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An introductive example

Planning holidays in a foreign country

1. Choosing which train or plane to use;

2. Renting an house or a room in an hotel;

3. Buying tickets for some exhibitions, etc.

Usually these actions must be planned before the holidays.

Thus one looks for an a priori optimal policy
that maximizes the probability to reach a goal.



4/42

Formalisation

The probability of success of lowcost · internet· seeall is 27
64 .
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Probabilistic automata

Probabilistic Automata (PA) are a variation of MDP where:

I The set of possible actions is the same in every state.

I There are no rewards.

I There is a subset of final states.

More formally, a PA A = (Q,A, {Pa}a∈A, π0, F ) is defined by:

I Q, the finite set of states;

I A, the finite alphabet;

I For all a ∈ A, Pa, a probability transition matrix over S;

I π0, the initial distribution over states and F ⊆ Q the final states.
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Illustration

q1

1.a+0.5b

q0

0.5b

0.5a

0.5a+1b
1

I A = {a, b};
I Q = {q0, q1}, F = {q1};
I π0[q0] = 1.

An edge from a state to another one is labelled by a vector of transition
probabilities indexed by A. The vector is denoted by a formal sum.

For instance, the transition from q0 to itself is labelled by 1a+ 0.5b means that:

I when a is chosen in state q0,
the probability that the next state is q0, Pa[q0, q0], is equal to 1.

I when b is chosen in state q0,
the probability that the next state is q0, Pb[q0, q0], is equal to 0.5.
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Policies in PA

Words are policies. When some finite word w
def
= a1 . . . an is selected,

we are interested in the probability to be in a final state using w as a policy.

Given A a PA and w
def
= a1 . . . an ∈ A∗ a word,

the acceptance probability of w by A is defined by:

PrA(w)
def
=
∑
q∈Q

π0[q]
∑
q′∈F

(
n∏
i=1

Pai

)
[q, q′]

Notation. Given a word w
def
= a1 . . . an,

the probability matrix Pw is defined by Pw
def
=
∏n
i=1 Pai . In particular Pε = Id.

With these notations:
PrA(w) = π0Pw1

T
F

where 1F is the indicator vector of subset F .
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Illustration

q1

1.a+0.5b

q0

0.5b

0.5a

0.5a+1b
1

Observe that for all w, PrA(w) = Pr(to be in q1 after following policy of w)

and 1−PrA(w) = Pr(to be in q0 after following policy of w)

I PrA(ε) = 0, PrA(a) =
1
2PrA(ε) = 0

I PrA(ab) = PrA(a) +
1
2 (1−PrA(a)) =

1
2

I PrA(abb) = PrA(ab) +
1
2 (1−PrA(ab)) =

3
4

I PrA(abba) =
1
2PrA(abb) =

3
8

More generally, the following recursive equations hold:

PrA(wa) =
1

2
PrA(w) and PrA(wb) =

1

2
(1 +PrA(w))

from which one can derive an explicit expression of the acceptance probability:

PrA(a1 . . . an) =
n∑
i=1

2i−n−1 · 1ai=b

Which word maximizes the acceptance probability?
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Stochastic languages
We are interested in “useful” policies.

This directly leads to the introduction of stochastic languages. Let:

I A be a probabilistic automaton;

I θ ∈ [0, 1] be a threshold;

I ./ ∈ {<,≤, >,≥,=, 6=} be a comparison operator.

Then L./θ(A) is defined by:

L./θ(A) = {w ∈ A∗ | PrA(w) ./ θ}

For expressiveness and decidability issues, one also needs the following definitions.

I A rational PA is a PA with probability distributions over QQ.

I A rational stochastic language is a stochastic language
specified by a rational PA and a rational threshold.
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Counting with PA

q3

1.a

q1

0.5b

0.5a

0.5a

q0

0.5a

q2

1.b

0.5a 1.a

q4

q5

1.b

1.b

1

(a succinct representation with an omitted absorbing rejecting state)

Any word z different from ambn with m > 0, n > 0 cannot be accepted.

Let w
def
= ambn with m > 0, n > 0. w can be accepted by:

I a path q0, q
m
1 , q

n
2 with probability 1

2n ;

I or by a family of paths q0, q
r
3, q

s
4, q

n
5 with 0 < r, s and r + s = m

with cumulated probability 1
2 −

1
2m .

Summing, one obtains: 1
2 + 1

2n −
1
2m .

Thus: L=0.5(A) = {anbn | n > 0}
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Expressiveness problems

Provide a minimal set of comparison operators and thresholds.

Position the stochastic languages w.r.t. the Chomsky hierarchy.

