
Probabilistic Aspects of Computer Science:
Distributed Algorithms and Random Graphs

S. Haddad1

July 12, 2012

1Professeur de l’ENS Cachan, haddad@lsv.ens-cachan.fr, http://www.lsv.ens-cachan.fr/∼haddad/

Contents

1 Randomized Algorithms 2
1.1 Anonymous networks . 2

1.1.1 Deterministic algorithms with a leader . 2
1.1.2 Deterministic algorithms with known size of the network 3
1.1.3 Deterministic algorithms with unknown size of the network 5
1.1.4 Probabilistic algorithms with known size of the network 5
1.1.5 Probabilistic algorithms with unknown size of the network 8

1.2 Fault Tolerance . 10
1.2.1 Consensus in presence of crashes . 10
1.2.2 Consensus in presence of Byzantine processes 15

2 Random Graphs 19
2.1 Introduction . 19
2.2 Technical background . 21

2.2.1 Probability recalls . 21
2.2.2 Graph notations . 23
2.2.3 Combinatorial formulas . 24

2.3 Between the thresholds . 25
2.3.1 The empty graph . 26
2.3.2 The Alice’s Restaurant graph . 27
2.3.3 Appearance of tree components . 27
2.3.4 Occurrences of all trees . 28
2.3.5 Appearance of cycles . 29
2.3.6 Beyond connectivity . 29
2.3.7 Appearance of balanced graphs . 30

2.4 Looking at the thresholds . 30
2.4.1 The double jump . 30
2.4.2 Connectivity . 40

2.5 More on almost sure theories . 43

3 Exercises 50

1

Chapter 1

Randomized Algorithms

This chapter is mainly based on the book of Gerard Tel [Tel 00].
We consider a network with asynchronous communication meaning that messages always arrive

to the receiver but with no time bounds. We are given an (undirected or directed) graphG = (V,E)
whose processes are located on vertices and communicate with the processes that are adjacent to
them. When no process is distinguished, every process executes the same algorithm and we
consider it as distributed. However in case of a function computed by such an algorithm the inputs
of the processes can be different. In addition when processes have an identity, this identity can be
used in the algorithm, otherwise processes are anonymous. When some process is distinguished,
and so executes a different algorithm than the other processes, we consider this algorithm as
centralized.

The (worst case) complexity of distributed algorithms is generally measured as (1) the number
of messages that are exchanged and (2) the execution time of the algorithm. In this case we assume
that local computations are instantaneous and that the transit time of a message is in the interval
[0, 1]. Observe that in many cases the worst case is not the one corresponding to all transit times
equal to one.

Algorithms can also be partitioned w.r.t. the way they terminate. A process-terminating
algorithm has a special state where it does not modify anymore any local variable and does
not send any message, it can still receive messages but then delete them. A message-terminating
algorithm terminates when (1) every process either terminates or waits for a message and (2) every
channel of the network is empty. Process termination is desirable since it allows to start a new
algorithm that takes as inputs, the outputs of the first algorithm. However for some distributed
problems there exist message-terminating algorithms but no process-terminating algorithm.

An algorithm is partially correct if when it terminates its result is correct. So either the
algorithm terminates with a correct result or it does not terminate.

1.1 Anonymous networks
In these section, the processes are anonymous. So we say that the network is anonymous.

1.1.1 Deterministic algorithms with a leader
We introduce an additional assumption: some process is distinguished and is called the leader.
This hypothesis allows the leader to start the computation and thus avoids the non deterministic
part due to concurrent starts by different processes. The goal of the distributed algorithm consists
in giving unique identities to all the processes.

For instance, algorithm 1 computes simultaneously a covering tree and the size of the graph.
The root of the tree is the leader which sends messages to its neighbours and waits for answers.

2

When a process receives its first message from some channel, the sender becomes its father and
sends messages to its neighbours except its father and waits for answers. After having received
answers from every neighbour, any activated process sums up their answers that it sends to its
father, except the leader whose sum corresponds to the size of the tree.

The correctness of the algorithm is proved through the following steps that we only sketch here
and let the reader to develop it as an exercise.

• Every process is activated.

• The graph induced by the father relation is indeed a tree

• The size computed by every process is the size of the subtree rooted at its vertex.

Algorithm 1: Computing the size of the network
Data: Neigh, the set of channels defining the communication graph
Data: rec = 0, the number of received tokens
Data: father , the channel of the father in the covering tree
Data: size = 1, the size of the subtree rooted at the vertex, s a size

Leader
for c ∈ Neigh do Send(c, 〈tok, 0〉)
while rec < |Neigh| do

Receive(c, 〈tok, s〉)
rec← rec+ 1; size← size+ s

end

Others
Receive(c, 〈tok, s〉); rec← rec+ 1; father ← c
for c ∈ Neigh \ {father} do Send(c, 〈tok, 0〉)
while rec < |Neigh| do

Receive(c, 〈tok, s〉)
rec← rec+ 1; size← size+ s;

end
Send(father , 〈tok, size〉)

Once the tree is computed and the size n = |V | is known, the leader affects to itself identity 1,
partitions [2, n] in intervals whose lengths correspond to the positive answer of its neighbhour (its
children in the tree) and sends to every children its associated interval. Every process receiving
an interval picks an integer in it for its identity and then proceeds as the leader. We thus obtain a
distributed algorithm whose message complexity is 2|E|+ |V | − 1 and time complexity is O(|V |).

1.1.2 Deterministic algorithms with known size of the network
In order to appreciate the interest of a leader, we prove the following impossibility result.

Theorem 1 There exists no deterministic algorithm for election of a leader in a ring of known
size.

Proof
Recall this obvious fact that due to asynchronous communication and time execution, execution
of a distributed algorithm is inherently non deterministic. Thus to prove this impossibility result,
we assume the existence of an algorithm and exhibit a non terminating execution.
We introduce the concept of a symmetric configuration. A configuration is symmetric if (1) the
state of every process is identical (including data values) and (2) the input channel of every process

3

contains the same messages in the same order. Since the topology is a ring, every process has
exactly an input and an output channel, so this notion is sound.
We first observe that the initial configuration is symmetric since the network is anonymous. By
definition in a symmetric configuration, there cannot be a leader since the leader must be in a
different state than any other process. Thus in a symmetric configuration, some (and thus every)
process has some action to perform or is waiting for a message. In the first case, the run is extended
by the execution of the action by every process and the reached configuration is still symmetric.
In the second case, the execution is extended by the reception of the first message of the input
channel by every process. Such a message must exist in the channel, otherwise the configuration
is blocked with no leader. Again the reached configuration is still symmetric. By induction we
have obtained an infinite execution.

q.e.d. ♦♦♦

However some important functions can still be computed when the size of the ring is known. Let
f be a function of variables x1, . . . , xn, f is cyclic if ∀x1, . . . , xn f(x1, . . . , xn) = f(x2, . . . , xn, x1).
Several interesting functions are cyclic: OR, AND, MIN, MAX, SUM, etc. Here we assume that
value xi is given as input to process i on the ring.

