Probabilistic Aspects of Computer Science: Probabilistic Automata

Serge Haddad

LSV, ENS Paris-Saclay & CNRS & Inria

M1 Jacques Herbrand

1 Presentation

2 Properties of Stochastic Languages

3 Decidability Results
Plan

1. Presentation

Properties of Stochastic Languages

Decidability Results
An introductive example

Planning holidays in a foreign country

1. Choosing which plane company to use: lowcost or highcost;
2. Renting a room in an hotel by internet or phone;
3. Buying tickets for some exhibitions with agency: seeall or dontmiss.

Usually these actions must be planned before the holidays.

Thus one looks for an \textit{a priori} optimal policy that maximizes the probability to \textit{reach} a goal.
The probability of success of lowcost · internet · seeall is $\frac{27}{64}$.
Probabilistic Automata (PA) are a variation of MDP where:

- The set of possible actions is the same in every state.
- There are no rewards.
- There is a subset of final states.

More formally, a PA $A = (Q, A, \{P_a\}_{a \in A}, \pi_0, F)$ is defined by:

- Q, the finite set of states;
- A, the finite alphabet;
- For all $a \in A$, P_a, a probability transition matrix over S;
- π_0, the initial distribution over states and $F \subseteq Q$ the final states.
An edge from a state to another one is labelled by a vector of transition probabilities indexed by A. The vector is denoted by a formal sum. For instance, the transition from q_0 to itself is labelled by $1a + 0.5b$ means that:

- when a is chosen in state q_0, the probability that the next state is q_0, $P_a[q_0, q_0]$, is equal to 1.
- when b is chosen in state q_0, the probability that the next state is q_0, $P_b[q_0, q_0]$, is equal to 0.5.

$A = \{a, b\}$;

$Q = \{q_0, q_1\}$, $F = \{q_1\}$;

$\pi_0[q_0] = 1$.

Illustration

![Diagram](image-url)
Policies in PA

Words are policies. When some finite word \(w \overset{\text{def}}{=} a_1 \ldots a_n \) is selected, we are interested in the probability to be in a final state using \(w \) as a policy.

Given \(\mathcal{A} \) a PA and \(w \overset{\text{def}}{=} a_1 \ldots a_n \in A^* \) a word, the acceptance probability of \(w \) by \(\mathcal{A} \) is defined by:

\[
\Pr_{\mathcal{A}}(w) \overset{\text{def}}{=} \sum_{q \in Q} \pi_0[q] \sum_{q' \in F} \left(\prod_{i=1}^n P_{a_i} \right) [q, q']
\]

Notation. Given a word \(w \overset{\text{def}}{=} a_1 \ldots a_n \), the probability matrix \(P_w \) is defined by \(P_w \overset{\text{def}}{=} \prod_{i=1}^n P_{a_i} \). In particular \(P_\varepsilon = \text{Id} \).

With these notations:

\[
\Pr_{\mathcal{A}}(w) = \pi_0 P_w 1^T_F
\]

where \(1_F \) is the indicator vector of subset \(F \).
Computation of \(\text{Pr}_A(abba) \) by induction w.r.t. the prefixes. First \(\text{Pr}_A(\varepsilon) = 0 \).

- \(\text{Pr}_A(a) = \frac{1}{2} \text{Pr}_A(\varepsilon) = 0 \)
- \(\text{Pr}_A(ab) = \text{Pr}_A(a) + \frac{1}{2}(1 - \text{Pr}_A(a)) = \frac{1}{2} \)
- \(\text{Pr}_A(abb) = \text{Pr}_A(ab) + \frac{1}{2}(1 - \text{Pr}_A(ab)) = \frac{3}{4} \)
- \(\text{Pr}_A(abba) = \frac{1}{2} \text{Pr}_A(abb) = \frac{3}{8} \)

More generally, the following recursive equations hold:

\[
\text{Pr}_A(wa) = \frac{1}{2} \text{Pr}_A(w) \quad \text{and} \quad \text{Pr}_A(wb) = \frac{1}{2}(1 + \text{Pr}_A(w))
\]

from which one can derive an explicit expression of the acceptance probability:

\[
\text{Pr}_A(a_1 \ldots a_n) = \sum_{i=1}^{n} 2^{i-n-1} \cdot 1_{a_i=b}
\]

Which word maximizes the acceptance probability?
Stochastic languages

We are interested in “useful” policies.

