$;
 - if $x \notin L$, then for any oracle O', $M^{O'}$ accepts x with probability smaller than $2^{-q(n)}$.

 Show that $L \in \text{MIP}$ if and only if L is accepted by a probabilistic polynomial time oracle machine.

2. Show that $\text{MIP} = \text{MIP}_2$.

3. Show that $\text{MIP} \subseteq \text{NEXP}$.