Study the closure properties of the stochastic languages.



13/42

A single threshold is enough

q q0

0[q]
1

1.A

The value α depends on θ 6= 1
2 in the following way:

I If θ > 1
2 then q0 /∈ F and α

def
= 1

2θ so that for all w ∈ A∗,
PrA′(w) =

1
2θPrA(w)

Thus w ∈ L./ 1
2
(A′) iff w ∈ L./θ(A).

I If θ < 1
2 then q0 ∈ F and α

def
= 1

2(1−θ) so that for all w ∈ A∗,

PrA′(w) =
1−2θ+PrA(w)

2(1−θ)

Thus w ∈ L./ 1
2
(A′) iff w ∈ L./θ(A).
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Getting rid of (dis)equality

Given a PA A, we build A′ as follows.

I The set of states Q′
def
= Q×Q;

I P′a[(q1, q2), (q
′
1, q
′
2)]

def
= Pa[q1, q

′
1]Pa[q2, q

′
2];

I π′0[q1, q2]
def
= π0[q1]π0[q2] and F ′

def
= F × (Q \ F ).

Once a word w is selected,

the two components of the DES behave independently and so:

PrA′(w) = PrA(w)(1−PrA(w))

Consequently PrA′(w) ≤ 1
4 with equality iff PrA(w) =

1
2 . Thus:

L≥ 1
4
(A′) = L= 1

2
(A)
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Getting rid of “lower (or equal) than”

Given a PA A, we build A′ by complementing the final states. Then:

PrA′(w) = 1−PrA(w)

And so:

L≥θ(A′) = L<θ(A)

L>θ(A′) = L≤θ(A)
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The Chomsky hierarchy
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Revisiting the Chomsky hierarchy
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Non recursively enumerable languages

q1

1.a+0.5b

q0

0.5b

0.5a

0.5a+1b
1

Define va
def
= 0 and vb

def
= 1.

The acceptance probability of w1 . . . wn is the binary number 0.vwn . . . vw1
.

So L>θ(A) is the set of representations of numbers (with finite binary
development) greater than θ.

Thus given 0 ≤ θ < θ′ ≤ 1,

L>θ′(A) ( L>θ(A)

So there is an uncountable number of stochastic languages
implying that “most” of them are non recursively enumerable.

This result does not hold for rational stochastic languages.
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Regular versus stochastic languages

A deterministic automaton is a stochastic automaton with probabilities in {0, 1}.

Thus regular languages are stochastic languages.

The language {anbn | n > 0} is a rational stochastic non regular language.
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Non stochastic context-free languages (1)

L
def
= {an1ban2b . . . ankba∗ | ∃i > 1 ni = n1}

is a non stochastic context-free language.

Proof.

L is context-free. Use a non deterministic automaton with a counter.

I With a counter one counts n1 the number of a’s until the first occurrence of b.

I Then one guesses an occurrence of b and decrements the counter
by the occurrences of a until the next occurrence of b.

I If the counter is zero the word is accepted.

Assume that (1) L = L>θ(A) or (2) L = L≥θ(A).

Let
∑n
i=0 ciX

i be the minimal polynomial of Pa.

Since 1 is an eigenvalue of Pa, one gets
∑n
i=0 ci = 0

and there are positive and negative coefficients.

By definition,
∑n
i=0 ciPai = 0 and so for any word w,

∑n
i=0 ciPaiw = 0.
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Non stochastic context-free languages (2)
Proof (continued).

Let Pos = {i | 0 ≤ i ≤ n ∧ ci > 0} and NonPos = {i | 0 ≤ i ≤ n ∧ ci ≤ 0}.
Write Pos as {i1, . . . , ik}.

Choose w
def
= bai1b . . . baikb.

Case L = L>θ(A). Let 0 ≤ i ≤ n, by definition of L,

π0Paiw1
T
F > θ iff i ∈ {i1, . . . , ik}

So:
0 =

∑n
i=0 ciπ0Paiw1

T
F =

∑
i∈Pos ciπ0Paiw1

T
F +

∑
i∈NonPos ciπ0Paiw1

T
F

> (
∑
i∈Pos ci)θ + (

∑
i∈NonPos ci)θ = (

∑n
i=0 ci)θ = 0

leading to a contradiction.

Case L = L≥θ(A). Let 0 ≤ i ≤ n, by definition of L,

π0Paiw1
T
F ≥ θ iff i ∈ {i1, . . . , ik}

So: 0 =
∑n
i=0 ciπ0Paiw1

T
F =

∑
i∈Pos ciπ0Paiw1

T
F +

∑
i∈NonPos ciπ0Paiw1

T
F

>(
∑
i∈Pos ci)θ + (

∑
i∈NonPos ci)θ = (

∑n
i=0 ci)θ = 0

leading to a contradiction.
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Non context-free stochastic languages (1)

L
def
= {anbncn | n > 0}

is a non context-free rational stochastic language.