Theorem 2 Any cyclic function can be computed by a process-terminating deterministic algorithm
using n(n− 1) messages if the ring size is known.

Proof
The principle of the algorithm is straightforward. The algorithm is divided in n−1 stages. At the
first stage, every process sends its value to its clockwise successor and receives the value from its
clockwise predecessor. At the next steps it sends the last received value and receives a new value.
At the end, every process has a cyclic shift of x1, . . . , xn and so can locally compute the result.

q.e.d. ♦♦♦

In fact the previous algorithm is optimal at least for standard functions.

Theorem 3 Any a process-terminating deterministic algorithm on a ring computing one of the
following functions OR, AND, SUM exchanges at least n(n− 1) messages in the worst case.

Proof
We define inductively the trace of a message in an execution as follows. If a message m is sent by
p before receiving any message then the trace of m is (p). If the longest trace of a message that
p has received is (p1, . . . , pk), then the trace of m is (p1, . . . , pk, p). Observe that the trace of a
message sent by p is always the list of predecessors with possible repetition if the length is greater
than the size of the ring.
The three functions have in common that at least for one symmetrical configuration, every process
must receive a trace of length n − 1 before deciding the value of the functions. For instance, if
the inputs of the OR are all false and some process p decides without receiving a trace of length
n− 1, then by changing the value of processes not in the trace to true, the sub-execution related
to the trace is still possible and then p decides incorrectly.
So starting with a symmetric configuration, as in the previous proof we go from a symmetrical
configuration to another symmetrical configuration. We divide a configuration in rounds where
round i corresponds to the occurrence of the first trace of length i. This means that during a
round at least one message has been send. Since the execution is symmetric, this means that at
least n messages have been sent in every round. Since there must be at least n − 1 rounds, the
result is established.

q.e.d. ♦♦♦

4

1.1.3 Deterministic algorithms with unknown size of the network
The knowledge of the size of the network is a key factor in the design of algorithms as shown by
the next theorem.

Theorem 4 There exists no deterministic process-terminating algorithm for computing a non
constant function f if the ring size is unknown.

Proof
Because f is non constant, there exist inputs x = (x0, . . . , xk−1) and y = (y0, . . . , yl−1) such that
f(x) 6= f(y). Assume there exist a deterministic process-terminating algorithm for computing
function f .
Thus on a ring of size k with input x, the algorithm computes f(x) and on a ring of size l with
input y, the algorithm computes f(y). Let us a consider two arbitrary computations for both
cases.
Denote on the first ring the list of processes pk−1, . . . , p0 and by K the longest trace of the message
that p0 has received when it terminates. Now imagine a fragment of length K+ 1 of a “large” ring
with processes qK , . . . , q0 where the process qi corresponds to process pi%l (a kind of unfolding of
the ring). One can build an execution of the algorithm on this fragment such that process qi sends
messages sent by pi%l in the original execution but only those with trace length less or equal than
K − i + 1. The local execution of q0 is identical to the local execution of p0 in the original ring.
So q0 terminates with value f(x).
Similarly using another fragment of this large ring, one can simulate the execution of a process
for the ring of size l with input y. Thus merging these two executions, one obtains an execution
where two processes terminate with a different value which concludes the proof.

q.e.d. ♦♦♦

Relaxing the requirement on process termination allows to compute some particular functions.

Theorem 5 There are message-terminating deterministic algorithms on a ring whose size is un-
known for computing functions OR and AND.

Proof
Using equality

∧
i pi ≡ ¬

∨
i ¬pi, we only have to design an algorithm that computes function OR.

This is algorithm 2. Let us examine it.
First, the process initializes its result to its input and in case it is true, the process sends a message
to its clockwise neighbour. It now waits a possible message from its anticlockwise neighbour. On
receiving it, if its current result is true, the process switches its result to true and sends a message
to its clockwise neighbour. Otherwise it does nothing (but this empties the channel).
Assume that every input is false. Then no messages are sent and every process has it result set
to false.
Assume that some inputs are true. Then messages are sent by the corresponding processes and
forwarded on the ring until they reach the next process with a true input. At the end, every
process has its result set to true. Observe that exactly n messages have been sent.

q.e.d. ♦♦♦

1.1.4 Probabilistic algorithms with known size of the network
We are dealing with probabilistic and non deterministic systems, so we must be careful while
defining probabilities. First we assume that every process is given an infinite sequence of random
booleans where every boolean random variable is equidistributed and independent from the other
ones. Given this family of infinite sequences denoted in the sequel ρ, the properties of algorithms

5

Algorithm 2: Computing OR on a ring
Data: Next, the output channel defining the communication ring
Data: in, the input of the process
Data: res, the result of the evaluation

OrEvaluate
res← in
if in = true then Send(Next, 〈true〉)
Receive(c, 〈true〉)
if res = false then res← true; Send(Next, 〈true〉)

Algorithm 3: Probabilistic election on a ring
Data: Next, the output channel defining the communication ring
Data: n, the size of the network
Data: state = cand, the state of the process in {cand, leader, lost}
Data: level, the current level of the process
Data: id, the current identity of the process
Data: stop = false, a boolean indicating that the algorithm is terminated

Election
level← 1; id← Rand({1, . . . , n})
Send(Next, 〈tok, level, id, 1, true〉)
while ¬stop do

Receive(c,m)
if m = 〈tok, olevel, oid, count, un〉 then

if count = n ∧ state = cand then
if un then

state← leader; Send(Next, 〈ready〉)
Receive(c, 〈ready〉); stop← true

else
level← level + 1; id← Rand({1, . . . , n})
Send(Next, 〈tok, level, id, 1, true〉)

end
else if olevel > level ∨ (olevel = level ∧ oid < id) then

level← olevel; state← lost
Send(Next, 〈tok, olevel, oid, count+ 1, un〉)

else if olevel = level ∧ oid = id then Send(Next, 〈tok, olevel, oid, count+ 1, false〉)
else Send(Next, 〈ready〉); stop← true

end

6

are defined similarly as for the the deterministic case. For instance, when we say that the prob-
ability of partial correction is r, we mean that the subset of ρ’s for which every execution that
terminates is correct is r.

Since deterministic algorithms are not enough powerful to obtain a solution to the election
problem, we design probabilistic algorithm 3. Let us describe its principles.

• Initially all processes are candidates. Then they can either loose or become leader.

• The algorithm is divided into rounds denoted by levels in the algorithm.

