Homework 2 - Probabilistic aspects of computer science

1 The maximal expected reward

Let X_i denote the random state at time i and Y_i denote the random action at time i of an MDP. Given a policy π, the maximal expected reward at time horizon t of π is defined by:

$$M^\pi_t \overset{\text{def}}{=} \mathbb{E}^{\pi}(\max(r(X_i, Y_i) \mid 0 \leq i < t))$$

The corresponding vectorial reward (which depends on the initial state) is denoted M^π_t. As usual, the optimal vectorial reward M^*_t is defined by: for all $s \in S$, $M^*_t[s] \overset{\text{def}}{=} \sup_{\pi}(M^\pi_t[s])$.

Question 1. Show an example of MDP such that no Markovian policy is optimal for the (vectorial) maximal expected reward at time horizon 3.

Question 2. Let M be an MDP and t be an horizon. Propose an algorithm that finds the optimal reward and an optimal policy for the maximal expected reward problem in polynomial time w.r.t. the size of M and in pseudo-polynomial time w.r.t. t.

Hint: The algorithm builds an MDP M' such that from the optimal reward and an optimal policy for the pure total expected reward in M', one can recover the optimal reward and an optimal policy for the maximal expected reward in M.

2 Terminal components of a MDP

Let M be an MDP, we introduce the notion of a subMDP. A subMDP M' of M is a non empty set of pairs state-action such that $(s, a) \in M'$ implies that $s \in S$ and $a \in A_s$. The underlying graph of M', $G_{M'} = (S', E')$ is defined by:

1. $S' \overset{\text{def}}{=} \{s \in S \mid \exists(s, a) \in M'\}$;
2. $E' \overset{\text{def}}{=} \{(s, s') \in (S')^2 \mid \exists(s, a) \in M' \text{ with } p(s'|s, a) > 0\}$.

A subMDP M' is a terminal component of M if:

1. For all $s, s' \in S$, $a \in A_s$, $(s, a) \in M'$ and $p(s'|s, a) > 0$ implies $s' \in S'$;
2. $G_{M'}$ is strongly connected.

M', a terminal component of M, is maximal if there is no terminal component M'' with $S' \subseteq S''$, $E' \subseteq E''$ and $S' \cup E' \subseteq S'' \cup E''$.
We have drawn above G_M the underlying graph of a MDP M where an action a labels an edge (s, s') if $p(s' | s, a) > 0$.

Question 3. Let M be the MDP whose graph is drawn above. Find a maximal terminal component of M and a non maximal terminal component of M.

Let $\rho = s_0, a_0, s_1, a_1, \ldots$ be an infinite path. Define $\omega(\rho) \overset{\text{def}}{=} \{(s, a) \mid \forall i \in \mathbb{N} \exists j \geq i (s_j, a_j) = (s, a)\}$, the set of pairs state-action infinitely occurring in ρ.

Question 4. Let π be a policy and $\rho = X_0, Y_0, X_1, Y_1, \ldots$ the random path of an MDP. Prove that:

$$\Pr^\pi(\omega(\rho) \text{ is a terminal component}) = 1$$

Algorithm 1: Computing the maximal terminal components

```plaintext
MaxTerminalComponents(M)

Input: M, an MDP
Output: SM, the set of maximal terminal components of M

Data: $i$ integer, $s, s'$ states, $a$ action, sub, sub' subMDP, stack, a stack of subMDP

sub $\leftarrow \{(s, a) \mid s \in S, a \in A\}$; Push(stack, sub); SM $\leftarrow \emptyset$

while not Empty(stack) do
  sub $\leftarrow$ Pop(stack); $S' \leftarrow \{s \mid \exists (s, a) \in \text{sub}\}$
  for $(s, a) \in \text{sub}$ do
    for $s' \in S$ do
      if $p(s' | s, a) > 0$ and $s' \notin S'$ then sub $\leftarrow$ sub \ {$(s, a)$}
    end
  end
  if sub $\neq \emptyset$ then
    Compute the strongly connected components of $G_{\text{sub}}, S_1, \ldots, S_K$
    if $K > 1$ then
      for $i$ from 1 to $K$ do
        sub' $\leftarrow \{(s, a) \in \text{sub} \mid s \in S_i\}$; Push(stack, sub')
      end
    else SM $\leftarrow$ SM $\cup$ sub
  end
end
return SM
```

Question 5. Prove that algorithm \square returns the set of maximal terminal components.

Question 6. Analyse the (worst-case) complexity of algorithm \square w.r.t. $|S|$ and $|A|$.

3 Minimising the reachability cost

Let M be an MDP with non negative rewards and an absorbing state s_e: A_{s_e} is a singleton whose Dirac distribution leads to s_e and whose reward is null. We assume that there exist policies that ensure to reach s_e with probability 1 and such policies are called winning policies. In this case, there exists a stationary deterministic winning policy.

The reachability cost of a policy π (which may be infinite) is defined by:

$$R^\pi \overset{\text{def}}{=} \sum_{i \in \mathbb{N}} \mathbb{E}^\pi(r(X_i, Y_i))$$

The corresponding vectorial cost (which depends on the initial state) is denoted R^π. The optimal vectorial cost R^* is defined by: for all $s \in S, R^*[s] \overset{\text{def}}{=} \inf_\pi \{R^\pi[s] \mid \pi \text{ is winning}\}$. The reachability cost problem consists to find the minimal reachability cost R^* and an optimal winning policy.
Question 7. Using the MDP figured below (with only Dirac distributions) show that a non
winning strategy can have a smaller reachability cost than any winning strategy.

In the sequel, we assume that for all non winning policy \(\pi \) there exists \(s \in S \) such that: \(R^\pi[s] = \infty \).

Let the operator \(L \) on \(\text{Rew} \) defined by:
\[
\forall s \in S \quad \min_{a \in A_s} \left(r(s, a) + \sum_{s' \in S} p(s'|s, a)v[s'] \right)
\]

Question 8. Let \(v \in \text{Rew} \) be a fixpoint of \(L \). Prove that \(v \leq R^* \).

Question 9. Let \(\mathcal{d}^\infty \) be a stationary policy. Show that \(R^\mathcal{d}^\infty = \sum_{i \in \mathbb{N}} (P_d)^i r_d \) (using the notations of the lecture notes).

Given \(d \) a decision rule, the operator \(L_d \) on \(\text{Rew} \) is defined by:
\[
L_d(v) = r_d + P_d v
\]

Question 11. Let \(\mathcal{d}^\infty \) be a winning policy. Show that \(R^\mathcal{d}^\infty \) is a fixpoint of \(L_d \).

Question 12. Let \(\mathcal{d} \) be a decision rule such that there exists \(v \in \text{Rew} \) with \(L_d(v) \leq v \).

Show that \(\mathcal{d}^\infty \) is a winning policy. Hint: use the assumption about non winning policies.

Question 13. Let \(\mathcal{d}^\infty \) be a deterministic stationary winning policy such that \(L(R^\mathcal{d}^\infty) \leq R^\mathcal{d}^\infty \).

Let \(d' \) be a deterministic decision rule such that \(L(R^\mathcal{d}^\infty) = L_d'(R^\mathcal{d}^\infty) \).

Show that \(R^{d'}^\infty \leq R^{d^\infty} \).

Question 14. Deduce from the previous questions that there exists a winning deterministic station-
ary policy \(\mathcal{d}^\infty \) such that \(L(R^\mathcal{d}^\infty) = R^\mathcal{d}^\infty \) and that \(\mathcal{d}^\infty \) is an optimal policy for the reachability
cost problem.

Question 15. Design a linear programming problem such that its solution is \(R^* \).