Probabilistic Aspects of Computer Science: Probabilistic Automata

Serge Haddad
LMF, ENS Paris-Saclay \& CNRS \& INRIA

MPRI M1
(1) Presentation
(2) Properties of Stochastic Languages
(3) Decidability Results

Plan

(1) Presentation

Properties of Stochastic Languages

Decidability Results

An introductive example

Planning holidays in a foreign country

1. Choosing which train or plane to use;
2. Renting an house or a room in an hotel;
3. Buying tickets for some exhibitions, etc.

Usually these actions must be planned before the holidays.

Thus one looks for an a priori optimal policy that maximizes the probability to reach a goal.

Formalisation

The probability of success of lowcost • internet. seeall is $\frac{27}{64}$.

Probabilistic automata

Probabilistic Automata (PA) are a variation of MDP where:

- The set of possible actions is the same in every state.
- There are no rewards.
- There is a subset of final states.

More formally, a PA $\mathcal{A}=\left(Q, A,\left\{\mathbf{P}_{a}\right\}_{a \in A}, \pi_{0}, F\right)$ is defined by:

- Q, the finite set of states;
- A, the finite alphabet;
- For all $a \in A, \mathbf{P}_{a}$, a probability transition matrix over S;
- π_{0}, the initial distribution over states and $F \subseteq Q$ the final states.

Illustration

- $A=\{a, b\}$;
- $Q=\left\{q_{0}, q_{1}\right\}, F=\left\{q_{1}\right\}$;
- $\pi_{0}\left[q_{0}\right]=1$.

An edge from a state to another one is labelled by a vector of transition probabilities indexed by A. The vector is denoted by a formal sum.

For instance, the transition from q_{0} to itself is labelled by $1 a+0.5 b$ means that:

- when a is chosen in state q_{0}, the probability that the next state is $q_{0}, \mathbf{P}_{a}\left[q_{0}, q_{0}\right]$, is equal to 1 .
- when b is chosen in state q_{0}, the probability that the next state is $q_{0}, \mathbf{P}_{b}\left[q_{0}, q_{0}\right]$, is equal to 0.5 .

Policies in PA

Words are policies. When some finite word $w \stackrel{\text { def }}{=} a_{1} \ldots a_{n}$ is selected, we are interested in the probability to be in a final state using w as a policy.

Given \mathcal{A} a PA and $w \stackrel{\text { def }}{=} a_{1} \ldots a_{n} \in A^{*}$ a word, the acceptance probability of w by \mathcal{A} is defined by:

$$
\operatorname{Pr}_{\mathcal{A}}(w) \stackrel{\text { def }}{=} \sum_{q \in Q} \pi_{\mathbf{0}}[q] \sum_{q^{\prime} \in F}\left(\prod_{i=1}^{n} \mathbf{P}_{a_{i}}\right)\left[q, q^{\prime}\right]
$$

Notation. Given a word $w \stackrel{\text { def }}{=} a_{1} \ldots a_{n}$, the probability matrix \mathbf{P}_{w} is defined by $\mathbf{P}_{w} \stackrel{\text { def }}{=} \prod_{i=1}^{n} \mathbf{P}_{a_{i}}$. In particular $\mathbf{P}_{\varepsilon}=\mathbf{I d}$.

With these notations:

$$
\operatorname{Pr}_{\mathcal{A}}(w)=\pi_{0} \mathbf{P}_{w} \mathbf{1}_{F}^{T}
$$

where $\mathbf{1}_{F}$ is the indicator vector of subset F.

Illustration

Observe that for all $w, \mathbf{P r}_{\mathcal{A}}(w)=\mathbf{P r}\left(\right.$ to be in q_{1} after following policy of $\left.w\right)$ and $1-\operatorname{Pr}_{\mathcal{A}}(w)=\mathbf{P r}$ (to be in q_{0} after following policy of w)

- $\operatorname{Pr}_{\mathcal{A}}(\varepsilon)=0, \operatorname{Pr}_{\mathcal{A}}(a)=\frac{1}{2} \operatorname{Pr}_{\mathcal{A}}(\varepsilon)=0$
- $\operatorname{Pr}_{\mathcal{A}}(a b)=\operatorname{Pr}_{\mathcal{A}}(a)+\frac{1}{2}\left(1-\operatorname{Pr}_{\mathcal{A}}(a)\right)=\frac{1}{2}$
- $\operatorname{Pr}_{\mathcal{A}}(a b b)=\operatorname{Pr}_{\mathcal{A}}(a b)+\frac{1}{2}\left(1-\operatorname{Pr}_{\mathcal{A}}(a b)\right)=\frac{3}{4}$
- $\operatorname{Pr}_{\mathcal{A}}(a b b a)=\frac{1}{2} \operatorname{Pr}_{\mathcal{A}}(a b b)=\frac{3}{8}$

More generally, the following recursive equations hold:

$$
\operatorname{Pr}_{\mathcal{A}}(w a)=\frac{1}{2} \operatorname{Pr}_{\mathcal{A}}(w) \text { and } \operatorname{Pr}_{\mathcal{A}}(w b)=\frac{1}{2}\left(1+\operatorname{Pr}_{\mathcal{A}}(w)\right)
$$

from which one can derive an explicit expression of the acceptance probability:

$$
\operatorname{Pr}_{\mathcal{A}}\left(a_{1} \ldots a_{n}\right)=\sum_{i=1} 2^{i-n-1} \cdot \mathbf{1}_{a_{i}=b}
$$

Which word maximizes the acceptance probability?