• In order to start a new round, a process must still be candidate. When a process starts a
new round, it randomly chooses its identity between 1 and n. Then it sends a tok message
including its level, its identity, a count of visited processes initialized to 1 and a boolean
initialized to true indicating that the identity is (perhaps) unique.

• If the message comes back to the sender (detected by a count equal to n) there are two cases.
Either the identity is really unique and the process becomes the leader. Then it sends the
ready message and stops when the message comes back. Or the identity was not unique
w.r.t. the level, then the process increases the level and starts a new round.

• When a process receives a tok message sent by another process. There are different cases.
Either the associated level is greater than the current level (which means that the process has
already lost) or the level is the same with a smaller identity then the process looses, updates
the level and forwards the message increasing the count. Either the level and the identity
are equal to the ones of the process thus the process forwards the message but indicating
that the identity is not unique. Otherwise the message is not forwarded.

• When a (lost) process receives a ready message sent by another process, it stops and forwards
the message.

Theorem 6 Algorithm 3 is partially correct and terminates with probability 1.

Proof
Let us prove by induction on rounds that for every processes p, q:

• the message sent by process p at round l is closer to q than the message sent by q at round
l (whenever they exist).

• the message sent by process p at round l is closer to p than the message sent by q at round
l + 1 (whenever they exist).

The property is true initially since there is no message at round 2 and the message sent by q at
round 1 cannot be forwarded by p before p sends its own message at round 1. Thus when a process
q starts its round l+ 1 the message of p at round l has already be forwarded by q and thus p will
(possibly) start its round l + 1 before the arrival of message of q.
Now we prove by induction that if some process starts a round l then either a unique process with
the smallest identity becomes the leader or all the processes with the smallest identity start a new
round. Let p be some process that starts a round l with a smallest identity. Let us examine what
can happen to the message sent by p during this round. Since no process can start a round with
a higher level, the message must always be forwarded by the other processes.
Thus when the algorithm terminates, there is a unique leader and all the other processes have lost.
The probability to start a new round is bounded by b = 1 − n!

nn < 1 which implies that with
probability 1 there is a finite number of rounds.

q.e.d. ♦♦♦

7

1.1.5 Probabilistic algorithms with unknown size of the network
In this section we design a probabilistic algorithm that (message-)terminates with a probability
arbitrary close to 1 (depending on a parameter) to be correct. Before doing this we establish
negative results demonstrating that this algorithm is the best we can hope when the size of the
network is unknown.

Theorem 7 There exists no process-terminating probabilistic algorithm for computing the ring
size that is correct with probability r > 0.

Proof
Assume there is such an algorithm. Let ρ be a family of boolean sequences such that every
computation on a ring of size n whose result is n. Select an arbitrary process p0, let pi be the ith
anticlockwise neighbour of p0 and let K be the length of the longest trace received by p. Let us
denote L be the largest number of steps executed by any process in σ.
Now consider a larger ring that contains a segment of K + 1 processes; let q0 be the last process
of the segment and qi be the ith anticlockwise neighbour of q0. Assume that the L probabilistic
choices in some ρ′ performed by qi are the same as the ones of pi%n. Then q0 terminates with the
same result as p0 (n) which is now erroneous. The probability of such failing ρ′ is 2−(K+1)L.
Choose now a ring of length m(K + 1) such that (1− 2−(K+1)L)m < r. Then by partitioning the
ring in m fragments. The probability of successful executions is at most (1 − 2−(K+1)L)m which
contradicts the hypothesis.

q.e.d. ♦♦♦

Theorem 8 There exists no message-terminating probabilistic algorithm for computing the ring
size that is correct with probability 1.

Proof
Assume there is such an algorithm. Let ρ be a family of boolean sequences such that every
computation on a ring of size n whose result is n. Select an arbitrary process p0, let pi be the ith
anticlockwise neighbour of p0. Let us denote L be the largest number of steps executed by any
process in σ.
Now consider a ring of size 2n processes; let q0 be some process of the ring and qi be the ith
anticlockwise neighbour of q0. Assume that the L probabilistic choices in some ρ′ performed by
qi are the same as the ones of pi%n. Then every process qi terminates with the same result as
pi%n (n) which is now erroneous. The probability of such failing ρ′ is 2−2nL which contradicts the
hypothesis.

q.e.d. ♦♦♦

Let us describe algorithm 4. Every process manages a estimation of the size of the ring est
(initialized to 2) and a label (i.e. a pseudo-identity) randomly chosen between R values. We will
prove that all along the algorithm, the estimation is a lower bound of the real size. In order to
check whether its estimation is correct it sends a test message along the ring with its estimation, its
label and the number of visited processes. During the visit of processes, this number increases but
will never exceed the estimation associated with the message. The critical issue is the reception
of such a message by a process p.

• If the estimation received by p is greater than its own estimation, this means that its own
estimation is underestimated. However this new estimation can also be underestimated if the
number of visited processes is equal to the estimation. If it is not the case then it forwards
the message and updates its estimation. In both cases, it starts a new test with the new
estimation.

8

• If the message estimation is equal to its own estimation p looks at the number of visited
processes. If this number is less than the estimation it forwards the message. Otherwise p
now looks at the label. If the message label is different from its own label then the estimation
is incorrect and p starts a new test with the estimation incremented by one. Otherwise the
message could be its own message returned to it. So it does nothing.

• If the estimation received by p is smaller than its own estimation, this means that the message
estimation is underestimated and p does nothing.

Algorithm 4: Probabilistic computation of the size of a ring
Data: Next, the output channel defining the communication ring
Data: R, a parameter of the algorithm
Data: est, estimation of the size of the network
Data: lbl, the current label of the process

Size
est← 2; lbl← Rand({1, . . . , R})
Send(Next, 〈test, est, lbl, 1〉)
while true do

Receive(c, 〈test, oest, olbl, h〉)
if oest > est then

if oest = h then
est← oest+ 1; lbl← Rand({1, . . . , R})
Send(Next, 〈test, est, lbl, 1〉)

else
Send(Next, 〈test, oest, olbl, h+ 1〉)
est← oest; lbl← Rand({1, . . . , R})
Send(Next, 〈test, est, lbl, 1〉)

end
else if oest = est then

if h < est then Send(Next, 〈test, oest, olbl, h+ 1〉)
else if lbl 6= olbl then

est← est+ 1; lbl← Rand({1, . . . , R})
Send(Next, 〈test, est, lbl, 1〉)

end
end

end

Lemma 1 Algorithm 4 (message-)terminates after exchanging O(n3) messages. In the final con-
figuration all estimations are equal and bounded by n.

Proof
We first observe that a forwarded message keeps unchanged its label and estimation while the
number of visited processes is updated. We prove by induction that any estimation is always a
lower bound of the size. The basis case (2) is trivial. Let us now examine the situations when an
estimation is updated.