This directly leads to the introduction of stochastic languages. Let:

- \mathcal{A} be a probabilistic automaton;
- $\theta \in [0, 1]$ be a threshold also called a cut point;
- $\bowtie \in \{<, \leq, >, \geq, =, \neq\}$ be a comparison operator.

Then $L_{\bowtie \theta}(\mathcal{A})$ is defined by:

$$L_{\bowtie \theta}(\mathcal{A}) = \{w \in A^* | \Pr_{\mathcal{A}}(w) \bowtie \theta\}$$

For expressiveness and decidability issues, one also needs the following definitions.

- A rational PA is a PA with probability distributions over \mathbb{Q}^Q.
- A rational stochastic language is a stochastic language specified by a rational PA and a rational threshold.
Counting with \(\text{PA} \)

(a succinct representation with an omitted absorbing rejecting state)

Any word \(z \) different from \(a^m b^n \) with \(m > 0, n > 0 \) cannot be accepted.

Let \(w \overset{\text{def}}{=} a^m b^n \) with \(m > 0, n > 0 \). \(w \) can be accepted by:

- a path \(q_0, q_1^m, q_2^n \) with probability \(\frac{1}{2^n} \);
- or by a family of paths \(q_0, q_3^r, q_4^s, q_5^n \) with \(0 < r, s \) and \(r + s = m \) with cumulated probability \(\frac{1}{2} - \frac{1}{2^m} \).

Summing, one obtains: \(\frac{1}{2} + \frac{1}{2^n} - \frac{1}{2^m} \).

Thus: \(\mathcal{L}_{=0.5}(\mathcal{A}) = \{ a^n b^n \mid n > 0 \} \)
Plan

Presentation

2 Properties of Stochastic Languages

Decidability Results
Expressiveness problems

Provide a minimal set of comparison operators and thresholds.

Position the stochastic languages w.r.t. the Chomsky hierarchy.

Study the closure properties of the stochastic languages.
A single threshold is enough

\begin{align*}
\mathcal{A} & \xleftarrow{\alpha \pi_0[q]} q \\
q_0 & \xrightarrow{1 - \alpha} 1A
\end{align*}

The value \(\alpha \) depends on \(\theta \neq \frac{1}{2} \) in the following way:

- If \(\theta > \frac{1}{2} \) then \(q_0 \notin F \) and \(\alpha \overset{\text{def}}{=} \frac{1}{2\theta} \) so that for all \(w \in A^* \),
 \[\Pr_{\mathcal{A}'}(w) = \frac{1}{2\theta} \Pr_{\mathcal{A}}(w) \]
 Thus \(w \in L_{\bowtie\theta}^{\frac{1}{2}}(\mathcal{A}') \) iff \(w \in L_{\bowtie\theta}(\mathcal{A}) \).

- If \(\theta < \frac{1}{2} \) then \(q_0 \in F \) and \(\alpha \overset{\text{def}}{=} \frac{1}{2(1 - \theta)} \) so that for all \(w \in A^* \),
 \[\Pr_{\mathcal{A}'}(w) = \frac{1 - 2\theta + \Pr_{\mathcal{A}}(w)}{2(1 - \theta)} \]
 Thus \(w \in L_{\bowtie\theta}^{\frac{1}{2}}(\mathcal{A}') \) iff \(w \in L_{\bowtie\theta}(\mathcal{A}) \).
Getting rid of (dis)equality

Given a PA A, we build A' as follows.

- The set of states $Q' \overset{\text{def}}{=} Q \times Q$;
- $P'_a[(q_1, q_2), (q'_1, q'_2)] \overset{\text{def}}{=} P_a[q_1, q'_1] P_a[q_2, q'_2]$;
- $\pi'_0[q_1, q_2] \overset{\text{def}}{=} \pi_0[q_1] \pi_0[q_2]$ and $F' \overset{\text{def}}{=} F \times (Q \setminus F)$.