Stochastic languages

We are interested in "useful" policies.

This directly leads to the introduction of stochastic languages. Let:

- \mathcal{A} be a probabilistic automaton;
- $\theta \in[0,1]$ be a threshold;
- $\bowtie \in\{<, \leq,>, \geq,=, \neq\}$ be a comparison operator.

Then $L_{\bowtie \theta}(\mathcal{A})$ is defined by:

$$
L_{\bowtie \theta}(\mathcal{A})=\left\{w \in A^{*} \mid \operatorname{Pr}_{\mathcal{A}}(w) \bowtie \theta\right\}
$$

For expressiveness and decidability issues, one also needs the following definitions.

- A rational PA is a PA with probability distributions over \mathbb{Q}^{Q}.
- A rational stochastic language is a stochastic language specified by a rational PA and a rational threshold.

Counting with PA

(a succinct representation with an omitted absorbing rejecting state)
Any word z different from $a^{m} b^{n}$ with $m>0, n>0$ cannot be accepted. Let $w \stackrel{\text { def }}{=} a^{m} b^{n}$ with $m>0, n>0$. w can be accepted by:

- a path $q_{0}, q_{1}^{m}, q_{2}^{n}$ with probability $\frac{1}{2^{n}}$;
- or by a family of paths $q_{0}, q_{3}^{r}, q_{4}^{s}, q_{5}^{n}$ with $0<r, s$ and $r+s=m$ with cumulated probability $\frac{1}{2}-\frac{1}{2^{m}}$.
Summing, one obtains: $\frac{1}{2}+\frac{1}{2^{n}}-\frac{1}{2^{m}}$.
Thus: $\mathcal{L}_{=0.5}(\mathcal{A})=\left\{a^{n} b^{n} \mid n>0\right\}$

Plan

Presentation

(2) Properties of Stochastic Languages

Decidability Results

Expressiveness problems

Provide a minimal set of comparison operators and thresholds.

Position the stochastic languages w.r.t. the Chomsky hierarchy.

Study the closure properties of the stochastic languages.

A single threshold is enough

The value α depends on $\theta \neq \frac{1}{2}$ in the following way:

- If $\theta>\frac{1}{2}$ then $q_{0} \notin F$ and $\alpha \stackrel{\text { def }}{=} \frac{1}{2 \theta}$ so that for all $w \in A^{*}$,

$$
\operatorname{Pr}_{\mathcal{A}^{\prime}}(w)=\frac{1}{2 \theta} \operatorname{Pr}_{\mathcal{A}}(w)
$$

Thus $w \in L_{\bowtie \frac{1}{2}}\left(\mathcal{A}^{\prime}\right)$ iff $w \in L_{\bowtie \theta}(\mathcal{A})$.

- If $\theta<\frac{1}{2}$ then $q_{0} \in F$ and $\alpha \stackrel{\text { def }}{=} \frac{1}{2(1-\theta)}$ so that for all $w \in A^{*}$,

$$
\operatorname{Pr}_{\mathcal{A}^{\prime}}(w)=\frac{1-2 \theta+\mathbf{P r}_{\mathcal{A}}(w)}{2(1-\theta)}
$$

Thus $w \in L_{\bowtie \frac{1}{2}}\left(\mathcal{A}^{\prime}\right)$ iff $w \in L_{\bowtie \theta}(\mathcal{A})$.

Getting rid of (dis)equality

Given a $\mathrm{PA} \mathcal{A}$, we build \mathcal{A}^{\prime} as follows.

- The set of states $Q^{\prime} \stackrel{\text { def }}{=} Q \times Q$;
- $\mathbf{P}_{a}^{\prime}\left[\left(q_{1}, q_{2}\right),\left(q_{1}^{\prime}, q_{2}^{\prime}\right)\right] \stackrel{\text { def }}{=} \mathbf{P}_{a}\left[q_{1}, q_{1}^{\prime}\right] \mathbf{P}_{a}\left[q_{2}, q_{2}^{\prime}\right] ;$
- $\pi_{0}^{\prime}\left[q_{1}, q_{2}\right] \stackrel{\text { def }}{=} \pi_{0}\left[q_{1}\right] \pi_{0}\left[q_{2}\right]$ and $F^{\prime} \stackrel{\text { def }}{=} F \times(Q \backslash F)$.