• When a process receives a greater estimation with a number of visited processes less than
the estimation, it updates its estimation to this value. So by induction the new value is still
a lower bound.

• When a process receives a greater estimation with a number of visited processes equal to the
estimation, it updates its estimation to this value plus one. By induction the size is greater

9

or equal than the message estimation but it cannot be equal since the sender of message is
different from p (due to the difference of estimation). So the new value is still a lower bound.

• When a process receives the same estimation as its own estimation with a number of visited
processes equal to the estimation but with a different label, it updates its estimation to this
value plus one. By induction the size is greater or equal than the message estimation but
it cannot be equal since the sender of message is different from p (due to the difference of
label). So the new value is still a lower bound.

Every process generates at most n− 1 tests and every message cannot pass through its generator.
So the number of messages is bounded by n3. Thus the algorithm always message-terminates.
When a process increases its estimation, it sends a message. Thus on termination every process
has an estimation less or equal than the estimation of its clockwise neighbour. This means that
all values are equal.

q.e.d. ♦♦♦

Theorem 9 Algorithm 4 (message-)terminates and upon termination the estimation is correct
with probability at least 1− (n− 2)R−

n
2 .

Proof
Let us analyze the case of an incorrect estimation e < n. When every process pi has updated
its estimation to e, it starts a new test that has been aborted by process pi+e%n believing it has
received its own message. Partionning the processes into f ≤ n/2 equivalence classes of size n/f
induced by pi+e%n ∼ pi+e%n iff there exists k with j = i + ke%n, we observe that the labels
inside every class must be the same. The probability of such an event is R−n+f ≤ R−

n
2 (why?).

Summing over the n− 2 possible incorrect estimations gives the result.

q.e.d. ♦♦♦

1.2 Fault Tolerance
In this section, we assume that every process can communicate directly with the other ones and
that every process has an identity.

1.2.1 Consensus in presence of crashes

We will progressively introduce the framework of faults. P will denote the set of processes with
|P | = n. We start with the simple assumption that at some stage of the algorithm execution a
process can stop its local execution. Observe first that such process crash cannot be observed by
other processes in the asynchronous framework with a process terminating algorithm since a crash
of a process could be equivalent to messages that take very long time before arriving. So we are
considering executions, where every process either (1) crashes, (2) finishes its algorithm (3) waits
infinitely for a message or (4) executes an infinite number of steps. As before every message sent
to a process that will not crash will be received by it. This hypothesis excludes unfair executions
where the algorithm does not achieve its goal due to a hidden crash. In addition, a t-crash fair
execution allows at most t ≥ 1 processes to crash.

Only appropriate problems are meaningful in presence of faults. We address the problem of
consensus, formally defined as follows. Every process has an input say in and a boolean output
out unitialized (denoted by out =?). The output can be written only once corresponding to the
local decision by p. For sake of readability we denote by 0 and 1 the boolean values. The initial
configurations of the algorithm correspond to all possible tuples of inputs.

A t-crash robust consensus algorithm satisfies the following three requirements

• Termination. In every t-crash fair execution, all correct processes decide.

10

• Agreement. In every reachable configuration, there does not exist two processes p, q with
outp = 0 ∧ outq = 1.

• Non triviality. There exist a reachable configuration such that some process decides 0 and
a reachable configuration such that some process decides 1.

We introduce some useful notations related to the configurations of a consensus algorithm. A
configuration cf is v-decided if some process in cf has decided v. We say that a configuration
is decided if it is v-decided for some v. A configuration cf is v-valent if for every w-decided cf′

reachable from cf, one has v = w. A configuration cf is bivalent if it is neither 0-valent nor 1-valent
(equivalently one can reach from cf both 0-decided and 1-decided configurations). Observe that
every reachable configuration is either 0-valent, 1-valent or bivalent. Given two configurations cf
and cf’ and a subset of processes T , we denote by cf

T−→ cf′ the fact that one can reach cf′ from
cf′ by steps of processes in T . Observe this immediate but important property of any distributed
algorithm. Let T1 and T2 be disjoint subsets of processes and cf be a reachable configuration,
then:

cf
T1−→ cf1 ∧ cf

T2−→ cf2 ⇒ ∃cf12 cf1
T2−→ cf12

with the same sequence of steps in T2
In the case of a t-crash robust consensus algorithm we have the following property. Let S be

a subset of processes with S ≥ n − t. Then for every reachable configuration cf there exists a
decided configuration cf′ with cf

S−→ cf′. Indeed, let the processes not in S crash in cf. Since
there are at most t such processes, the algorithm must achieve termination.

A fork is a reachable configuration cf such that there exist a subset of processes T with |T | ≤ t,
a 0-valent configuration cf0 and a 1-valent configuration cf1 with cf

T−→ cf0 and cf
T−→ cf1.

Obviously a fork is bivalent.

Lemma 2 There does not exist a fork.

Proof
Assume cf is a fork and T its associated subset of processes. Then using the previous observation
about consensus algorithms cf

P\T−−−→ cf′ for some decided configuration. Assume w.l.o.g. that cf′

is 0-decided. By hypothesis, cf T−→ cf1 with cf1 being 1-valent. Using now the observation about
the distributed algorithms, we combine the two executions leading to cf

T−→ cf′1 with cf′1 being
both a 0-decided and 1-valent a contradiction.

q.e.d. ♦♦♦

Lemma 3 There exists an initial bivalent configuration.

Proof
By the non trivality assumption there are two initial configurations cf0 and cf1 such that from
cf0 one reaches a 0-decided configuration and from cf1 one reaches a 1-decided configuration.
One builds a sequence of initial configurations cf0, . . . , cfk = cf1 such that from between cfi
and cfi+1 a single input is different. Since from any cfi one reaches a decided configuration, one
deduces that there is two initial configurations cf′0 and cf′1 only with a single different input such
that from cf′v on reaches a v-decided configuration. We denote p the process with the different
input.
Assume now that cf′0 is 0-valent and cf′1 is 1-valent. From cf′0, suppose that p crashes, then one
can reaches a decided configuration, thus a 0-decided configuration but using the same steps from
cf′1 one also obtains a 0-decided configuration which contradicts our assumption. Thus either cf′0
or cf′1 is bivalent.

q.e.d. ♦♦♦

11

A step is the arrival of some message in the input queue of a process or the execution of the
next instruction by a (non waiting) process.

Lemma 4 Let cf be a bivalent configuration and s be a step applicable for process p. There exists
cf’ reachable from cf such that s is applicable in cf’ and the reached configuration is bivalent.