Once a word w is selected, the two components of the DES behave independently and so:

$$Pr_{A'}(w) = Pr_{A}(w)(1 - Pr_{A}(w))$$

Consequently $Pr_{A'}(w) \leq \frac{1}{4}$ with equality iff $Pr_{A}(w) = \frac{1}{2}$. Thus:

$$L_{\geq \frac{1}{4}}(A') = L_{= \frac{1}{2}}(A)$$
Getting rid of “lower (or equal) than”

Given a PA \mathcal{A}, we build \mathcal{A}' by complementing the final states. Then:

$$\Pr_{\mathcal{A}'}(w) = 1 - \Pr_{\mathcal{A}}(w)$$

And so:

$$L_{\geq \theta}({\mathcal{A}'}) = L_{< \theta}(\mathcal{A})$$

$$L_{> \theta}({\mathcal{A}'}) = L_{\leq \theta}(\mathcal{A})$$
The Chomsky hierarchy

<table>
<thead>
<tr>
<th>Class</th>
<th>Grammar</th>
<th>Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular language</td>
<td>(L \to aR</td>
<td>a</td>
</tr>
<tr>
<td>Algebraic language</td>
<td>(L \to R_1 \ldots R_n) with (L \in \Delta) and (R_i \in \Delta \cup \Sigma)</td>
<td>Stack automaton</td>
</tr>
<tr>
<td>Context-sensitive language</td>
<td>(L_1 \ldots L_m \to R_1 \ldots R_n) with (m \leq n, (S \to \varepsilon)) with (L_i, R_j \in \Delta \cup \Sigma)</td>
<td>Non determ. Turing machine performing in linear space</td>
</tr>
<tr>
<td>Recursively enumerable language</td>
<td>(L_1 \ldots L_m \to R_1 \ldots R_n) avec (L_i, R_j \in \Delta \cup \Sigma)</td>
<td>Turing machine</td>
</tr>
</tbody>
</table>
Revisiting the Chomsky hierarchy

- recursively enumerable
- context sensitive
- algebraic
- regular
- rational stochastic
- stochastic
Define \(v_a \equiv 0 \) and \(v_b \equiv 1 \).

The acceptance probability of \(w_1 \ldots w_n \) is the binary number \(0.v_{w_n} \ldots v_{w_1} \).

So \(\mathcal{L}_{>\theta}(\mathcal{A}) \) is the set of representations of numbers (with finite binary development) greater than \(\theta \).

Thus given \(0 \leq \theta < \theta' \leq 1 \),

\[
\mathcal{L}_{>\theta'}(\mathcal{A}) \subsetneq \mathcal{L}_{>\theta}(\mathcal{A})
\]

So there is an uncountable number of stochastic languages implying that “most” of them are non recursively enumerable.

This result does not hold for rational stochastic languages.
A deterministic automaton is a stochastic automaton with probabilities in \(\{0, 1\} \).

Thus regular languages are stochastic languages.

The language \(\{a^n b^n \mid n > 0\} \) is a rational stochastic non regular language.
Non stochastic context-free languages (1)

\[L \overset{\text{def}}{=} \{ a^{n_1}ba^{n_2}b\ldots a^{n_k}b a^* \mid \exists i > 1 \; n_i = n_1 \} \]

is a non stochastic context-free language.

Proof.

\(L \) is context-free. Use a non deterministic automaton with a counter.

- With a counter one counts \(n_1 \) the number of \(a \)'s until the first occurrence of \(b \).
- Then one guesses an occurrence of \(b \) and decrements the counter by the occurrences of \(a \) until the next occurrence of \(b \).
- If the counter is zero the word is accepted.

Assume that (1) \(L = L_{>\theta}(A) \) or (2) \(L = L_{\geq \theta}(A) \).

Let \(\sum_{i=0}^{n} c_i x^i \) be the minimal polynomial of \(P_a \).

Since 1 is an eigenvalue of \(P_a \), one gets \(\sum_{i=0}^{n} c_i = 0 \) and there are positive and negative coefficients.

By definition, \(\sum_{i=0}^{n} c_i P_a^i = 0 \) and so for any word \(w \), \(\sum_{i=0}^{n} c_i P_a^i w = 0 \).
Non stochastic context-free languages (2)

Proof (continued).