Once a word w is selected, the two components of the DES behave independently and so:

$$
\operatorname{Pr}_{\mathcal{A}^{\prime}}(w)=\operatorname{Pr}_{\mathcal{A}}(w)\left(1-\operatorname{Pr}_{\mathcal{A}}(w)\right)
$$

Consequently $\operatorname{Pr}_{\mathcal{A}^{\prime}}(w) \leq \frac{1}{4}$ with equality iff $\operatorname{Pr}_{\mathcal{A}}(w)=\frac{1}{2}$. Thus:

$$
L_{\geq \frac{1}{4}}\left(\mathcal{A}^{\prime}\right)=L_{=\frac{1}{2}}(\mathcal{A})
$$

Getting rid of "lower (or equal) than"

Given a PA \mathcal{A}, we build \mathcal{A}^{\prime} by complementing the final states. Then:

$$
\operatorname{Pr}_{\mathcal{A}^{\prime}}(w)=1-\operatorname{Pr}_{\mathcal{A}}(w)
$$

And so:

$$
L_{\geq \theta}\left(\mathcal{A}^{\prime}\right)=L_{<\theta}(\mathcal{A})
$$

$$
L_{>\theta}\left(\mathcal{A}^{\prime}\right)=L_{\leq \theta}(\mathcal{A})
$$

The Chomsky hierarchy

Class	Grammar	Device
Regular language	$L \rightarrow a R\|a\| \varepsilon$ with $L, R \in \Delta, a \in \Sigma$	Finite automaton
Algebraic language	$L \rightarrow R_{1} \ldots R_{n}$ with	Stack automaton
	$L \in \Delta$ and $R_{i} \in \Delta \cup \Sigma$	
Context-sensitive language	$L_{1} \ldots L_{m} \rightarrow R_{1} \ldots R_{n}$	
	$m \leq n,(S \rightarrow \varepsilon)$	Non determ. Turing
with $L_{i}, R_{j} \in \Delta \cup \Sigma$	machine performing in	
linear space		
Recursively enumerable language	$L_{1} \ldots L_{m} \rightarrow R_{1} \ldots R_{n}$ avec $L_{i}, R_{j} \in \Delta \cup \Sigma$	Turing machine

Revisiting the Chomsky hierarchy

Non recursively enumerable languages

Define $v_{a} \stackrel{\text { def }}{=} 0$ and $v_{b} \stackrel{\text { def }}{=} 1$.
The acceptance probability of $w_{1} \ldots w_{n}$ is the binary number $0 . v_{w_{n}} \ldots v_{w_{1}}$. So $\mathcal{L}_{>\theta}(\mathcal{A})$ is the set of representations of numbers (with finite binary development) greater than θ.

Thus given $0 \leq \theta<\theta^{\prime} \leq 1$,

$$
\mathcal{L}_{>\theta^{\prime}}(\mathcal{A}) \subsetneq \mathcal{L}_{>\theta}(\mathcal{A})
$$

So there is an uncountable number of stochastic languages implying that "most" of them are non recursively enumerable.

This result does not hold for rational stochastic languages.

Regular versus stochastic languages

A deterministic automaton is a stochastic automaton with probabilities in $\{0,1\}$.

Thus regular languages are stochastic languages.

The language $\left\{a^{n} b^{n} \mid n>0\right\}$ is a rational stochastic non regular language.

Non stochastic context-free languages (1)

$$
L \stackrel{\text { def }}{=}\left\{a^{n_{1}} b a^{n_{2}} b \ldots a^{n_{k}} b a^{*} \mid \exists i>1 n_{i}=n_{1}\right\}
$$

is a non stochastic context-free language.

Proof.

L is context-free. Use a non deterministic automaton with a counter.

- With a counter one counts n_{1} the number of a 's until the first occurrence of b.
- Then one guesses an occurrence of b and decrements the counter by the occurrences of a until the next occurrence of b.
- If the counter is zero the word is accepted.

Assume that (1) $L=L_{>\theta}(\mathcal{A})$ or (2) $L=L_{\geq \theta}(\mathcal{A})$.
Let $\sum_{i=0}^{n} c_{i} X^{i}$ be the minimal polynomial of \mathbf{P}_{a}.
Since 1 is an eigenvalue of \mathbf{P}_{a}, one gets $\sum_{i=0}^{n} c_{i}=0$ and there are positive and negative coefficients.
By definition, $\sum_{i=0}^{n} c_{i} \mathbf{P}_{a^{i}}=0$ and so for any word $w, \sum_{i=0}^{n} c_{i} \mathbf{P}_{a^{i} w}=0$.

Non stochastic context-free languages (2)

Proof (continued).
Let Pos $=\left\{i \mid 0 \leq i \leq n \wedge c_{i}>0\right\}$ and NonPos $=\left\{i \mid 0 \leq i \leq n \wedge c_{i} \leq 0\right\}$. Write Pos as $\left\{i_{1}, \ldots, i_{k}\right\}$.
Choose $w \stackrel{\text { def }}{=} b a^{i_{1}} b \ldots b a^{i_{k}} b$.

Case $L=L_{>\theta}(\mathcal{A})$. Let $0 \leq i \leq n$, by definition of L,

$$
\pi_{0} \mathbf{P}_{a^{i} w} \mathbf{1}_{F}^{T}>\theta \text { iff } i \in\left\{i_{1}, \ldots, i_{k}\right\}
$$

So:
$0=\sum_{i=0}^{n} c_{i} \pi_{0} \mathbf{P}_{a^{i} w} \mathbf{1}_{F}^{T}=\sum_{i \in \text { Pos }} c_{i} \pi_{0} \mathbf{P}_{a^{i} w} \mathbf{1}_{F}^{T}+\sum_{i \in \text { NonPos }} c_{i} \pi_{0} \mathbf{P}_{a^{i} w} \mathbf{1}_{F}^{T}$
$>\left(\sum_{i \in \text { Pos }} c_{i}\right) \theta+\left(\sum_{i \in \text { NonPos }} c_{i}\right) \theta=\left(\sum_{i=0}^{n} c_{i}\right) \theta=0$
leading to a contradiction.