Proof
Let C be the set of configurations reachable from cf without appying step s. We observe that s
is still applicable in every such configuration. Let us denote s(cf′) the configuration reached by
application of s on configuration cf′.
Let v ∈ {0, 1}, there is a configuration reached from cf that is v-decided. If this configuration
belongs to C we call it cfv and we observe that s(cfv) is also v-decided. Otherwise, the execution
that leads to this configuration includes s and we call cfv the configuration on which s was applied.
In both cases, from s(cfv) one can reach a v-decided configuration.
Let us look at the execution paths from cf to cf0 and cf1. If there is a configuration cf′ on one of
these paths such that s(cf′) is bivalent we are done. Otherwise for v ∈ {0, 1}, s(cfv) is v-valent.
So there must be a step s′ on one these paths from some cf′ to s′(cf′) such that s(cf′) is v-valent
and s(s′(cf′)) is (1 − v)-valent. Observe that s and s′ must be executed by the same process.
Otherwise s(s′(cf′)) = s′(s(cf′)) implying that s(cf′) is bivalent.

Let p be the process executing s and s′. One has: cf′
p−→ s(cf′) a v-valent configuration and

cf′
p−→ s(s′(cf′)) a (1− v)-valent configuration. So cf′ would be a fork which is impossible.

q.e.d. ♦♦♦

Theorem 10 There does not exist a 1-crash robust algorithm for consensus.

Proof
Start with an initial bivalent configuration. We construct by induction an infinite fair sequence.
At every stage of the construction the finite sequence ends up in a bivalent configuration, say cf.
There must a step at least one applicable step s. Select the oldest enabled one and apply the
previous lemma to obtain a sequence of steps ending by s and reaching a new cofiguration. The
choice of the oldest applicable step ensures that this infinite sequence is fair thus leading to a
contradiction.

q.e.d. ♦♦♦

In a synchronous framework (i.e. with an upper bound on the transit time of messages, say
∆), the consensus can be solved even with n− 1 faults. Every process p manages a vector indexed
by the processes of input values uninitialized except the cell indexed by p initialized with its input.
During a round every process sends its vector to all the other processes and waits for ∆ the vectors
of the other processes. Then it merges its vector with the received one. If during a round there is
no crash, all vectors are equal. Thus after n−1 rounds either it remains a single correct process or
all the correct processes have the same vectors. In both cases, applying any non constant function
on the vector provides a solution to the consensus problem.

More generally a round t-crash robust algorithm proceeds as follows. During a round a pro-
cess broadcasts a message to all other processes, waits for n − t messages for different processes
(including possibly its own message) and performs some local computations based on the received
messages.

We claim that a t-crash robust algorithm can be transformed as a round algorithm. In the round
algorithm, every process manages a counter of rounds initialized to 0. Every sending of message in
the original algorithm is now performed virtually by concatenating it (with the intended receiver)
in a queue. Before every reception instruction of the original algorithm, the process increments
the round counter, broadcasts it with content of the queue and instead of waiting for a single
message waits for n − t messages indexed by the round. After selecting the messages sent to it,

12

either the process has a new message for it and goes on for the original computation or performs
a dummy round in order to wait again for its (original) message. When a process terminates, it
infinitely performs dummy rounds. Every execution of the transformed algorithm corresponds to
an execution of the original algorithm by a reverse transformation (left to the reader). So it also
solves the consensus.

So we focus on round algorithms and since synchronous communication is often a too strong
requirement, we define a notion of probabilistic fair scheduling (a compromise between asynchro-
nism and synchronism). However we do not want to probabilize the crash of a process. So our
formal model for the execution of a round algorithm is a Markov decision process viewed as a
game where the adversary of the algorithm can decide to crash a process at any time until at most
t processes have been crashed. The decisions can be based on the whole history of the current
excution.

We introduce the probabilities for executions of a round t-crash robust algorithm as follows:
the order the messages sent during a round are received is randomized. Then our additional
probabilistic requirement is the following one. Every combination of (local) reception orders has
a non null probability. Observe that in order to obtain a probability space, we must specify a
strategy of crash decisions (which fixes the remaining non determism).

Then we modify our requirements for consensus as follows. A t-crash robust consensus algo-
rithm satisfies the following three requirements

• Termination. Given any stratey of the adversary, the subset of executions for which at
least one correct proces never decides has measure 0.

• Agreement. In every reachable configuration, there does not exist two processes p, q with
outp = 0 ∧ outq = 1.

• Non triviality. There exist a reachable configuration such that some process decides 0 and
a reachable configuration such that some process decides 1.

In some sense, adding probabilities on executions allows the algorithm to behave incorrectly
but only in pathological executions. The next theorem gives an upper bound on the number of
faults allowed in this probabilistic framework.

Theorem 11 Let t ≥ n/2. Then there does not exist a t-crash robust algorithm for consensus (in
the probabilistic framework).

Proof
Assume that there exists such an algorithm. We introduce additional notations for this proof.
Given S a subset of processes, a configuration cf is said to be S-bivalent if from cf using only
steps of S one can reach a 0-decided configuration and a 1-decided configuration. cf is said to
be S-v-valent if from cf using only steps of S one can reach a v-decided configuration but no
(1− v)-decided configuration.
Let us partition the set of of processes into two subsets S and T with size dn/2e and bn/2c. Given
any configuration cf processes S (resp. T) can reach by themselves a v-decided configuration (resp
a w-decided configuration) alone since t ≥ dn/2e. These two finite execution can be combined in
a single one (with non null probability) where messages from S (resp. T) to S (resp. T) always
arrive before messages from T (resp. S) to S (resp. T). Consequently v = w for all terminating
executions and so this value only depends on cf. Thus any configuration is either both S-0-valent
and T -0-valent or both S-1-valent and T -1-valent.
With the same reasonning of lemma 3, one proves that there is a bivalent initial configuration cf.
Assume w.l.o.g. that cf is both S-0-valent and T -0-valent. Consider an execution σ from cf to a
1-decided configuration. There must exist a step of this execution from a configuration cf0 which
is S-0-valent and T -0-valent to a configuration cf1 which is S-1-valent and T -1-valent. Let p be
the process performing this step p can belong neither to S nor to T , a contradiction.

13

q.e.d. ♦♦♦

Let us describe algorithm 5. Every process manages a value initialized to its input that it
broadcasts at every round with a weight corresponding to the confidence level associated with this
value. In order to avoid that a value is taken into account at a wrong round it also manages the
value of the current round.

In order to update its value it waits for n− t messages of the current round. Upon reception, it
updates the number of votes for the value. If the weight associated with this value is greater than
n/2 then it updates the number of witnesses (i.e. a vote with high level confidence). When it has
received n− t messages, it examines the messages. If it has received a witness for some value then
it decides for this value (observe that it cannot receive a witness for both values) Otherwise it
chooses the value with the more votes (with an arbitrary decision in case of equality). The weight
of the new value is the number of votes.