Proof.

Using Ogden’s lemma it can be easily proved that L is not context-free.

Observe that L = L1 ∩ L2 with L1
def
= {anbnc+ | n > 0} and

L2
def
= {a+bncn | n > 0}.

So we prove that:

I for i ∈ {1, 2}, Li = L= 1
2
(Ai) for some Ai

I the family of languages {L = L= 1
2
(A)}A is closed under intersection.
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Non context-free stochastic languages (2)
Proof (continued).

L= 1
2
(A) = {anbnc+ | n > 0}

q3

1.a

q1

0.5b

0.5a

0.5a

q0

0.5a

q2

1.b

0.5a 1.a

q4

q5

1.b

1.b

q6

1.c

q7

1.c

1.c1.c

1
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Non context-free stochastic languages (3)
Proof (ended).

Let L= 1
2
(A1) and L= 1

2
(A2) be two arbitrary languages.

Using the previous construction, let A′1 and A′2 be automata such that:

I For any word w, PrA′i(w) ≤
1
4 ;

I L= 1
2
(Ai) = L= 1

4
(A′i).

One builds A as follows:

I The set of states Q
def
= Q′1 ×Q′2;

I Pa[(q1, q2), (q
′
1, q
′
2)]

def
= (P′1)a[q1, q

′
1](P

′
2)a[q2, q

′
2];

I π′0[q1, q2]
def
= π1,0[q1]π2,0[q2] and F

def
= F ′1 × F ′2.

By construction, PrA(w) = PrA′1(w)PrA′2(w).

So for all word w, PrA(w) ≤ 1
16 and PrA(w) =

1
16 iff PrA′1(w) = PrA′2(w) =

1
4 .

Consequently,
L= 1

16
(A) = L= 1

2
(A1) ∩ L= 1

2
(A2)
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Inclusion in context-sensitive languages
The class of rational stochastic languages is strictly included in the class of

context-sensitive languages.
Proof.

Context-sensitive languages are the languages for which membership checking can
be performed by a non deterministic procedure in linear space.

A deterministic procedure in linear space (far from being optimal)

Pre-computation in constant space.

I Compute the l.c.m., say b, of denominators of
θ, items of matrices {Pa}a∈A, and items of vector π0.

I Build the integer matrices P′a
def
= bPa and vector π′0

def
= bπ0.

For word w
def
= a1 . . . an, the problem becomes π′0(

∏n
i=1 P

′
ai)1

T
F ./ θb

n+1?

I Compute θbn+1 in space O(n).

I Compute v
def
= π′0(

∏n
i=1 P

′
ai)

by initializing v to π′0 and then iteratively multiply it by P′ai .
The vectors are bounded by bn+1. So this is performed in space O(n).

I The sum and comparison are also done in space O(n).
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Operations with regular languages

The family of (rational) stochastic languages is closed
under intersection and union with regular languages.

Proof.

Let L./θ(A1) be a (rational) stochastic language (with ./ ∈ {>,≥})
and L=1(A2) be a regular language.

q q0

0.5π0[q] 0.5

A1 A2

A

L./ θ2
(A) = L./θ(A1) ∪ L=1(A2) and L./ 1+θ

2
(A) = L./θ(A1) ∩ L=1(A2)
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A stochastic language

q3

0.5a

q1

0.5a

q2

0.5a 1.a

q4

q6

1.b

1.b

0.5
1.a

q0

0.5b

q5

1.b

1.a
1.b

0.5b
0.5

0.5b
0.5b

1.a

L= 1
2
(A) = {am1b . . . bamkb | 1 < k ∧m1 = mk}

since PrA(a
m1b . . . bamkb) =

1

2

((
1

2

)k+mk−1
+ 1−

(
1

2

)k+m1−1
)
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Concatenation

The family of (rational) stochastic languages is not closed
under concatenation with a regular language.

Proof.

Let L
def
= {am1b . . . bamkb | 1 < k ∧m1 = mk}

be the previous stochastic language.

Then LA∗ = {am1bam2b . . . amkba∗ | ∃i > 1 mi = m1}
which is not a stochastic language.
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Iteration

The family of (rational) stochastic languages is not closed under Kleene star.

Proof.

Let L
def
= {am1b . . . bamkb | 1 < k ∧m1 = mk} be the previous stochastic language.

Assume that L∗ = L./θ(A) with ./∈ {>,≥}.