Case $L=L_{\geq \theta}(\mathcal{A})$. Let $0 \leq i \leq n$, by definition of L,

$$
\pi_{0} \mathbf{P}_{a^{i} w} \mathbf{1}_{F}^{T} \geq \theta \text { iff } i \in\left\{i_{1}, \ldots, i_{k}\right\}
$$

So: $0=\sum_{i=0}^{n} c_{i} \pi_{0} \mathbf{P}_{a^{i} w} \mathbf{1}_{F}^{T}=\sum_{i \in \text { Pos }} c_{i} \pi_{0} \mathbf{P}_{a^{i} w} \mathbf{1}_{F}^{T}+\sum_{i \in \text { NonPos }} c_{i} \pi_{0} \mathbf{P}_{a^{i} w} \mathbf{1}_{F}^{T}$ $>\left(\sum_{i \in \text { Pos }} c_{i}\right) \theta+\left(\sum_{i \in \text { NonPos }} c_{i}\right) \theta=\left(\sum_{i=0}^{n} c_{i}\right) \theta=0$
leading to a contradiction.

Non context-free stochastic languages (1)

$$
L \stackrel{\text { def }}{=}\left\{a^{n} b^{n} c^{n} \mid n>0\right\}
$$

is a non context-free rational stochastic language.

Proof.

Using Ogden's lemma it can be easily proved that L is not context-free.

Observe that $L=L_{1} \cap L_{2}$ with $L_{1} \stackrel{\text { def }}{=}\left\{a^{n} b^{n} c^{+} \mid n>0\right\}$ and $L_{2} \xlongequal{\text { def }}\left\{a^{+} b^{n} c^{n} \mid n>0\right\}$.

So we prove that:

- for $i \in\{1,2\}, L_{i}=L_{=\frac{1}{2}}\left(\mathcal{A}_{i}\right)$ for some \mathcal{A}_{i}
- the family of languages $\left\{L=L_{=\frac{1}{2}}(\mathcal{A})\right\}_{\mathcal{A}}$ is closed under intersection.

Non context-free stochastic languages (2)

Proof (continued).

$$
L_{=\frac{1}{2}}(\mathcal{A})=\left\{a^{n} b^{n} c^{+} \mid n>0\right\}
$$

Non context-free stochastic languages (3)

Proof (ended).

Let $L_{=\frac{1}{2}}\left(\mathcal{A}_{1}\right)$ and $L_{=\frac{1}{2}}\left(\mathcal{A}_{2}\right)$ be two arbitrary languages.
Using the previous construction, let \mathcal{A}_{1}^{\prime} and \mathcal{A}_{2}^{\prime} be automata such that:

- For any word $w, \operatorname{Pr}_{\mathcal{A}_{i}^{\prime}}(w) \leq \frac{1}{4}$;
- $L_{=\frac{1}{2}}\left(\mathcal{A}_{i}\right)=L_{=\frac{1}{4}}\left(\mathcal{A}_{i}^{\prime}\right)$.

One builds \mathcal{A} as follows:

- The set of states $Q \stackrel{\text { def }}{=} Q_{1}^{\prime} \times Q_{2}^{\prime}$;
- $\mathbf{P}_{a}\left[\left(q_{1}, q_{2}\right),\left(q_{1}^{\prime}, q_{2}^{\prime}\right)\right] \stackrel{\text { def }}{=}\left(\mathbf{P}_{1}^{\prime}\right)_{a}\left[q_{1}, q_{1}^{\prime}\right]\left(\mathbf{P}_{2}^{\prime}\right)_{a}\left[q_{2}, q_{2}^{\prime}\right] ;$
- $\pi_{0}^{\prime}\left[q_{1}, q_{2}\right] \stackrel{\text { def }}{=} \pi_{1,0}\left[q_{1}\right] \pi_{2,0}\left[q_{2}\right]$ and $F \stackrel{\text { def }}{=} F_{1}^{\prime} \times F_{2}^{\prime}$.

By construction, $\operatorname{Pr}_{\mathcal{A}}(w)=\mathbf{P r}_{\mathcal{A}_{1}^{\prime}}(w) \mathbf{P r}_{\mathcal{A}_{2}^{\prime}}(w)$.
So for all word $w, \operatorname{Pr}_{\mathcal{A}}(w) \leq \frac{1}{16}$ and $\operatorname{Pr}_{\mathcal{A}}(w)=\frac{1}{16}$ iff $\operatorname{Pr}_{\mathcal{A}_{1}^{\prime}}(w)=\operatorname{Pr}_{\mathcal{A}_{2}^{\prime}}(w)=\frac{1}{4}$.
Consequently,

$$
L_{=\frac{1}{16}}(\mathcal{A})=L_{=\frac{1}{2}}\left(\mathcal{A}_{1}\right) \cap L_{=\frac{1}{2}}\left(\mathcal{A}_{2}\right)
$$

Inclusion in context-sensitive languages

The class of rational stochastic languages is strictly included in the class of context-sensitive languages.

