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Béatrice Bérard (LIP6), Serge Haddad (LSV)

Claudine Picaronny (LSV), Mohab Safey El Din (LIP6)

Mathieu Sassolas (LACL)

Cachan, December 2nd and 9th 2015

Reachability Problems 2015 (long version arXiv:1504.04541)



2/39

Motivations for Interrupt Clocks

I Theoretical: investigate subclasses of hybrid automata with stopwatches, to
obtain decidability results in view of negative results, among them:

I Henzinger et al. 1998: The reachability problem is decidable for rectangular
initalized automata, but becomes undecidable for slight extensions, e.g. adding
one stopwatch to timed automata.

I Cassez, Larsen 2000: Linear hybrid automata and automata with stopwatches
(and unobservable delays) are equally expressive.

I Bouyer, Brihaye, Bruyère, Markey, Raskin 2006: Model checking timed
automata with stopwatch observers is undecidable for WCTL (a weighted
extension of CTL).

I Practical: Many real-time systems include interruptions (as in processors).
An interrupt clock can be seen as a restricted type of stopwatch.
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Interruptions and Real-Time

Several levels with exactly one active clock at each level

level 1
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. . .

Execution :
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Motivation for Polynomials
Landing a rocket

I First stage (lasting x1): from distance d, the rocket approaches the land
using gravitation g;

I Second stage (lasting x2): the rocket approaches the land
with constant deceleration h < 0;

I Third stage: the rocket must reach the land
with small positive speed (less than ε).

q0, 1

q1, 2 q2, 2

1
2gx

2
1 + gx1x2 + 1

2hx
2
2 = d ∧ 0 ≤ gx1 + hx2 < ε

For all g ∈ [7, 10] does there exist an h ∈ [−3,−1] such that the rocket is landing?
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Outline

1 PolITA

Abstraction for Timed Systems

Abstraction for PolITA
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Conclusion and Perspectives
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The Model of PolITA

A short history

I Interrupt Timed Automa (ITA) were introduced in (FOSSACS 2009
Bérard,H) with decision procedures for reachability and expressiveness results.

I The complexity of the decision procedure is improved (NEXPTIME and
PTIME with a fixed number of clocks) and model checking is studied in
(FMSD 2012 Bérard,H,Sassolas).

I ITA are enlarged with additive and multiplicative parameters while
reachability remains decidable (2EXPSPACE and PSPACE with a fixed
number of clocks) in (RP 2013 Bérard,H,Jovanovic,Lime).

Polynomial Interrupt Timed Automata (PolITA) in a nutshell

I clocks are ordered along hierarchical levels;

I their flows are restricted to ẋ ∈ {0, 1} (stopwatches);

I guards and updates can be polynomials of clocks.

Main results. Reachability (and some quantitative model checking) is decidable in
2EXPTIME and PTIME with a fixed number of clocks.
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PolITA: Syntax (1)

A = (Σ, Q, q0, X, λ,∆)

I Σ, an alphabet;

I Q, a finite set of states with initial state q0;

I X = {x1, . . . , xn}, a set of clocks with xk for level k;

I λ : Q→ {1, . . . , n} state level, with xλ(q) the active clock in state q;

I Transitions in ∆: q, k q′, k′
g, a, u

guard action update

I Guards: conjunctions of constraints P ./ 0 with ./ in {<,≤,=,≥, >}
and P ∈ Q[x1, . . . , xk] at level k.

q, 3 q′, 4
2x21x2x

2
3 − 1

3
x2x

3
1 + x1 + 1 > 0, msg, some update
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PolITA: Syntax (2)

A transition increasing level k to level k′ ≥ k
I If i > k then xi is reset;

I If i < k then xi is unchanged;

I xk is unchanged or is updated by some P ∈ Q[x1, . . . , xk−1].