Let
∑n
i=0 ciX

i be the minimal polynomial of Pa.
Since 1 is an eigenvalue of Pa, one gets

∑n
i=0 ci = 0

and there are positive and negative coefficients.

By definition,
∑n
i=0 ciPai = 0 and so for any word w,

∑n
i=0 ciPaiw = 0.

Let ci1 , . . . , cik be the positive coefficients of this polynomial.

Let w
def
= bai1b(ai2b)2 . . . (aikb)2. aiw ∈ L∗ iff i ∈ {i1, . . . , ik}.

Case L∗ = L>θ(A). Let 0 ≤ i ≤ n, π0Paiw1
T
F > θ iff i ∈ {i1, . . . , ik}.

So: 0 =
∑n
i=0 ciπ0Paiw1

T
F > (

∑n
i=0 ci)θ = 0

leading to a contradiction.

Case L∗ = L≥θ(A). Let 0 ≤ i ≤ n, π0Paiw1
T
F ≥ θ iff i ∈ {i1, . . . , ik}.

So: 0 =
∑n
i=0 ciπ0Paiw1

T
F > (

∑n
i=0 ci)θ = 0

leading to a contradiction.
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A stochastic language

q3

0.5a

q1

0.5a

q2

0.5a 1.a

q4

q6

1.b

1.b

0.5
1.a

q0

0.5b

q5

1.b

1.a
1.b

0.5b
0.5

0.5b
0.5b

1.a

q7

1.c

1.c
1.A

L= 1
2
(A) = {am1b . . . bamkbcA∗ | 1 < k ∧m1 = mk}
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Homomorphism

The family of (rational) stochastic languages is not closed
under homomorphism.

Proof.

Let L
def
= {am1b . . . bamkbcA∗ | 1 < k ∧m1 = mk}

be the previous stochastic language.

Define the homomorphism h from A to A′
def
= {a, b} by:

h(a)
def
= a h(b)

def
= b h(c)

def
= ε

Then h(L) = {am1bam2b . . . amkba∗ | ∃i > 1 mi = m1}
which is not a stochastic language.
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Two decision problems

Let A and A′ be probabilistic automata.

First problem

Are A and A′ equivalent?

∀w ∈ A∗ PrA(w) = PrA′(w)

Second problem

Is L./θ(A) equal to L./′θ′(A′)?

For deterministic automata this is the same problem.

It can be solved in polynomial time by a product construction

which provides a witness of non equivalence of size less than |Q||Q′|.
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Linear algebra recalls
Let v0 ∈ Rn and v1, . . . ,vk be linearly independent vectors of Rn.

How to check whether v0 is a linear combination of v1, . . . ,vk?

• Solve in O(k3 + n2)v1[1] . . . vk[1]
. . . . . . . . .

v1[n] . . . vk[n]


x1...
xk

 =

v0[1]
...

v0[n]


• When v1, . . . ,vk are orthogonal

(i.e. for all a 6= b, va · vb
def
=
∑n
i=1 va[i]vb[i] = 0)

Compute in O(kn) the orthogonal projection

w0 =

k∑
i=1

v0 · vi
vi · vi

vi

Check in O(n) whether v0 = w0.
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Principles of equivalence checking

Enumeration of words

Looking for a counter-example whose length is increasing starting with word ε.

A stack

Managing a stack of words w in order to find counter-examples aw for all a ∈ A.

For efficiency purposes, the stack contains tuples (Pw1F ,P
′
w1F ′ , w).

An orthogonal family for restricting the enumeration

Gen is a set of independent orthogonal vectors of RQ∪Q′ .
If w is not a counter-example, check if v

def
= (Pw1F ,P

′
w1F ′) is generated by Gen.

I producing v′ the orthogonal projection of v on subspace spanned by Gen;

I comparing v′ to v.

If v′ 6= v then:

I w is added to the stack;

I v − v′ is added to Gen.
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The algorithm
If π0 · 1F 6= π′0 · 1F ′ then return(false, ε)

Gen← {(1F ,1F ′)}; Push(Stack, (1F ,1F ′ , ε))

Repeat

(v,v′, w)← Pop(Stack)

For a ∈ A do

z← Pav; z′ ← P′av
′

If π0 · z 6= π′0 · z′ then return(false, aw)

y← 0; y′ ← 0

For (x,x′) ∈ Gen do

y← y + z·x
x·xx

y′ ← y′ + z′·x′
x′·x′x

′

If (z, z′) 6= (y,y′) then

Push(Stack, (z, z′, aw))

Gen← Gen ∪ {(z− y, z′ − y′)}
Until IsEmpty(Stack)

return(true)
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Complexity

Time complexity

An item is pushed on the stack iff an item is added to Gen.