Proof.

Context-sensitive languages are the languages for which membership checking can be performed by a non deterministic procedure in linear space.

A deterministic procedure in linear space (far from being optimal)
Pre-computation in constant space.

- Compute the I.c.m., say b, of denominators of θ, items of matrices $\left\{\mathbf{P}_{a}\right\}_{a \in A}$, and items of vector π_{0}.
- Build the integer matrices $\mathbf{P}_{a}^{\prime} \stackrel{\text { def }}{=} b \mathbf{P}_{a}$ and vector $\pi_{0}^{\prime} \stackrel{\text { def }}{=} b \pi_{0}$.

For word $w \stackrel{\text { def }}{=} a_{1} \ldots a_{n}$, the problem becomes $\pi_{0}^{\prime}\left(\prod_{i=1}^{n} \mathbf{P}_{a_{i}}^{\prime}\right) \mathbf{1}_{F}^{T} \bowtie \theta b^{n+1}$?

- Compute θb^{n+1} in space $O(n)$.
- Compute $\mathbf{v} \stackrel{\text { def }}{=} \pi_{0}^{\prime}\left(\prod_{i=1}^{n} \mathbf{P}_{a_{i}}^{\prime}\right)$
by initializing \mathbf{v} to π_{0}^{\prime} and then iteratively multiply it by $\mathbf{P}_{a_{i}}^{\prime}$.
The vectors are bounded by b^{n+1}. So this is performed in space $O(n)$.
- The sum and comparison are also done in space $O(n)$.

Operations with regular languages

The family of (rational) stochastic languages is closed under intersection and union with regular languages.

Proof.

Let $L_{\bowtie \theta}\left(\mathcal{A}_{1}\right)$ be a (rational) stochastic language (with $\bowtie \in\{>, \geq\}$) and $L_{=1}\left(\mathcal{A}_{2}\right)$ be a regular language.

$$
L_{\bowtie \frac{\theta}{2}}(\mathcal{A})=L_{\bowtie \theta}\left(\mathcal{A}_{1}\right) \cup L_{=1}\left(\mathcal{A}_{2}\right) \text { and } L_{\bowtie \frac{1+\theta}{2}}(\mathcal{A})=L_{\bowtie \theta}\left(\mathcal{A}_{1}\right) \cap L_{=1}\left(\mathcal{A}_{2}\right)
$$

A stochastic language

$$
L_{=\frac{1}{2}}(\mathcal{A})=\left\{a^{m_{1}} b \ldots b a^{m_{k}} b \mid 1<k \wedge m_{1}=m_{k}\right\}
$$

since $\operatorname{Pr}_{\mathcal{A}}\left(a^{m_{1}} b \ldots b a^{m_{k}} b\right)=\frac{1}{2}\left(\left(\frac{1}{2}\right)^{k+m_{k}-1}+1-\left(\frac{1}{2}\right)^{k+m_{1}-1}\right)$

Concatenation

The family of (rational) stochastic languages is not closed under concatenation with a regular language.

Proof.

Let $L \stackrel{\text { def }}{=}\left\{a^{m_{1}} b \ldots b a^{m_{k}} b \mid 1<k \wedge m_{1}=m_{k}\right\}$
be the previous stochastic language.

Then $L A^{*}=\left\{a^{m_{1}} b a^{m_{2}} b \ldots a^{m_{k}} b a^{*} \mid \exists i>1 m_{i}=m_{1}\right\}$ which is not a stochastic language.

Iteration

The family of (rational) stochastic languages is not closed under Kleene star.

Proof.

Let $L \stackrel{\text { def }}{=}\left\{a^{m_{1}} b \ldots b a^{m_{k}} b \mid 1<k \wedge m_{1}=m_{k}\right\}$ be the previous stochastic language. Assume that $L^{*}=L_{\bowtie \theta}(\mathcal{A})$ with $\bowtie \in\{>, \geq\}$.
Let $\sum_{i=0}^{n} c_{i} X^{i}$ be the minimal polynomial of \mathbf{P}_{a}. Since 1 is an eigenvalue of \mathbf{P}_{a}, one gets $\sum_{i=0}^{n} c_{i}=0$ and there are positive and negative coefficients.
By definition, $\sum_{i=0}^{n} c_{i} \mathbf{P}_{a^{i}}=0$ and so for any word $w, \sum_{i=0}^{n} c_{i} \mathbf{P}_{a^{i} w}=0$. Let $c_{i_{1}}, \ldots, c_{i_{k}}$ be the positive coefficients of this polynomial.
Let $w \stackrel{\text { def }}{=} b a^{i_{1}} b\left(a^{i_{2}} b\right)^{2} \ldots\left(a^{i_{k}} b\right)^{2}$. $a^{i} w \in L^{*}$ iff $i \in\left\{i_{1}, \ldots, i_{k}\right\}$.
Case $L^{*}=L_{>\theta}(\mathcal{A})$. Let $0 \leq i \leq n, \pi_{0} \mathbf{P}_{a^{i} w} \mathbf{1}_{F}^{T}>\theta$ iff $i \in\left\{i_{1}, \ldots, i_{k}\right\}$. So: $0=\sum_{i=0}^{n} c_{i} \pi_{0} \mathbf{P}_{a^{i} w} \mathbf{1}_{F}^{T}>\left(\sum_{i=0}^{n} c_{i}\right) \theta=0$ leading to a contradiction.
Case $L^{*}=L_{\geq \theta}(\mathcal{A})$. Let $0 \leq i \leq n, \pi_{0} \mathbf{P}_{a^{i} w} \mathbf{1}_{F}^{T} \geq \theta$ iff $i \in\left\{i_{1}, \ldots, i_{k}\right\}$. So: $0=\sum_{i=0}^{n} c_{i} \pi_{0} \mathbf{P}_{a^{i} w} \mathbf{1}_{F}^{T}>\left(\sum_{i=0}^{n} c_{i}\right) \theta=0$ leading to a contradiction.