A transition decreasing level k to level k′ < k
I If i > k′ then xi is reset;

I Otherwise xi is unchanged.

q1, 2 q2, 4

x2 > 2x2
1,

(x1 := x1)
x2 := x2

1 − x1

(x3 := 0)
(x4 := 0)

q3, 3

x4 = 3x2
1x2 + x3,

(x1 := x1)
(x2 := x2)
(x3 := x3)
(x4 := 0)
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Semantics of PolITA

A transition system TA = (S, s0,→)

I S = Q× Rn, a set of configurations where a configuration is
a pair (q, v) of a state q and a clock valuation v = (v(x1), . . . , v(xn));

I s0 = (q0, v0), the initial configuration with v0 = 0 = (0, . . . , 0) ∈ Rn;

I Discrete step: (q, v)
e−→ (q′, v′) for a transition e : q

g,a,u−−−→ q′

if v satisfies the guard g and v′ = v[u];

I Time step: from q at level k: (q, v)
d−→ (q, v +k d),

with all clock values in v +k d unchanged except (v +k d)(xk) = v(xk) + d.

An execution alternates time and discrete steps:

(q0, v0)
d0−→ (q0, v0 +λ(q0) d0)

e0−→ (q1, v1)
d1−→ (q1, v1 +λ(q1) d1)

e1−→ · · ·
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An Execution

q0, 1

q1, 2

q2, 2

x2
1 ≤ x1 + 1, a

x2
1 > x1 + 1, a′, x1 := 0

(2x1 − 1)x2
2 > 1, b x2 ≤ 5− x2

1, c

x1

x2

x2
1 − x1 − 1 = 0

(q0, 0, 0)
1.2−−→ (q0, 1.2, 0)

a−→ (q1, 1.2, 0)
1.1−−→ (q1, 1.2, 1.1)

b−→ (q2, 1.2, 1.1)
0.3−−→ (q2, 1.2, 1.4)

c−→ (q1, 1.2, 1.4) · · ·

Blue and green curves meet at real roots of −2x51 + x41 + 20x31− 10x21− 50x1 + 26.
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Reachability Analysis: the Key Idea

The number of (reachable) configurations is infinite (and even uncountable). So
one wants to partition configurations into regions such that:

1. Two configurations in a region allow the same transitions and the new
configurations belong to the same region.

2. If a configuration in a region letting time elapse reaches a new region every
other configuration may reach the same region by time elapsing.

3. There is a finite representation of a region such that the discrete and time
successors of the region are computable.

4. The number of regions is finite.
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Regions for Timed Automaton (TA)

•

•

•

• •

•

•

• •

•

•

•

•

•

•

•

x1

x2

With ordinary
and diagonal constraints

•

•

•

• •

•

•

• •

•

•

•

•

•

•

•

• •

•

x1

x2

With ordinary, diagonal
and additive constraints

(only valid for dimension 2)
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Building the Region Automaton for TA

The “elimination” stage

I depends on the model;

I extracts the maximal constant.

The “lifting” stage

I depends on the class of TA and the elimination;

I partitions clocks space into regions.

The “synchronization” stage

I depends on the model and the lifting;

I performs some product of the model and the partition.
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Regions for ITA

q0, 1

q1, 2

q1, 2

q3, 2

x1 ≥ 1

3x2 ≥ 2x1 + 3

4x2 ≤ x1 + 8

x1 = 1 x1 = 12
5

x2 = 2
3x1 + 1

x2 = 1
4x1 + 2

x1

x2

• • •

x1 −
12

5
=

12

5

(
(
2

3
x1 + 1)− (

1

4
x1 + 2)

)
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Building the Region Automaton for ITA
The elimination stage produces a family of sets {Ek}k≤n of linear
expressions initialized to {0, xk} by decreasing order:

I adding to Ek at level k all constraints
∑
i<k aixi + b that are compared to xk

or 0 at level at least k.

I enlarging this set by applying updates until saturation.

I producing at levels less than k linear expressions by difference between pairs in
Ek taking into account possible updates.

The lifting stage produces a tree of total preorders for Ek using the
preorder of the ancestors.

⊥

0 ]0, 1[ 1 ]1, 12
5 [ 12

5 ] 125 ,∞[

0 ]0, 2
3x1 + 1[ 2

3x1 + 1 ] 23x1 + 1, 1
4x1 + 2[ 1

4x1 + 2 ] 14x1 + 2,∞[

x1

x2

The synchronization stage takes into account the level of the current state.
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The Cylindrical Decomposition
The cylindrical decomposition was the first elementary decision method for the
first-order theory of reals (2EXPTIME). It proceeds by elimination and lifting.