Let $Pos = \{ i \mid 0 \leq i \leq n \land c_i > 0 \}$ and $NonPos = \{ i \mid 0 \leq i \leq n \land c_i \leq 0 \}$.

Write Pos as $\{ i_1, \ldots, i_k \}$.

Choose $w \overset{\text{def}}{=} ba^{i_1}b \ldots ba^{i_k}b$.

Case $L = L_{>\theta}(A)$. Let $0 \leq i \leq n$, by definition of L,

$$
\pi_0 P_{a^i w} 1^T_F > \theta \text{ iff } i \in \{ i_1, \ldots, i_k \}
$$

So:

$$
0 = \sum_{i=0}^n c_i \pi_0 P_{a^i w} 1^T_F = \sum_{i \in Pos} c_i \pi_0 P_{a^i w} 1^T_F + \sum_{i \in NonPos} c_i \pi_0 P_{a^i w} 1^T_F > (\sum_{i \in Pos} c_i) \theta + (\sum_{i \in NonPos} c_i) \theta = (\sum_{i=0}^n c_i) \theta = 0
$$

leading to a contradiction.

Case $L = L_{\geq \theta}(A)$. Let $0 \leq i \leq n$, by definition of L,

$$
\pi_0 P_{a^i w} 1^T_F \geq \theta \text{ iff } i \in \{ i_1, \ldots, i_k \}
$$

So:

$$
0 = \sum_{i=0}^n c_i \pi_0 P_{a^i w} 1^T_F = \sum_{i \in Pos} c_i \pi_0 P_{a^i w} 1^T_F + \sum_{i \in NonPos} c_i \pi_0 P_{a^i w} 1^T_F > (\sum_{i \in Pos} c_i) \theta + (\sum_{i \in NonPos} c_i) \theta = (\sum_{i=0}^n c_i) \theta = 0
$$

leading to a contradiction.
Non context-free stochastic languages (1)

\[L \overset{\text{def}}{=} \{ a^n b^n c^n \mid n > 0 \} \]

is a non context-free rational stochastic language.

Proof.

Using Ogden’s lemma it can be easily proved that \(L \) is not context-free.

Observe that \(L = L_1 \cap L_2 \) with \(L_1 \overset{\text{def}}{=} \{ a^n b^n c^+ \mid n > 0 \} \) and \(L_2 \overset{\text{def}}{=} \{ a^+ b^n c^n \mid n > 0 \} \).

So we prove that:

- for \(i \in \{1, 2\} \), \(L_i = L_{=\frac{1}{2}}(\mathcal{A}_i) \) for some \(\mathcal{A}_i \)
- the family of languages \(\{ L = L_{=\frac{1}{2}}(A) \} \) is closed under intersection.
Proof (continued).

\[L_{\frac{1}{2}}(A) = \{a^n b^n c^+ \mid n > 0\} \]
Non context-free stochastic languages (3)

Proof (ended).
Let \(L = \frac{1}{2}(A_1) \) and \(L = \frac{1}{2}(A_2) \) be two arbitrary languages.
Using the previous construction, let \(A'_1 \) and \(A'_2 \) be automata such that:

- For any word \(w \), \(\Pr_{A'_i}(w) \leq \frac{1}{4} \);
- \(L = \frac{1}{2}(A_i) = L = \frac{1}{4}(A'_i) \).

One builds \(A \) as follows:

- The set of states \(Q \overset{\text{def}}{=} Q'_1 \times Q'_2 \);
- \(P_a[(q_1, q_2), (q'_1, q'_2)] \overset{\text{def}}{=} (P'_1)_a[q_1, q'_1](P'_2)_a[q_2, q'_2] \);
- \(\pi'_0[q_1, q_2] \overset{\text{def}}{=} \pi_{1,0}[q_1] \pi_{2,0}[q_2] \) and \(F \overset{\text{def}}{=} F'_1 \times F'_2 \).

By construction, \(\Pr_A(w) = \Pr_{A'_1}(w)\Pr_{A'_2}(w) \).
So for all word \(w \), \(\Pr_A(w) \leq \frac{1}{16} \) and \(\Pr_A(w) = \frac{1}{16} \) iff \(\Pr_{A'_1}(w) = \Pr_{A'_2}(w) = \frac{1}{4} \).