A process decides for its new value when it has received more than t witnesses for the current
value. Then it still broadcasts its value with high level confidence for the next two rounds in order
to help other correct processes to decide.

Algorithm 5: Probabilistic crash robust consensus algorithm
Data: id, the identity of the process
Data: value, the input value in {0, 1}
Data: y =?, the output value in {0, 1}
Data: round, the current round
Data: weight = 0, the weight of the vote
Data: msg[{0, 1}], an array counting the votes
Data: wit[{0, 1}], an array counting the witnesses

Consensus
while y =? do

for i from 0 to 1 do msg[i]← 0; wit[i]← 0
Broadcast(round, value, weight)
while msg[0] +msg[1] < n− t do

Receive(q, 〈r, v, w〉)
if r > round then Inqueue(q, 〈r, v, w〉)
else if r = round then

msg[v]← msg[v] + 1
if w > n/2 then wit[v]← wit[v] + 1

end
end
if wit[0] > 0 then value← 0
else if wit[1] > 0 then value← 1
else if msg[0] > msg[1] then value← 0
else value← 1
weight← msg[value]
if wit[value] > t then y ← value
round← round+ 1

end
Broadcast(round, value, n− t)
Broadcast(round+ 1, value, n− t)

We now prove that algorithm 5 fulfills the requirements of a consensus algorithm.

Lemma 5 In any round, no two processes witness for different values.

14

Proof
Assume that in round k, process p witnesses for 0 and process q witnesses for 1. Then at round
k − 1, p has received more than n/2 votes for 0 and q has received more than n/2 votes for 1, a
contradiction.

q.e.d. ♦♦♦

Lemma 6 If a process decides then all correct process decide for the same value and at most two
rounds later.

Proof
Let k be the first round when a process decides and w.l.o.g. let 0 be the decided value. The decision
implies that there were more than t 0-witnesses in round k and due to the previous lemma no
1-witnesses in round k. Thus no different decision is taken in round k.
Since there were more than t 0-witnesses in round k, all correct processes received at least one
0-witness in round k. Consequently, all processes that vote in round k + 1 vote for 0 and this set
of processes include also the deciding processes of round k.
Thus in round k + 2 all processes that vote witness 0 and this set of processes include also the
deciding processes of round k and k + 1. Consequently all correct processes that have not yet
decided, decide for 0 at this round.

q.e.d. ♦♦♦

Lemma 7 Whatever the strategy of the adversary, algorithm 5 terminates with probability 1.

Proof
In this proof, the first round is numbered as 0. We know that there at any round there are at
least n − t correct processes. Let us fix a strategy of the adversary. Assume that during rounds
3i, 3i + 1, 3i + 2, there is no crash. Let us consider the a subset S (depending on the execution)
of n− t correct processes during these three rounds. Due to the probabilistic assumption there is
a non null probability say η > 0 that during theses rounds, every process receives the messages
from S before the other messages. In this case at round 3i, all processes choose the same value
say v; at round 3i+ 1 receive n− t votes for v and at round 3i+ 2, witness v and decide v upon
reception.
Let us denote qi the probability that there is at least one crash during one of the rounds 3i, 3i+
1, 3i + 2. By hypothesis,

∑
i qi ≤ t. Thus there exists an i0 such that for every i ≥ i0, one has

qi < η/2. Thus for every i ≥ i0, the probability that executions that have reached round 3i, do
not decide during rounds 3i, 3i+1, 3i+2 is less than 1−η/2. Thus the probability to reach rounds
3(i+ i0) is less than (1− η/2)i which concludes the proof.

q.e.d. ♦♦♦

Since when all inputs are equal to v, the terminating executions decide v, the non triviality
requirement is satisfied. Thus we have proved that algorithm 5 is a t-crash robust consensus
algorithm.

1.2.2 Consensus in presence of Byzantine processes
We now consider that when a process becomes faulty, it does not stop its execution but can
perform any action. However the only relevant actions for the protocol that a faulty process,
called a byzantine process in the sequel, is to send messages to correct processes. Being seen as
adversaries of the protocol, such processes may have a strategy base on the whole history of the
execution.

Notions and notations are the ones used in the previous section with Byzantine processes in-
stead of crash process. In particular we are looking for t-byzantine robust algorithms for consensus.
As before, we start with a negative result

15

Theorem 12 Let t ≥ n/3. Then there does not exist a t-Byzantine robust algorithm for consensus
(in the probabilistic framework).

Proof
Assume that there exists such an algorithm. Let us define S, a set of n − t processes and T ,
another set of n − t processes including the set of t processes not in S. Observe that |S ∩ T | ≤
n − 2t ≤ n/3 ≤ t. Given any reachable configuration cf by correct steps, processes S (resp.
T) can reach by themselves a v-decided configuration (resp a w-decided configuration) alone due
to their cardinality. These two finite execution can be combined in a single one (with non null
probability) where the set of byzantine processes is exactly U ≡ S ∩ T where messages from S
(resp. T) to S (resp. T) always arrive before messages from T \ S (resp. S \ T) to S (resp.
T) and where the messages send by processes in U to S (resp. S) correspond to the execution
reaching the v-decided configuration (resp the w-decided configuration). Consequently v = w for
all terminating executions and so this value only depends on cf. Thus any configuration is either
both S-0-valent and T -0-valent or both S-1-valent and T -1-valent.
With the same reasonning of lemma 3, one proves that there is a bivalent initial configuration
cf. Assume w.l.o.g. that cf is both S-0-valent and T -0-valent. Consider an execution σ from cf
to a 1-decided configuration. There must exist a step of this execution from a configuration cf0
which is S-0-valent and T -0-valent to a configuration cf1 which is S-1-valent and T -1-valent. Let
p be the process performing this step p can belong neither to S nor to T , a contradiction since
S ∪ T = P .

q.e.d. ♦♦♦

Assume now that t < n/3. Let us describe algorithm 6. In every round, a process broadcasts
a vote corresponding to its current value. Then it waits for n− t echoed votes as follows. First it
echoes the received initial votes. When a vote has been echoed by more than (n+ t)/2 processes it
becomes an echoed vote. Then it chooses the new value depending on the number of echoed votes
for 0 and 1. If the number of echoed votes in favor of the new value is greater than (n + t)/2, it
decides this value. An overall control consists in memorizing the received messages of the current
round in order to avoid that some byzantine process “echoes” twice the vote of another process.

Lemma 8 Let p, q be two correct processes during a round. If the vote of q is echoed to p by more
than (n+ t)/2 processes then this is the real vote of q.