Given a family {Pi}i≤n where Pi is a finite subset of Q[x1, . . . , xi], it builds a tree
of cells with depth n and root ⊥ = R0 fulfilling:

I A cell of depth i is a connected subset of Ri;
I Every cell C of depth less than n has an odd number (say 2k + 1) of children

which constitute a partition of C × R;

I If k > 0 then there exist continuous mappings f1 < · · · < fk from C to R
such that the children of C are:
{(x, y) | x ∈ C, y < f1(x)}, {(x, f1(x)) | x ∈ C},
{(x, y) | x ∈ C, f1(x) < y < f2(x)}, . . . , {(x, fk(x)) | x ∈ C},
{(x, y) | x ∈ C, y > fk(x)};

I All P ∈ Pi has a constant sign inside a cell of depth j ≥ i.

Observation: The construction for ITA is a cylindrical decomposition appropriate
for polynomials of degree 1.
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Elimination Stage for PolITA (1)

Let P,Q ∈ Q[x1][x2].

x1

x2

P (x1) ≡ (2x1 − 1)x2
2 − 1 = 0

Q(x1) ≡ x2 + x2
1 − 5 = 0

When x1:

I belongs to the gray interval,
P has no root
and Q has a single root;

I belongs to the yellow interval,
P has two roots
and the single root of Q
is greater than these roots;

I is the red point,
P has two roots
and the single root of Q
is equal to the smaller root of P .

How to characterize such intervals and points?
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Elimination Stage for PolITA (2)
The input. A family of sets {Qk}k≤n with Qk ⊆ Q[x1, . . . , xk−1][xk] including
xk and those occurring in guards and updates.

The output. A family of sets {Pk}k≤n with Qk ⊆ Pk that fulfills a semantical
property:

When the sign of all P ∈ Pk in a connected set C ⊆ Rk is constant, then for
all z, z′ in C and P,Q ∈ Pk+1:

I the number of roots of the polynomials P (z) and P (z′) in R[xk+1] are
equal;

I The order between the roots of PQ(z) and PQ(z′) is the same.

The key concept. The subresultant sRes(P,Q) of two polynomials P,Q ∈ D[X]
is a D-vector that can be computed by operations in the ring D.

A syntactical sufficient condition. For all P,Q ∈ Pk+1, with possible respective
truncations R,S, the following polynomials should be in Pk:

I the coefficients of P,Q;
I the items of sRes(R,R′) and sRes(R,S).
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Subresultants: Definition and Example
Sresj(P,Q) is the determinant of the matrix:

I whose lines are coefficients of Xq−1−jP, . . . , P,Q, . . . ,Xp−1−jQ,

I truncated to its first p+ q − 2j columns.

Let P = X3 +X2 + αX + β and Q = X2 − 1.

sRes0(P,Q) =

∣∣∣∣∣∣∣∣∣∣
1 1 α β 0
0 1 1 α β
0 0 1 0 −1
0 1 0 −1 0
1 0 −1 0 0

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1 1 α β
0 1 0 −1
1 0 −1 0
−1 −1− α −β 0

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
1 0 −1
−1 −1− α −β
−α α− β β

∣∣∣∣∣∣ =

∣∣∣∣−1− α −1− β
α− β β − α

∣∣∣∣ = (α− β)(α+ β + 2)

sRes1(P,Q) =

∣∣∣∣∣∣
1 1 α
0 1 0
1 0 −1

∣∣∣∣∣∣
β
−1
0

= −1− α

sRes0(P,Q) = 0 iff deg(gcd(P,Q)) ≥ 1
sRes0(P,Q) = 0 ∧ sRes1(P,Q) = 0 iff deg(gcd(P,Q)) ≥ 2
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A Property of Subresultants
sRes0(P,Q) = 0 ∧ · · · ∧ sResj−1(P,Q) = 0 iff deg(gcd(P,Q)) ≥ j

Sketch of proof.

sResj(P,Q) = 0 iff ∃U, V 6= 0 with deg(U) < q − j, deg(V ) < p− j and deg(UP + V Q) < j.

• Assume that deg(gcd(P,Q)) ≥ j.

Then deg(lcm(P,Q)) ≥ p+ q − j.

So there exist U, V 6= 0 with deg(U) ≤ q − j, deg(V ) ≤ p− j and UP = −V Q.