Consequently,
\[
L = \frac{1}{16}(A) = L = \frac{1}{2}(A_1) \cap L = \frac{1}{2}(A_2)
\]
Inclusion in context-sensitive languages

The class of rational stochastic languages is strictly included in the class of context-sensitive languages.

Proof.

Context-sensitive languages are the languages for which membership checking can be performed by a non deterministic procedure in linear space.

A deterministic procedure in linear space (far from being optimal)

Pre-computation in constant space.

- Compute the l.c.m., say b, of denominators of θ, items of matrices $\{P_a\}_{a \in A}$ and, items of vector π_0.
- Build the integer matrices $P'_a \overset{\text{def}}{=} bP_a$ and vector $\pi'_0 \overset{\text{def}}{=} b\pi_0$.

For word $w \overset{\text{def}}{=} a_1 \ldots a_n$, the problem becomes

$$\pi'_0 (\prod_{i=1}^n P'_{a_i}) 1_T^T \bowtie \theta b^{n+1}?$$

- Compute θb^{n+1} in space $O(n)$.
- Compute $v \overset{\text{def}}{=} \pi'_0 (\prod_{i=1}^n P'_{a_i})$
 by initializing v to π'_0 and then iteratively multiply it by P'_{a_i}.
 The vectors are bounded by b^{n+1}. So this is performed in space $O(n)$.
- The sum and comparison are also done in space $O(n)$.
Operations with regular languages

The family of (rational) stochastic languages is closed under intersection and union with regular languages.

Proof.
Let \(L_{\bowtie \theta}(A_1) \) be a (rational) stochastic language (with \(\bowtie \in \{>, \geq\} \)) and \(L_{=1}(A_2) \) be a regular language.

\[
L_{\bowtie \frac{1}{2}}(A) = L_{\bowtie \theta}(A_1) \cup L_{=1}(A_2) \quad \text{and} \quad L_{\bowtie 1+\frac{1}{2}}(A) = L_{\bowtie \theta}(A_1) \cap L_{=1}(A_2)
\]
A stochastic language

$L = \frac{1}{2} (A) = \{ a^{m_1} b ... b a^{m_k} b \mid 1 < k \land m_1 = m_k \}$

since $\Pr_A(a^{m_1} b ... b a^{m_k} b) = \frac{1}{2} \left(\left(\frac{1}{2} \right)^{k+m_k-1} + 1 - \left(\frac{1}{2} \right)^{k+m_1-1} \right)$
The family of (rational) stochastic languages is not closed under concatenation with a regular language.

Proof.

Let \(L \overset{\text{def}}{=} \{a^{m_1}b \ldots ba^{m_k}b \mid 1 < k \land m_1 = m_k\} \)
be the previous stochastic language.

Then \(LA^* = \{a^{m_1}ba^{m_2}b \ldots a^{m_k}ba^* \mid \exists i > 1 \ m_i = m_1\} \)
which is not a stochastic language.
The family of (rational) stochastic languages is not closed under Kleene star.

Proof.

Let \(L \overset{\text{def}}{=} \{ a^m b \ldots b a^m k b \mid 1 < k \land m_1 = m_k \} \) be the previous stochastic language. Assume that \(L^* = L_\text{\$\theta(\mathcal{A})} \) with \(_\text{\$\in \{>, \geq\} \).

Let \(\sum_{i=0}^{n} c_i x^i \) be the minimal polynomial of \(P_a \).

Since 1 is an eigenvalue of \(P_a \), one gets \(\sum_{i=0}^{n} c_i = 0 \) and there are positive and negative coefficients.

By definition, \(\sum_{i=0}^{n} c_i P_a^i = 0 \) and so for any word \(w \), \(\sum_{i=0}^{n} c_i P_a^i w = 0 \).

Let \(c_{i_1}, \ldots, c_{i_k} \) be the positive coefficients of this polynomial.

Let \(w \overset{\text{def}}{=} ba^{i_1} b(a^{i_2} b)^2 \ldots (a^{i_k} b)^2 \).

\(a^i w \in L^* \) iff \(i \in \{i_1, \ldots, i_k\} \).