A stochastic language

Homomorphism

The family of (rational) stochastic languages is not closed under homomorphism.

Proof.

Let $L \stackrel{\text { def }}{=}\left\{a^{m_{1}} b \ldots b a^{m_{k}} b c A^{*} \mid 1<k \wedge m_{1}=m_{k}\right\}$
be the previous stochastic language.
Define the homomorphism h from A to $A^{\prime} \stackrel{\text { def }}{=}\{a, b\}$ by:

$$
h(a) \stackrel{\text { def }}{=} a \quad h(b) \stackrel{\text { def }}{=} b \quad h(c) \stackrel{\text { def }}{=} \varepsilon
$$

Then $h(L)=\left\{a^{m_{1}} b a^{m_{2}} b \ldots a^{m_{k}} b a^{*} \mid \exists i>1 m_{i}=m_{1}\right\}$ which is not a stochastic language.

Plan

Presentation

Properties of Stochastic Languages

(3) Decidability Results

Two decision problems

Let \mathcal{A} and \mathcal{A}^{\prime} be probabilistic automata.

First problem

$$
\begin{gathered}
\text { Are } \mathcal{A} \text { and } \mathcal{A}^{\prime} \text { equivalent? } \\
\forall w \in A^{*} \operatorname{Pr}_{\mathcal{A}}(w)=\operatorname{Pr}_{\mathcal{A}^{\prime}}(w)
\end{gathered}
$$

Second problem

$$
\text { Is } L_{\bowtie \theta}(\mathcal{A}) \text { equal to } L_{\bowtie^{\prime} \theta^{\prime}}\left(\mathcal{A}^{\prime}\right) \text { ? }
$$

For deterministic automata this is the same problem.
It can be solved in polynomial time by a product construction which provides a witness of non equivalence of size less than $\left|Q \| Q^{\prime}\right|$.

Linear algebra recalls

Let $\mathbf{v}_{\mathbf{0}} \in \mathbb{R}^{n}$ and $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}$ be linearly independent vectors of \mathbb{R}^{n}.

How to check whether \mathbf{v}_{0} is a linear combination of $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}$?

- Solve in $O\left(k^{3}+n^{2}\right)$

$$
\left(\begin{array}{ccc}
\mathbf{v}_{1}[1] & \ldots & \mathbf{v}_{k}[1] \\
\ldots & \ldots & \ldots \\
\mathbf{v}_{1}[n] & \ldots & \mathbf{v}_{k}[n]
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{k}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{v}_{0}[1] \\
\vdots \\
\mathbf{v}_{0}[n]
\end{array}\right)
$$

- When $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}$ are orthogonal
(i.e. for all $a \neq b, \mathbf{v}_{a} \cdot \mathbf{v}_{b} \stackrel{\text { def }}{=} \sum_{i=1}^{n} \mathbf{v}_{a}[i] \mathbf{v}_{b}[i]=0$)

Compute in $O(k n)$ the orthogonal projection

$$
\mathbf{w}_{0}=\sum_{i=1}^{k} \frac{\mathbf{v}_{0} \cdot \mathbf{v}_{i}}{\mathbf{v}_{i} \cdot \mathbf{v}_{i}} \mathbf{v}_{i}
$$

Check in $O(n)$ whether $\mathbf{v}_{0}=\mathbf{w}_{0}$.

Principles of equivalence checking

Enumeration of words

Looking for a counter-example whose length is increasing starting with word ε.

A stack

Managing a stack of words w in order to find counter-examples $a w$ for all $a \in A$. For efficiency purposes, the stack contains tuples $\left(\mathbf{P}_{w} \mathbf{1}_{F}, \mathbf{P}_{w}^{\prime} \mathbf{1}_{F^{\prime}}, w\right)$.

An orthogonal family for restricting the enumeration Gen is a set of independent orthogonal vectors of $\mathbb{R}^{Q \cup Q^{\prime}}$. If w is not a counter-example, check if $\mathbf{v} \stackrel{\text { def }}{=}\left(\mathbf{P}_{w} \mathbf{1}_{F}, \mathbf{P}_{w}^{\prime} \mathbf{1}_{F^{\prime}}\right)$ is generated by Gen.