This implies that for k < j, sResj(P,Q) = 0.

• The other direction is established by induction.

Base. sRes0(P,Q) = 0

⇒ ∃U, V 6= 0 with UP + V Q = 0, deg(U) < q and deg(V ) < p ⇒ deg(gcd(P,Q)) ≥ 1.

Induction. sRes0(P,Q) = · · · = sResj(P,Q) = 0

By induction, sRes0(P,Q) = · · · = sResj−1(P,Q) = 0⇒ deg(gcd(P,Q)) ≥ j.

sResj(P,Q) = 0 ⇒ ∃U, V 6= 0 with deg(U) < q − j, deg(V ) < p− j and deg(UP + V Q) < j.

gcd(P,Q)|UP +V Q⇒ UP +V Q = 0⇒ deg(lcm(P,Q)) < p+ q− j ⇒ deg(gcd(P,Q)) ≥ j+1.
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Continuity of roots

Let P ∈ C[X1, . . . , Xk−1][Xk], S ⊆ Ck−1 with deg(P (x)) constant over x ∈ S.
Let a ∈ S such that {zi}i≤m are the roots of P (a) with multiplicities {µi}i≤m.
Let 0 < r < mini 6=j(|zi − zj |/2).

Then there exists an neighborhood U of a such that for x ∈ U ,
P (x) has exactly µi roots counted with multiplicities in D(zi, r) for all i ≤ m.

Proof.

• Let P = Xµ and Q = Xµ −
∑
i<µ biX

i with δ = maxi<µ |bi| < min(1,rµ)
µ

.

Let z be a root of Q, δ < 1
µ
⇒ |z| < 1. zµ =

∑
i<µ biz

i ⇒ |zµ| ≤ µδ < rµ ⇒ |z| < r.

• Let ϕ(Q,R) = QR where Q,R have degree q and r, are monic and coprime.

ϕ is differentiable with Jacobian ±Sres0(Q,R). ϕ locally admits a differentiable inverse.

So there exist neighborhoods VQ, VR of Q and R, such that:
V = ϕ(VQ × VR) is a neighborhood of QR

• By induction, P0 = (X − z1)µ1 · · · (X − zm)µm admits an open neighborhood V such
that for all monic P1 ∈ V:

P1 = Q1 . . . Qm with all Qi of degree µi and whose roots belong to D(zi, r)

• Since the coefficients of P are rational functions of X1, . . . Xk−1 and so continuous,

there is an appropriate neighborhood U of a.
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Root mappings (1)

Let P1, . . . , Ps ∈ R[X1, . . . , Xk−1][Xk], S ⊆ Rk−1 connected with for all i, j,
deg(Pi(x)) > −∞, deg(gcd(Pi(x), Pj(x)), deg(gcd(Pi(x), P ′i (x)) are constant.

Then there exist continuous functions f1 < · · · < f` from S to R such that the
set of real roots of

∏
j≤s Pj(x) is {f1(x), . . . , f`(x)}.

Moreover for all i, j, the multiplicity of fi(x) for Pj(x) is constant.

Proof.

Let a ∈ S and {zi(a)}i≤m be roots of
∏
j≤s Pj(a) with µji , multiplicity of zi(a) for Pj(a).

Let Rjk(a) = gcd(Pj(a), Pk(a)), deg(Rjk(a)) =
∑
i≤mmin(µji , µ

k
i ) and min(µji , µ

k
i ) is

the multiplicity of zi(a) for Rjk(a).

deg(Pj(x) and deg(gcd(Pj(x), P
′
j(x)) constant implies the number of distinct roots of

Pj(x) is constant.

One root of
∏
j≤s Pj(x) in the neighborhood of zi(a)

• Pick r > 0 such that D(zi(a), r) are disjoint.

• Let i, j such that µji > 0, there is a neighborhood U of a such that for all x ∈ U ,
D(zi(a), r) contains exactly a root, denoted zji (x), of Pj(x) with multiplicity µji .

• Assume there exists k 6= j with µki > 0, since deg(Rjk(x)) is constant, zji (x) = zki (x)
for all x ∈ U . So we can omit the superscript j in zji (x) (defined when µji > 0).
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Root mappings (2)

Proof (continued.)

zi(a) real if and only if zi(x) real

• zi(a) real ⇒ zi(x) real otherwise its conjugate would be another root in D(zi(a), r).