There can be no more than |Q|+ |Q′| items in Gen.

So there are at most |Q|+ |Q′| iterations of the external loop.

The index of the first inner loop ranges over A
while the index of the most inner loop ranges over Gen.

The operations inside the most inner loop are done in O(|Q|+ |Q′|).

This leads to an overall time complexity of O((|Q|+ |Q′|)3|A|).

Length of witnesses

In addition, the length of the witness is at most |Q|+ |Q′|.
(also valid for deterministic automata)
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Correctness
Assume that the automata are not equivalent and that the algorithm returns true.

Let u be a non examined word such that PrA(u) 6= PrA′(u).

Let u
def
= w′w with w(6= u) the greatest suffix examined by the algorithm.

Among such words u, pick one word such that |w′| is minimal.

Claim. There exists w′′ that has been inserted in the stack
before w such that PrA(w

′w′′) 6= PrA′(w
′w′′).

Let Gen = {w1, . . . , wk} when examining w, there exist λ1, . . . , λk such that:

So: Pw1F =
∑k
i=1 λiPwi1F and P′w1F ′ =

∑k
i=1 λiP

′
wi1F ′

PrA(w
′w)

def
= π0Pw′Pw1F =

∑k
i=1 λiπ0Pw′Pwi1F =

∑k
i=1 λiPrA(w

′wi)

Similarly: PrA′(w
′w) =

∑k
i=1 λiPrA′(w

′wi)

So there exists i, with PrA(w
′wi) 6= PrA′(w

′wi).

Let w′
def
= w′′′a. awi is examined by the algorithm.

So the word u′
def
= w′wi has a decomposition u′

def
= z′z where z the greatest suffix

examined by the algorithm has for suffix awi. So |z′| < |w′|: a contradiction.
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Undecidability of the equality problem

Given A a rational stochastic automaton,
the question L= 1

2
(A) = {ε}? is undecidable.

Proof.

By reduction of the undecidable Post correspondence problem (PCP):

Given an alphabet A and two morphisms ϕ1, ϕ2 from A to {0, 1}+,
does there exist a word w ∈ A+ such that ϕ1(w) = ϕ2(w)?

Already undecidable for a restriction where the images of letters lie in (10 + 11)+.

Inserting a 1 before each letter of images reduces the former problem to the latter.

A word w
def
= a1 . . . an ∈ (10 + 11)+ defines a value val(w) ∈ [0, 1] by:

val(w)
def
=

n∑
i=1

ai
2n+1−i

Since every word starts with a 1, val(w) = val(w′) implies w = w′.
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Reduction of PCP
For w ∈ A+ and i ∈ {1, 2}, define vali(w)

def
= val(ϕi(w)).

q11

∑(1-val1(a)).a

q10

∑val1(a).a
∑(val1(a)+2

-ϕ1(a)).a
0.5

∑(1-val1(a)-2
-ϕ1(a)).a

q21

∑(1-val2(a)).a

q20

∑val2(a).a ∑(val2(a)+2
-ϕ2(a)).a

0.5

∑(1-val2(a)-2
-ϕ2(a)).a
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Illustration of the reduction

A a b c
ϕ1 (1)0(1)1 (1)0(1)0 (1)1
ϕ2 (1)0 (1)0 (1)1(1)1(1)1

A a b c
val1

13
16

7
16

3
4

val2
1
4

1
4

63
64

q10 q11

13
16a+

7
16b+

3
4c

1
8a+

1
2b

3
16a+

9
16b+

1
4c

7
8a+

1
2b+ c

q20 q21

1
4a+

1
4b+

63
64c

1
2a+

1
2b

3
4a+

3
4b+

1
64c

1
2a+

1
2b+ c
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Correctness of the reduction

The recurrence equation:

1qi0Pwa1
T
qi1 = 1qi0Pw1

T
qi1(vali(a) + 2−|ϕi(a)|) + (1− 1qi0Pw1

T
qi1)vali(a)

= vali(a) + 2−|ϕi(a)|1qi0Pw1
T
qi1

By induction we obtain that for all w
def
= a1 . . . an:

1qi0Pw1
T
qi1 =

n∑
j=1

vali(aj)2
−

∑
j<k≤n |ϕi(ak)| = vali(w)

So for w ∈ A+: PrA(w) =
1
2 (val1(w) + 1− val2(w)).

Thus w ∈ L= 1
2
(A) iff val(ϕ1(w)) = val(ϕ2(w)) implying that ϕ1(w) = ϕ2(w).
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