
Complexité avancée - TD 10

Simon Halfon

November 23, 2016

Exercise 1: NP and BPP
Prove the following:

• if P = NP then BPP = P.

• if NP ⊆ BPP then AM = MA.

Exercise 2: AM with perfect soundness
Define AMps (resp. ABPPps) as AM (resp. ABPP) with perfect soundness, that is replace

1− 1/2n
l

with 1 in the soundness condition of definiton ??. Show that AMps = ABPPps =
C ⊆ AM, where C is a known complexity class.

Exercise 3: Polynomial identity An n-variable algebraic circuit is a directed acyclic
graph having exactly one node with out-degree zero, and exactly n nodes with in-degree
zero. The latter are called sources, and are labelled by variables x1, . . . xn; the former is
called the output of the circuit. Moreover each non-source node is labelled by an operator
in the set {+,−,×}, and has in-degree two.

An algebraic circuit defines a function from Zn to Z, associating to each integer as-
signment of the sources the value of the output node, computed through the circuit. It is
easy to show that this function can be described by a polynomial in the variables x1, . . . xn.
Algebraic circuits are indeed a form of implicit representation of multivariate polynomials.
Nevertheless algebraic circuits are more compact than polynomials.

An algebraic circuit C is said to be identically zero if it evaluates to zero for all possible
integer assignments of the sources.

The Polynomial identity problem is as follows:

• INPUT: An algebraic circuit C

• QUESTION: is C identically zero?

1. Justify the sentence “Algebraic circuits are more compact than polynomials”.

2. Show that Polynomial identity is in coRP (note that it is not known whether
Polynomial identity is in P).

Hint: you may need the following statements

• Schwartz-Zippel lemma If p(x1, . . . xn) is a nonzero polynomial with coefficients
in Z and total degree at most d, and S ⊆ Z, then the number of roots of p belonging
to Sn is at most d · |S|n−1.

• Prime number theorem There exists a known integer X0 ≥ 0 such that, for all
integers X ≥ X0, the number of prime numbers in the set [1..2X ] is at least 2X

X .

Definition 1 (Multi-prover interactive protocols) Let P1, . . . , Pk be infinitely powerful ma-
chines whose output is polynomially bounded. Let V be a probabilistic polynomial-time
machine. V is called the verifier, and P1, . . . , Pk are called the provers.

A round of a multi-prover interactive protocol on input x consists of an exchange of
messages (i.e. words over a given alphabet) between the verifier and the provers, and works
as follows:
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• The verifier V is executed on an input consisting of x, the history of all previous
messages exchanged with all provers (both sent and received messages), and a random
tape content of size polynomial in |x|. The output of the verifier is computed in time
polynomial in |x|, and consists of messages to some or all of the provers.

• Each message qi sent from the verifier to prover Pi is followed by an answer ai, of size
polynomial in |x|, sent from the prover Pi to the verifier. The answer ai is computed
by Pi on input consisting of x and the history of all messages previously exchanged
between the verifier and the prover Pi (and only Pi).

• Alternatively the verifier may decide not to produce messages, and terminates the
protocol by either accepting or rejecting, based on the input x and the history of all
previous messages exchanged with all provers.

You can view the protocol as executed by the verifier sharing communication tapes with
each Pi, where different provers Pi and Pj have no tapes they can both access, besides
the input tape. In a round the verifier stores each message qi to prover Pi on the i-th
communication tape, shared between the prover and Pi. The answer of Pi is put on tape i
as well. The verifier has access to the input and all communication tapes, while each prover
Pi has access only to the input and tape i.

P1, . . . , Pk and V form a multi-prover interactive protocol for a language L if the ex-
ecution of the protocol between V and P1, . . . Pk terminates after a polynomial number of
rounds (in the size of the input x) and:

• if x ∈ L, then Pr[(V, P1, . . . , Pk) accepts x] > 1− 2−q(n);

• if x /∈ L, then for all provers P ′1, . . . , P
′
k, Pr[(V, P ′1, . . . , P

′
k) accepts x] < 2−q(n);

where q is a polynomial and the probability is computed over all possible random choices of
V .

In this case, we denote L ∈ MIPk. The number of provers k need not be fixed and
may be a polynomial in the size of the input x. We say that L ∈MIP if L ∈MIPp(n) for
some polynomial p. Clearly MIP1 = IP, but allowing more provers makes the interactive
protocol model potentially more powerful.

Exercice 3: Characterization of MIP
Prove the following characterizations of the class MIP.

1. Let M be a probabilistic polynomial-time Turing machine with access to a function
oracle. A language L is accepted by M iff:

• if x ∈ L, then there exists an oracle O s.t. MO accepts x with probability greater
than 1− 2−q(n);

• if x /∈ L, then for any oracle O′, MO′
accepts x with probability smaller than

2−q(n).

Show that L ∈ MIP if and only if L is accepted by a probabilistic polynomial time
oracle machine.

2. Show that MIP = MIP2.

3. Show that MIP ⊆ NEXP.
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