• zi(a) complex ⇒ zi(a) root.

D(zi(a), r) and D(zi(a), r) disjoint implies zi(x) complex.

The number of real roots of
∏
j≤s Pj(x) is globally constant.

• Hence the number of real roots of
∏
j≤s Pj(x) is constant over x ∈ U .

S is connected implies the number of real roots of
∏
j≤s Pj(x) is constant over S, say `.

The real roots of
∏
j≤s Pj(x) are continuous mappings of x.

• Let fi(x), for i ≤ ` be the function that associates with x the ith real root of∏
j≤s Pj(x) in increasing order.

Since r could be chosen arbitrarily small, fi is continuous.

The multiplicity of a real root of
∏
j≤s Pj(x) w.r.t. any Pj(x) is globally constant.

As the multiplicity of fi(x) w.r.t. any Pj(x) is locally constant, it is constant over x ∈ S.
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Thom Encodings (1)
Let P ∈ R[X] of degree p and x ∈ R, the P -code of x is:
(sign(P (x)), sign(P ′(x)), . . . , sign(P (p)(x))) whose basic properties are:

I The values associated with a P -code are either an open interval or a point.
(thus P -codes of roots of P are “identifiers”)

I Given two P -codes, one can decide which corresponding values are bigger.

x

y

(+,−,+)

(0,−,+)

(−,−,+)

(−, 0,+)

(−,+,+)

(0,+,+)

(+,+,+)

(sp, . . . , s0) ≺ (s′p, . . . , s
′
0) if there exists i with:

I for all j < i, sj = s′j ;

I (si−1 > 0 and si < s′i) or (si−1 < 0 and si > s′i).
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Thom Encodings (2)

Effectiveness properties.

Given P,Q ∈ D[X] where D ⊆ R is sign-effective, one can compute:

I the number of roots of P ;

I the Q-encodings of the roots of P .

Thus one can merge and order the roots of P and Q.
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Cauchy Index
Let P,Q ∈ D[X]. Then the Cauchy index of Q/P is defined by:

Ind(Q/P ) =
1

2

∑
z∈Pole(Q/P )

sign((Q/P )(z+))− sign((Q/P )(z−))

where sign((Q/P )(z+)) and sign((Q/P )(z−))) denote respectively the sign of
the rational function Q/P at the right and at the left of z.

Let Q/P = 1
(X+2.5)(X+1.5)(X−0.5)2 . Then Ind(Q/P ) = 0.

x

y−1 1 0
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Tarsky Query
Let P,Q ∈ D[X]. Then the Tarsky query of (Q,P ) is defined by:

TaQ(Q,P ) =
∑

z∈Zer(P )

sign(Q(z)).

Let P,Q ∈ D[X]. Then: TaQ(Q,P ) = Ind(P ′Q/P )

Proof.

Let z be a root of P with multiplicity µ.

Then P ′Q/P = Q( µ
X−z +R) with R a rational function with no pole at z.

If Q(z) = 0 then P ′Q/P has no pole in z.

Otherwise sign((P ′Q/P )(z+)) = sign(Q(z)) and sign((P ′Q/P )(z−)) = −sign(Q(z)).

Let P = (X + 2.5)(X + 1.5)(X − 0.5)2. Then TaQ(P ′, P ) = 3.

x

y
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Root Counters

Let P,Q ∈ D[X]. Then:

I nbP (Q)[−1] = |{z ∈ Zer(P ) | Q(z) < 0}|;
I nbP (Q)[0] = |{z ∈ Zer(P ) | Q(z) = 0}|.
I nbP (Q)[1] = |{z ∈ Zer(P ) | Q(z) > 0}|;

The Tarski queries and root counters are related by:

I TaQ(1, P ) = nbP (Q)[−1] + nbP (Q)[0] + nbP (Q)[1];

I TaQ(Q,P ) = −nbP (Q)[−1] + nbP (Q)[1];

I TaQ(Q2, P ) = nbP (Q)[−1] + nbP (Q)[1].