Case \(L^* = L_\text{\$\theta(\mathcal{A})} \).

Let \(0 \leq i \leq n, P_{a^i w} 1_F^T > \theta \) iff \(i \in \{i_1, \ldots, i_k\} \).

So: \(0 = \sum_{i=0}^{n} c_i \pi_0 P_{a^i w} 1_F^T > (\sum_{i=0}^{n} c_i) \theta = 0 \)

leading to a contradiction.

Case \(L^* = L_\text{\$\geq\theta(\mathcal{A})} \).

Let \(0 \leq i \leq n, P_{a^i w} 1_F^T \geq \theta \) iff \(i \in \{i_1, \ldots, i_k\} \).

So: \(0 = \sum_{i=0}^{n} c_i \pi_0 P_{a^i w} 1_F^T > (\sum_{i=0}^{n} c_i) \theta = 0 \)

leading to a contradiction.
A stochastic language

$L = \frac{1}{2} (A) = \{a^{m_1} b \ldots ba^{m_k} bc A^* \mid 1 < k \land m_1 = m_k\}$
Homomorphism

The family of (rational) stochastic languages is not closed under homomorphism.

Proof.
Let $L \overset{\text{def}}{=} \{ a^{m_1} b \ldots ba^{m_k} bcA^* \mid 1 < k \land m_1 = m_k \}$ be the previous stochastic language.

Define the homomorphism h from A to $A' \overset{\text{def}}{=} \{ a, b \}$ by:

$$h(a) \overset{\text{def}}{=} a \quad h(b) \overset{\text{def}}{=} b \quad h(c) \overset{\text{def}}{=} \varepsilon$$

Then $h(L) = \{ a^{m_1} b a^{m_2} b \ldots a^{m_k} ba^* \mid \exists i > 1 \ m_i = m_1 \}$ which is not a stochastic language.
Plan

Presentation

Properties of Stochastic Languages

3 Decidability Results
Two decision problems

Let \mathcal{A} and \mathcal{A}' be probabilistic automata.

First problem

Are \mathcal{A} and \mathcal{A}' equivalent?

\[\forall w \in A^* \quad \Pr_{\mathcal{A}}(w) = \Pr_{\mathcal{A}'}(w) \]

Second problem

Is $L_{\triangleright \triangleleft \theta}(\mathcal{A})$ equal to $L_{\triangleright \triangleleft \theta'}(\mathcal{A}')$?

For deterministic automata this is the same problem.
It can be solved in polynomial time by a product construction which provides a witness of non equivalence of size less than $|Q||Q'|$.
Linear algebra recalls

Let $v_0 \in \mathbb{R}^n$ and v_1, \ldots, v_k be linearly independent vectors of \mathbb{R}^n.

How to check whether v_0 is a linear combination of v_1, \ldots, v_k?

- Solve in $O(k^3 + n^2)$

$$
\begin{pmatrix}
 v_1[1] & \ldots & v_k[1] \\
 \vdots & \ddots & \vdots \\
 v_1[n] & \ldots & v_k[n]
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 \vdots \\
 x_k
\end{pmatrix}
=
\begin{pmatrix}
 v_0[1] \\
 \vdots \\
 v_0[n]
\end{pmatrix}
$$

- When v_1, \ldots, v_k are orthogonal
 (i.e. for all $a \neq b$, $v_a \cdot v_b \overset{\text{def}}{=} \sum_{i=1}^{n} v_a[i]v_b[i] = 0$)

Compute in $O(kn)$ the orthogonal projection

$$
w_0 = \sum_{i=1}^{k} \frac{v_0 \cdot v_i}{v_i \cdot v_i} v_i
$$

Check in $O(n)$ whether $v_0 = w_0$.
Principles of equivalence checking

Enumeration of words
Looking for a counter-example whose length is increasing starting with word ε.

A stack
Managing a stack of words w in order to find counter-examples aw for all $a \in A$. For efficiency purposes, the stack contains tuples $(P_w 1_F, P'_w 1_{F'}, w)$.

An orthogonal family for restricting the enumeration
Gen is a set of independent orthogonal vectors of $\mathbb{R}^{Q\cup Q'}$.
If w is not a counter-example, check if $v \overset{\text{def}}{=} (P_w 1_F, P'_w 1_{F'})$ is generated by Gen.