- producing \mathbf{v}^{\prime} the orthogonal projection of \mathbf{v} on subspace spanned by Gen;
- comparing \mathbf{v}^{\prime} to \mathbf{v}.

If $\mathbf{v}^{\prime} \neq \mathbf{v}$ then:

- w is added to the stack;
- $\mathbf{v}-\mathbf{v}^{\prime}$ is added to Gen.

The algorithm

If $\pi_{0} \cdot \mathbf{1}_{F} \neq \pi_{0}^{\prime} \cdot \mathbf{1}_{F^{\prime}}$ then return(false, ε)
Gen $\leftarrow\left\{\left(\mathbf{1}_{F}, \mathbf{1}_{F^{\prime}}\right)\right\} ; \operatorname{Push}\left(\operatorname{Stack},\left(\mathbf{1}_{F}, \mathbf{1}_{F^{\prime}}, \varepsilon\right)\right)$
Repeat
$\left(\mathbf{v}, \mathbf{v}^{\prime}, w\right) \leftarrow \operatorname{Pop}($ Stack $)$
For $a \in A$ do

$$
\begin{aligned}
& \mathbf{z} \leftarrow \mathbf{P}_{a} \mathbf{v} ; \mathbf{z}^{\prime} \leftarrow \mathbf{P}_{a}^{\prime} \mathbf{v}^{\prime} \\
& \text { If } \left.\pi_{0} \cdot \mathbf{z} \neq \pi_{0}^{\prime} \cdot \mathbf{z}^{\prime} \text { then return(false, } a w\right) \\
& \mathbf{y} \leftarrow \mathbf{0} ; \mathbf{y}^{\prime} \leftarrow \mathbf{0}
\end{aligned}
$$

For $\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \in G e n$ do

$$
\begin{aligned}
& \mathbf{y} \leftarrow \mathbf{y}+\frac{\mathbf{z} \cdot \mathbf{x}}{\mathbf{x} \cdot \mathbf{x}} \\
& \mathbf{y}^{\prime} \leftarrow \mathbf{y}^{\prime}+\frac{z^{\prime} \cdot x^{\prime}}{\mathbf{x}^{\prime} \cdot \mathbf{x}^{\prime}} \mathbf{x}^{\prime}
\end{aligned}
$$

$$
\text { If }\left(\mathbf{z}, \mathbf{z}^{\prime}\right) \neq\left(\mathbf{y}, \mathbf{y}^{\prime}\right) \text { then }
$$

$$
\operatorname{Push}\left(S t a c k,\left(\mathbf{z}, \mathbf{z}^{\prime}, a w\right)\right)
$$

$$
G e n \leftarrow G e n \cup\left\{\left(\mathbf{z}-\mathbf{y}, \mathbf{z}^{\prime}-\mathbf{y}^{\prime}\right)\right\}
$$

Until IsEmpty (Stack)
return(true)

Complexity

Time complexity
An item is pushed on the stack iff an item is added to Gen.
There can be no more than $|Q|+\left|Q^{\prime}\right|$ items in Gen.
So there are at most $|Q|+\left|Q^{\prime}\right|$ iterations of the external loop.
The index of the first inner loop ranges over A while the index of the most inner loop ranges over Gen.

The operations inside the most inner loop are done in $O\left(|Q|+\left|Q^{\prime}\right|\right)$.
This leads to an overall time complexity of $O\left(\left(|Q|+\left|Q^{\prime}\right|\right)^{3}|A|\right)$.
Length of witnesses
In addition, the length of the witness is at most $|Q|+\left|Q^{\prime}\right|$.
(also valid for deterministic automata)

Correctness

Assume that the automata are not equivalent and that the algorithm returns true. Let u be a non examined word such that $\mathbf{P r}_{\mathcal{A}}(u) \neq \mathbf{P r}_{\mathcal{A}^{\prime}}(u)$. Let $u \stackrel{\text { def }}{=} w^{\prime} w$ with $w(\neq u)$ the greatest suffix examined by the algorithm. Among such words u, pick one word such that $\left|w^{\prime}\right|$ is minimal.

Claim. There exists $w^{\prime \prime}$ that has been inserted in the stack before w such that $\mathbf{P r}_{\mathcal{A}}\left(w^{\prime} w^{\prime \prime}\right) \neq \operatorname{Pr}_{\mathcal{A}^{\prime}}\left(w^{\prime} w^{\prime \prime}\right)$.

Let Gen $=\left\{w_{1}, \ldots, w_{k}\right\}$ when examining w, there exist $\lambda_{1}, \ldots, \lambda_{k}$ such that:

$$
\begin{gathered}
\text { So: } \mathbf{P}_{w} \mathbf{1}_{F}=\sum_{i=1}^{k} \lambda_{i} \mathbf{P}_{w_{i}} \mathbf{1}_{F} \text { and } \mathbf{P}_{w}^{\prime} \mathbf{1}_{F^{\prime}}=\sum_{i=1}^{k} \lambda_{i} \mathbf{P}_{w_{i}}^{\prime} \mathbf{1}_{F^{\prime}} \\
\mathbf{P r}_{\mathcal{A}}\left(w^{\prime} w\right) \stackrel{\text { def }}{=} \pi_{0} \mathbf{P}_{w^{\prime}} \mathbf{P}_{w} \mathbf{1}_{F}=\sum_{i=1}^{k} \lambda_{i} \pi_{0} \mathbf{P}_{w^{\prime}} \mathbf{P}_{w_{i}} \mathbf{1}_{F}=\sum_{i=1}^{k} \lambda_{i} \mathbf{P r}_{\mathcal{A}}\left(w^{\prime} w_{i}\right) \\
\text { Similarly: } \operatorname{Pr}_{\mathcal{A}^{\prime}}\left(w^{\prime} w\right)=\sum_{i=1}^{k} \lambda_{i} \mathbf{P r}_{\mathcal{A}^{\prime}}\left(w^{\prime} w_{i}\right)
\end{gathered}
$$