 TaQ(1, P )
TaQ(Q,P )
TaQ(Q2, P )

 = M1

nbP (Q)[−1]
nbP (Q)[0]
nbP (Q)[1]

 with M1 =

 1 1 1
−1 0 1
1 0 1


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Generalized Counters and Tarski Queries

Let P ∈ D[X] and Q = (Q1, . . . , Qm) be a finite sequence of D[X]. Then:

nbP (Q) is an integer vector whose support is {−1, 0, 1}{1,...,m} such that:

nbP (Q)[i1, . . . , im] = |{z ∈ Zer(P ) | ∀j ≤ m sign(Qj(z)) = ij}|

TaQP (Q) is an integer vector whose support is {0, 1, 2}{1,...,m} such that:

TaQP (Q)[i1, . . . , im] = TaQ(Qi11 · · ·Qimm )

TaQP (Q) = Mm · nbP (Q) where Mm = M1 ⊗ · · · ⊗M1

A useful application.

The Q-code of the roots of P is simply deduced from nbP (Q,Q′, . . . , Q(q)).
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Computing the Cauchy Index

Let s = (sp, . . . , s0) be a list of reals such that sp 6= 0. Define s′ as the shortest
list such that s = (sp, 0, . . . , 0) · s′. Then we inductively define:

PmV (s) =

 0 if s′ = ∅
PmV (s′) + εp−qsign(spsq) if s′ = (sq, . . . , s0) and p− q is odd
PmV (s′) otherwise

where εi = (−1)
i(i−1)

2

Let P,Q ∈ D[X] with p = deg(P ) > q = deg(Q). Then:

PmV (sRes(P,Q)) = Ind(Q/P )

Once again the subresultants!
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Triangular Systems

A triangular system (ni, Pi)i≤k with ni ∈ N and Pi ∈ Q[x1, . . . , xi] represents the
algebraic point α in Rk if:

I α1 is the nth1 root of P1 ∈ Q[x1];

I for all i < k, αi+1 is the nthi+1 root of Pi+1(α1, . . . , αi) ∈ Q[α1, . . . , αi][xi+1].

Effectiveness properties.

I One can decide whether (ni, Pi)i≤k is a triangular system;

I One can decide the sign of an item of Q[α1, . . . , αk]
when α is given by a triangular system;

I or equivalently the sign of P (α) for P ∈ Q[x1, . . . , xk].
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Lifting Stage for PolITA:
General Overview

The tree is built top-down as follows.

Due to the invariance property of cells w.r.t. the sign of polynomials, a cell is
represented by a sample point given by a triangular system.

Let C be a cell at depth k < n represented by (α1, . . . , αk). In order to find its
children in Q[α1, . . . , αk],

I one determines the (number of) roots of the polynomials in Pk+1;

I one globally orders them;

I an interval ](i, P ), (j,Q)[ is represented by an appropriate root of (PQ)′;

I an interval ]−∞, (1, P )[ (resp. ](i, P ),∞[) is represented by
(1, P [xk+1 ← xk+1 + 1]) (resp. (i, P [xk+1 ← xk+1 − 1]));

I The triangular system associated with the children is the original one extended
by the root corresponding to the children.
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Synchronization Stage for PolITA

The synchronization can be done on-the-fly during the lifing stage.

This may produce considerable time and space savings.

However the elimination stage is already doubly exponential.



36/39
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Abstraction for Timed Systems

Abstraction for PolITA

4 Extensions

Conclusion and Perspectives
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Decidability and Extensions

The PolITA model may be extended while reachability remains decidable.

I Parameters may be modelled by low level additional clocks.

I A set of auxiliary clocks may be added per level with restrictions.
This model is strictly more expressive than the original one.

I Updates of clocks with a lower level than the current one may be allowed.

I A PolITA may be “synchonized” with a TA:
the PolITA interrupts the TA.
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Conclusion and Perspectives

Summary of results

I Another model of hybrid systems (extending TA) with parameters.

I Decidability of the reachability and quantitative model checking problems.

Perspectives

I Experimentations since a prototype already exists.
Thanks to Rémi Garnier and Mathieu Huot, L3 students of ENS Cachan!

I Adapting more efficient methods for first-order theory of reals
to (subclasses of) PolITA.

I Extensions of expressions in o-minimal decidable theories.
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