Proof
Let b be the number of byzantine processes that has echoed this vote and e be the number of
received echoes. e− b > n/2 + t/2− t > n/2− n/6 > t. So there is at least a correct process that
has echoed this value.

q.e.d. ♦♦♦

Lemma 9 Let p, q be two correct processes during a round and r be an arbitrary process. If the
vote of r is echoed to p and q by more than (n+ t)/2 processes then this echoed vote is the same.

Proof
Let us call Sp (resp. Sq) the set of processes that have echoed the vote of r to p (resp. q). Assume
that their intersection includes only byzantine processes. Then |Sp∪Sq| = |Sp|+ |Sq|− |Sp∩Sq| >
n+ t− t = n, a contradiction. Thus some process belongs to their intersection and sends the same
value to p and q.

q.e.d. ♦♦♦

Lemma 10 The correct processes never deadlock at some round. Furthermore if they start a
round with a common current value, they will end the round with this value.

16

Algorithm 6: Probabilistic Byzantine robust consensus algorithm
Data: id, the identity of the process
Data: value, the input value in {0, 1}
Data: y =?, the output value in {0, 1}
Data: round, the current round
Data: msg[{0, 1}], an array counting the votes
Data: echo[Proc× {0, 1}], an array counting the echoes
Data: rec[Proc× {in, ec} ×Proc× N], an array memorising received messages

Consensus
while true do

for i from 0 to 1 do
msg[i]← 0
for q ∈ Proc do echo[q, i]← 0

end
Broadcast(in, id, value, round)
while msg[0] +msg[1] < n− t do

Receive(q, 〈type, oid, v, r〉)
if r > round then Inqueue(q, 〈type, oid, v, r〉)
else if (q = oid ∨ type = ec) ∧ rec[q, type, oid, r] = false then

rec[q, type, oid, r]← true
if type = in then Broadcast(ec, oid, v, r)
else if r = round then

echo[oid, v]← echo[oid, v] + 1
if echo[oid, v] = b(n+ t)/2c+ 1 then msg[v]← msg[v] + 1

end
end

end
if msg[0] > msg[1] then value← 0 else value← 1
if msg[value] > (n+ t)/2 then y ← value
round← round+ 1

end

17

Proof
We prove it by induction on the number of rounds. The basis case corresponds to the start
of the algorithm. Now at the beginning of a round at least n − t correct processes send their
vote that are echoed by at least n − t correct processes. Thus there cannot be deadlock since
n− t− (n+ t)/2 = n/2− 3t/2 > 0.
The second conclusion is immediate since n− 2t > n/3 > t thus there will be more echoed votes
of the correct processes taken into account and due to lemma 8, this vote corresponds to the real
(common) value.

q.e.d. ♦♦♦

Lemma 11 If a correct process decides a value at some round then all processes choose the same
value at this round and at later rounds.

Proof
Le p be the process that has decided for value v. It has received more than (n + t)/2 for echoed
values associated some subset of processes Sp. Let q be any other correct process, it has received
echoed values for a subset Sq of n− t processes. |Sp ∩Sq| = |Sp| − |Sp ∩ (S \Sq)| > (n+ t)/2− t =
(n− t)/2. Thus q has chosen v.
The second conclusion is a direct consequence of the first conclusion and of lemma 10.

q.e.d. ♦♦♦

From Lemma 10 and probabilistic termination one establishes non triviality. Lemma 11 estab-
lishes partial correctness. The next lemma establishes probabilistic termination.

Lemma 12 Whatever the strategy of the adversary, algorithm 6 terminates with probability 1.

Proof
In this proof, the first round is numbered as 0. We know that there at any round there are at
least n − t correct processes. Let us fix a strategy of the adversary. Assume that during rounds
2i, 2i+ 1, there is no new faulty process. Let us consider a subset S (depending on the execution)
of n − t correct processes during these two rounds. Due to the probabilistic assumption there is
a non null probability say η > 0 that during theses rounds, every process receives the (initial and
echoed) messages from S before the other messages. In this case at round 2i, all processes choose
the same value say v; at round 2i+ 1 receive n− t echoed votes for v and decide v upon reception.
Let us denote qi the probability that there is at least one fault during one of the rounds 2i, 2i+ 1.
By hypothesis,

∑
i qi ≤ t. Thus there exists an i0 such that for every i ≥ i0, one has qi < η/2.

Thus for every i ≥ i0, the probability that executions that have reached round 2i without deciding,
do not decide during rounds 2i, 2i+ 1 is less than 1− η/2. Thus the probability to reach rounds
2(i+ i0) is less than (1− η/2)i which concludes the proof.

q.e.d. ♦♦♦

18

Chapter 2

Random Graphs

2.1 Introduction
In several significant areas of computer science like large-scale distributed algorithms and social
networks, the management of a large graph is a critical issue. Furthermore, the existence of an
edge between two vertices can be viewed as obtained by a random choice since the behaviour of
agents located at vertices is not a priori known.

These considerations lead to study the asymptotical properties of such graphs. More precisely,
we consider a random non oriented graph Gp = (Vn, En) where the cardinal of Vn is n and the
existence of an edge between two vertices has probability p(n) defining in some sense the density
of the graph. In this chapter, p will be reserved for this function and q ≡ 1− p.

Let ϕ be a property of a graph, define Pn(ϕ) to be the probability that ϕ is satisfied by the
random graph Gn, denoted by Gn |= ϕ. When limn→∞Pn(ϕ) exists and equals 1, one says that
ϕ is an asymptotical property of Gn w.r.t. p(n). An asymptotical property is also called an almost
sure property. We also say that a property holds almost surely.

First goal: Establishing asymptotical properties of graphs

In the sequel, the illuminating notation f � g has the same meaning as f = o(g). Given a
property ϕ, one says that f(n) is a threshold function for ϕ if there exists α ∈ {0, 1} such that:

• If p(n)� f(n) then limn→∞Pn(ϕ) = α.

• If f(n)� p(n) then limn→∞Pn(ϕ) = 1− α.

Second goal: Looking for threshold functions

What are the kinds of properties we are interested in? The first kind of properties can be the
occurrence of a fixed graph pattern (like a cycle of five vertices) or more generally the number
of occurrences of such a pattern. One can also require that this pattern appears as a connected
component of the graph (meaning that there is no other edge connected some vertex of the pattern).
All these properties are expressible in a first order logic where the universe is the set of vertices
and with two relations: the equality between vertices (x = y) and the presence of an edge between
two vertices (x ∼ y).

Let us consider Th the set of first order asymptotical properties w.r.t. some p (a theory). We
call such a theory an almost sure theory. We want to answer some natural questions:

1. Is Th closed under the deduction rules of first-order logic?

2. Is Th inconsistent (i.e. can we deduce false from Th)?

19

3. Is Th complete (i.e. for any sentence ϕ can we deduce ϕ or ¬ϕ from Th)?

Proposition 1 Let Th be an almost sure theory. Then Th is closed under deduction and is
consistent.