So there exists i, with $\operatorname{Pr}_{\mathcal{A}}\left(w^{\prime} w_{i}\right) \neq \operatorname{Pr}_{\mathcal{A}^{\prime}}\left(w^{\prime} w_{i}\right)$.

Let $w^{\prime} \stackrel{\text { def }}{=} w^{\prime \prime \prime} a . a w_{i}$ is examined by the algorithm.
So the word $u^{\prime} \stackrel{\text { def }}{=} w^{\prime} w_{i}$ has a decomposition $u^{\prime} \stackrel{\text { def }}{=} z^{\prime} z$ where z the greatest suffix examined by the algorithm has for suffix $a w_{i}$. So $\left|z^{\prime}\right|<\left|w^{\prime}\right|$: a contradiction.

Undecidability of the equality problem

> Given \mathcal{A} a rational stochastic automaton, the question $L_{=\frac{1}{2}}(\mathcal{A})=\{\varepsilon\}$? is undecidable.

Proof.

By reduction of the undecidable Post correspondence problem (PCP): Given an alphabet A and two morphisms φ_{1}, φ_{2} from A to $\{0,1\}^{+}$, does there exist a word $w \in A^{+}$such that $\varphi_{1}(w)=\varphi_{2}(w)$?

Already undecidable for a restriction where the images of letters lie in $(10+11)^{+}$. Inserting a 1 before each letter of images reduces the former problem to the latter.

A word $w \stackrel{\text { def }}{=} a_{1} \ldots a_{n} \in(10+11)^{+}$defines a value $\operatorname{val}(w) \in[0,1]$ by:

$$
\operatorname{val}(w) \stackrel{\text { def }}{=} \sum_{i=1}^{n} \frac{a_{i}}{2^{n+1-i}}
$$

Since every word starts with a $1, \operatorname{val}(w)=\operatorname{val}\left(w^{\prime}\right)$ implies $w=w^{\prime}$.

For $w \in A^{+}$and $i \in\{1,2\}$, define $\operatorname{val}_{i}(w) \stackrel{\text { def }}{=} \operatorname{val}\left(\varphi_{i}(w)\right)$.

Illustration of the reduction

A	a	b	c
φ_{1}	$(1) 0(1) 1$	$(1) 0(1) 0$	$(1) 1$
φ_{2}	$(1) 0$	$(1) 0$	$(1) 1(1) 1(1) 1$

A	a	b	c
$v a l_{1}$	$\frac{13}{16}$	$\frac{7}{16}$	$\frac{3}{4}$
$v a l_{2}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{63}{64}$

Correctness of the reduction

The recurrence equation:

$$
\begin{gathered}
\mathbf{1}_{q_{i 0}} \mathbf{P}_{w a} \mathbf{1}_{q_{i 1}}^{T}=\mathbf{1}_{q_{i 0}} \mathbf{P}_{w} \mathbf{1}_{q_{i 1}}^{T}\left(\operatorname{val}_{i}(a)+2^{-\left|\varphi_{i}(a)\right|}\right)+\left(1-\mathbf{1}_{q_{i 0}} \mathbf{P}_{w} \mathbf{1}_{q_{i 1}}^{T}\right) \operatorname{val}_{i}(a) \\
=\operatorname{val}_{i}(a)+2^{-\left|\varphi_{i}(a)\right|} \mathbf{1}_{q_{i 0}} \mathbf{P}_{w} \mathbf{1}_{q_{i 1}}^{T}
\end{gathered}
$$

By induction we obtain that for all $w \stackrel{\text { def }}{=} a_{1} \ldots a_{n}$:

$$
\mathbf{1}_{q_{i 0}} \mathbf{P}_{w} \mathbf{1}_{q_{i 1}}^{T}=\sum_{j=1}^{n} \operatorname{val}_{i}\left(a_{j}\right) 2^{-\sum_{j<k \leq n}\left|\varphi_{i}\left(a_{k}\right)\right|}=\operatorname{val}_{i}(w)
$$

So for $w \in A^{+}: \operatorname{Pr}_{\mathcal{A}}(w)=\frac{1}{2}\left(v a l_{1}(w)+1-\operatorname{val}_{2}(w)\right)$.
Thus $w \in L_{=\frac{1}{2}}(\mathcal{A})$ iff $\operatorname{val}\left(\varphi_{1}(w)\right)=\operatorname{val}\left(\varphi_{2}(w)\right)$ implying that $\varphi_{1}(w)=\varphi_{2}(w)$.