- producing v' the orthogonal projection of v on subspace spanned by Gen;
- comparing v' to v.

If $v' \neq v$ then:

- w is added to the stack;
- $v - v'$ is added to Gen.
The algorithm

If $\pi_0 \cdot 1_F \neq \pi_0' \cdot 1_{F'}$ then return($false, \varepsilon$)

$Gen \leftarrow \{(1_F, 1_{F'})\}; \text{Push}(Stack, (1_F, 1_{F'}, \varepsilon))$

Repeat

$(v, v', w) \leftarrow \text{Pop}(Stack)$

For $a \in A$ do

$z \leftarrow P_a v; \ z' \leftarrow P_a v'$

If $\pi_0 \cdot z \neq \pi_0' \cdot z'$ then return($false, aw$)

$y \leftarrow 0; \ y' \leftarrow 0$

For $(x, x') \in Gen$ do $(y, y') \leftarrow (y, y') + \frac{z \cdot x + z' \cdot x'}{x \cdot x + x' \cdot x'}(x, x')$

If $(z, z') \neq (y, y')$ then

$\text{Push}(Stack, (z, z', aw))$

$Gen \leftarrow Gen \cup \{(z - y, z' - y')\}$

Until IsEmpty($Stack$)

return(true)
Complexity

Time complexity

An item is pushed on the stack iff an item is added to Gen.

There can be no more than $|Q| + |Q'|$ items in Gen.

So there are at most $|Q| + |Q'|$ iterations of the external loop.

The index of the first inner loop ranges over A while the index of the most inner loop ranges over Gen.

The operations inside the most inner loop are done in $O(|Q| + |Q'|)$.

This leads to an overall time complexity of $O(((|Q| + |Q'|)^3 |A|)$.

Length of witnesses

In addition, the length of the witness is at most $|Q| + |Q'|$.

(Also valid for deterministic automata)
Correctness

Assume that the automata are not equivalent and that the algorithm returns \textbf{true}. Let \(u \) be a non examined word such that \(\Pr_A(u) \neq \Pr_{A'}(u) \).

Let \(u \overset{\text{def}}{=} w'w \) with \(w(\neq u) \) the greatest suffix examined by the algorithm.

Among such words \(u \), pick one word such that \(|w'| \) is minimal.

Claim. There exists \(w'' \) that has been inserted in the stack before \(w \) such that \(\Pr_A(w'w'') \neq \Pr_{A'}(w'w'') \).

Let \(\text{Gen} = \{w_1, \ldots, w_k\} \) when examining \(w \), there exist \(\lambda_1, \ldots, \lambda_k \) such that:

\[
\text{So: } P_w 1_F = \sum_{i=1}^{k} \lambda_i P_{w_i} 1_F \quad \text{and} \quad P'_w 1_{F'} = \sum_{i=1}^{k} \lambda_i P'_{w_i} 1_{F'}
\]

\[
\Pr_A(w'w) \overset{\text{def}}{=} \pi_0 P_{w'} P_w 1_F = \sum_{i=1}^{k} \lambda_i \pi_0 P_{w'} P_{w_i} 1_F = \sum_{i=1}^{k} \lambda_i \Pr_A(w'w_i)
\]

Similarly: \(\Pr_{A'}(w'w) = \sum_{i=1}^{k} \lambda_i \Pr_{A'}(w'w_i) \)

So there exists \(i \), with \(\Pr_A(w'w_i) \neq \Pr_{A'}(w'w_i) \).

Let \(w' \overset{\text{def}}{=} w'''a \). \(aw_i \) is examined by the algorithm.

So the word \(u' \overset{\text{def}}{=} w'w_i \) has a decomposition \(u' \overset{\text{def}}{=} z'z \) where \(z \) the greatest suffix examined by the algorithm has for suffix \(aw_i \). So \(|z'| < |w'| \): a contradiction.
Undecidability of the equality problem

Given \mathcal{A} a rational stochastic automaton, the question $L_{\frac{1}{2}}(\mathcal{A}) = \{\varepsilon\}$? is undecidable.

Proof.

