

Complexité avancée - TD 1

Simon Halfon

September 14, 2016

Exercise 1: Graph representation and why it does not matter
Let ¥ ={0,1,[,],¢}, n € Nand V = [0,n — 1]. We consider the following two repre-
sentations of a directed graph G = (V, E) by a word in X*:

e By its adjency matrix: [mooemo1 ---emop—1]...[Mp—10®---®my_1,_1], where
for all 4,75 € [0,n — 1], m; ; is equal to 1 if (4,7) € E, 0 otherwise.

e By its adjency list: [kJe---okO]...[kj "' e k-1] where for all i, [ki,... Kb,] s
the list of neighbors of vertex ¢, written in binary, in increasing order.

1. Describe a logarithmic space bounded deterministic Turing machine which takes as
input the graph G, represented by adjacency lists, and returns the adjacency matrix
of G.

2. Conversely, describe a logarithmic space bounded deterministic Turing machine tak-
ing as input the adjacency matrix of a graph G, and computing the adjacency list
representation of G.

Therefore, the complexity of the problem REACH seen in class does not depend on the
representation of the graph.

Definition 1 A function f : N — N is said to be space-constructible if there exists a
deterministic Turing machine that computes f(|x|) in O(f(|z|)) space given x as input.

Exercise 2: restrictions in the definition of SPACE(f(n)), and why they do not
matter

In the course, we restriced our attention to Turing machines that always halt, and
whose computations are space-bounded on every input. In particular, remember that
SPACE(f(n)) is defined as the class of languages L for which there exists some determin-
istic Turing machine M that always halts (i.e. on every input), whose computations are
f(n) space-bounded (on every input), such that M decides L.

Now, Consider the following two classes of languages:

e SPACE’(f(n)) is the class of languages L such that there exists a deterministic Turing
machine M using at most space bounded by f (on every input), and accepting z if
and only if z € L. (Notice that we do not require that M halts when = ¢ L).

e SPACE"(f(n)) is the class of languages L such that there exists a deterministic
Turing machine M such that M accepts z using space f(n) iff z € L. Note that if
x ¢ L, M might use more space, or even not halt.

1. Show that for a space-constructible function f = Q(logn), SPACE'(f(n)) = SPACE(f(n))
2. Show that for a space-constructible function f = Q(logn), SPACE”(f(n)) = SPACE(f(n))

Exercise 3: One-minute-long exercise
Prove that any language L C {0, 1}* that is neither empty nor {0,1}* is hard for NL
for polynomial-time reductions.

Exercise 4: Dyck’s language

e Let A be the language of balanced parentheses — that is the language generated by
the grammar S — (5)|SS|e. Show that A € L.

e What about the language B of balanced parentheses of two types? that is the
language generated by the grammar S — (5)|[S]|SS]e

Exercise 5: Inclusions of complexity classes
Show that for a space-constructible function,

NSPACE(f(n)) C DTIME(20V("))

Exercise 6: NL alternative definition
A Turing machine with certificate tape is a deterministic Turing machine with an extra
read-only input tape called the certificate tape, which moreover is read once (i.e. the head
on that tape can either remain on the same cell or move right, but never move left).
Define NL.+r to be the class of languages L such that there exists a polynomial
p: N — N and a Turing machine with certificate tape M that runs in logarithmic space
such that:

xz € L iff Ju, |u| < p(|z|) and M accepts on input (x,u)
1. Show that NLgeysip = NL

2. What complexity class do you obtain if you remove the read-only constraint in the
definition of a machine with certification tape ?

Exercise 7: restrictions of the SAT problem

1. Let 3-SAT be the restriction of SAT to clauses consisting of at most three literals
(called 3-clauses). In other words, the input is a finite set S of 3-clauses, and the
question is whether S is satisfiable. Show that 3-SAT is NP-complete for logspace
reductions (assuming SAT is).

2. Let 2-SAT be the restriction of SAT to clauses consisting of at most two literals
(called 2-clauses). Show that 2-SAT is in P, using proofs by resolution.

3. Show that the complement of 2-SAT (i.e, the unsatisfiability of a set of 2-clauses) is
NL-complete.

4. Conclude that 2-SAT is NL-complete.