By reduction of the undecidable Post correspondence problem (PCP):

Given an alphabet A and two morphisms φ_1, φ_2 from A to $\{0, 1\}^+$, does there exist a word $w \in A^+$ such that $\varphi_1(w) = \varphi_2(w)$?

Already undecidable for a restriction where the images of letters lie in $(10 + 11)^+$. Inserting a 1 before each letter of images reduces the former problem to the latter.

A word $w \overset{\text{def}}{=} a_1 \ldots a_n \in (10 + 11)^+$ defines a value $\text{val}(w) \in [0, 1]$ by:

$$\text{val}(w) \overset{\text{def}}{=} \sum_{i=1}^{n} \frac{a_i}{2^{n+1-i}}$$

Since every word starts with a 1, $\text{val}(w) = \text{val}(w')$ implies $w = w'$.
Reduction of PCP

For $w \in A^+$ and $i \in \{1, 2\}$, define $val_i(w) \overset{\text{def}}{=} val(\varphi_i(w))$.

\[\sum_a (1 - val_1(a))a \]

\[\sum_a (1 - val_1(a) - 2^{-|\varphi_1(a)|})a \]

\[\sum_a val_1(a)a \]

\[\sum_a (val_1(a) + 2^{-|\varphi_1(a)|})a \]

\[\sum_a (1 - val_2(a))a \]

\[\sum_a (1 - val_2(a) - 2^{-|\varphi_2(a)|})a \]

\[\sum_a val_2(a)a \]

\[\sum_a (val_2(a) + 2^{-|\varphi_2(a)|})a \]
Illustration of the reduction

<table>
<thead>
<tr>
<th>(A)</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varphi_1)</td>
<td>(1)0(1)1</td>
<td>(1)0(1)0</td>
<td>(1)1</td>
</tr>
<tr>
<td>(\varphi_2)</td>
<td>(1)0</td>
<td>(1)0</td>
<td>(1)1(1)1(1)1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(A)</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{val}_1)</td>
<td>(\frac{13}{16})</td>
<td>(\frac{7}{16})</td>
<td>(\frac{3}{4})</td>
</tr>
<tr>
<td>(\text{val}_2)</td>
<td>(\frac{1}{4})</td>
<td>(\frac{1}{4})</td>
<td>(\frac{63}{64})</td>
</tr>
</tbody>
</table>

\[
\frac{3}{16}a + \frac{9}{16}b + \frac{1}{4}c \quad q_{10} \quad \frac{13}{16}a + \frac{7}{16}b + \frac{3}{4}c \quad q_{11} \quad \frac{7}{8}a + \frac{1}{2}b + c
\]

\[
\frac{1}{8}a + \frac{1}{2}b
\]

\[
\frac{3}{4}a + \frac{3}{4}b + \frac{1}{64}c \quad q_{20} \quad \frac{1}{4}a + \frac{1}{4}b + \frac{63}{64}c \quad q_{21} \quad \frac{1}{2}a + \frac{1}{2}b + c
\]

\[
\frac{1}{2}a + \frac{1}{2}b
\]
Correctness of the reduction

The recurrence equation:

\[1_{q_0} P_w a 1^T_{q_1} = 1_{q_0} P_w 1^T_{q_1} (val_i(a) + 2^{-|\varphi_i(a)|}) + (1 - 1_{q_0} P_w 1^T_{q_1})val_i(a) \]

\[= val_i(a) + 2^{-|\varphi_i(a)|} 1_{q_0} P_w 1^T_{q_1} \]

By induction we obtain that for all \(w \stackrel{\text{def}}{=} a_1 \ldots a_n \):

\[1_{q_0} P_w 1^T_{q_1} = \sum_{j=1}^{n} val_i(a_j) 2^{-\sum_{j<k\leq n} |\varphi_i(a_k)|} = val_i(w) \]

So for \(w \in A^+ \): \(\Pr_A(w) = \frac{1}{2}(val_1(w) + 1 - val_2(w)) \).

Thus \(w \in L_{=\frac{1}{2}}(A) \) iff \(val(\varphi_1(w)) = val(\varphi_2(w)) \) implying that \(\varphi_1(w) = \varphi_2(w) \).