Proof
Let ϕ be deduced from Th. The (finite) proof uses a finite number of sentences ϕ1, . . . , ϕk belonging
to Th. Thus as soon as the random graph Gn satisfies ϕ1, . . . , ϕk, it also satisfies ϕ. So:

Pn(ϕ) ≥ Pn(

k∧
i=1

ϕk) = 1−Pn(

k∨
i=1

¬ϕk) ≥ 1−
k∑
i=1

Pn(¬ϕk)

Since the last term converges to 1 this is also the case for Pn(ϕ). So ϕ ∈ Th.
For every n, Pn(false) = 0 thus false does not belong to Th. Since Th is closed under deduction,
Th is consistent.

q.e.d. ♦♦♦

This let only a single question to answer.

Third goal: Proving completeness of almost sure theories for ranges of p

In order to achieve this goal we deal with countable graphs (i.e. when the set of vertices
is countable). Indeed whatever p, the following first-order sentences are asymptotical properties
(prove it). For every r:

∃x1 . . . ∃xr
∧

1≤i<j≤r

xi 6= xj

Thus a model of almost sure theories cannot be finite. On the other hand, a consistent theory
(with equality) admits a finite or countable model (see for instance section 3.3.1 and section 3.4
of my lecture notes on Calculability and Logic parts 3-4: “La méthode de Henkin” and “Logique
égalitaire”). So we will use the next proposition in order to establish completeness of theories.

Definition 1 Two (posssibly infinite) graphs G and G′ are elementary equivalent if for every
first-order sentence ϕ:

G |= ϕ⇔ G′ |= ϕ

Proposition 2 Let Th be an almost sure theory on graphs. Then Th is complete iff all the
countable graphs satisfying Th are elementary equivalent.

Proof
Suppose Th is complete and let ϕ be a sentence, then either Th � ϕ or Th � ¬ϕ. Thus all models
of Th either satisfy ϕ or satisfy ¬ϕ. So they are elementary equivalent.
Suppose Th is not complete. Then there is a sentence ϕ such that Th 6� ϕ and Th 6� ¬ϕ. So
Th ∪ {ϕ} and Th ∪ {¬ϕ} are consistent and admit countable models (since finite models cannot
satisfy Th). These countable graphs are not elementary equivalent.

q.e.d. ♦♦♦

While first-order sentences partially enable to characterise the behaviour of Gp, they are not
so expressive. For instance, it can be proved that connectivity is not expressible by a first order
sentence. Meanwhile the analysis of such properties is fundamental.

Forth goal: Studying the asymptotical behaviour of random graphs
w.r.t. more elaborate properties

20

Another possible way to see randomness consists to select with an equiprobable distribution a
subset of M (depending on n) edges among the possible n(n−1)

2 edges. Such a graph is denoted
GM . There is a close connection between GM and Gp when p = 2M/n(n − 1). Using GM also
allows to study a discrete time stochastic process where at every instant a new edge is added.
However we prefer to study Gp than GM as computations are less cumbersome in this framework.
About the bibliography. References [Erd 59, Erd 60] contain most of the material related to
the threshold functions c

n and log(n)+c
n . I also find in [Luc 94] proofs of important statements

related to the threshold 1
n . The book [Bol 85] is a complete development about random graphs.

Finally all the first-order logic analysis is from book [Spe 01], a work pioneered in [Fag 76].

2.2 Technical background

2.2.1 Probability recalls
Notations. We use P(Ev) to denote the probability of an event Ev, E(X) to denote the expec-
tation of a random variable and V(X), its variance.

We start with two elementary lemmas that will be useful in many cases.

Lemma 13 (Markov inequality) Let X be a positive random variable with finite expectation
E(X) and pick some a > 0 then

P(X ≥ a) ≤ E(X)

a

In particular if the range of X is N then P(X = 0) ≥ 1−E(X).

Proof
Let Y be defined by Y ≡ a · 1X≥a Y is always smaller or equal than X.
Hence E(X) ≥ E(Y) = aP(X ≥ a).

q.e.d. ♦♦♦

Lemma 14 (Bienaymé-Tchebychev inequality) Let X be a random variable with finite ex-
pectation E(X) and variance V(X) and pick some a > 0 then

P(|X −E(X)| ≥ a) ≤ V(X)

a2

Proof
Observe that P(|X −E(X)| ≥ a) = P((X −E(X))2 ≥ a2) and V(X) = E

(
(X −E(X))2

)
. Then

apply the Markov inequality.

q.e.d. ♦♦♦

Analyzing the behaviour of a family of random variables Xn when n the number of vertices
goes to infinity will be one of the main issues of this chapter. Generally the behaviour of their
expectation is not enough to deduce some information about them; we need additional information
that may be relative to their variance.

Lemma 15 Let {Xn}n∈N be a family of positive random variables whose expectations and vari-
ances are finite. Assume that limn→∞E(Xn) =∞ and that V(Xn) = o(E(Xn)2).
Let 0 < δ < 1, then limn→∞P(|Xn −E(Xn)| < δE(Xn)) = 1.

Consequently for any M ∈ R, limn→∞P(Xn ≥M) = 1.

21

Proof
We apply the Bienaymé-Tchebychev inequality: P(|Xn −E(Xn)| < δE(Xn)) ≤ V(Xn)

δ2E(Xn)2

Let us fix some ε > 0, there exists n0 such that for every n ≥ n0 V(Xn) ≤ εδ2E(Xn)2. Thus for
such n, V(Xn)

δ2E(Xn))2
≤ ε.

The consequence is immediate observing that there exists n1 such that 0.5E(Xn) ≥ M for every
n ≥ n1.

q.e.d. ♦♦♦

We are also interested to prove that the distribution of a family of random variables converges
to some distribution. As before, it is easier to prove convergence of expectations and more generally
of moments. Below, we establish by a long development an additional condition sufficient to prove
that convergence of moments ensures convergence of distributions.

Proposition 3 Let {ϕi}i≤k be a family of boolean combinations over variables x1, . . . , xn and let
α1, . . . , αk ∈ R. Suppose that:

k∑
i=1

αiP(ϕi[{xj ← Ej}j≤n]) ≥ 0 (2.1)

whenever E1, . . . , En are events on a probability space with P(Ej) ∈ {0, 1}.
Then equation 2.1 holds for every n-tuple of events.

The following corollary is immediate.

Corollary 1 Let {ϕi}i≤k be a family of boolean combinations over variables x1, . . . , xn and let
α1, . . . , αk ∈ R. Suppose that:

k∑
i=1

αiP(ϕi[{xj ← Ej}j≤n]) = 0 (2.2)

whenever E1, . . . , En are events in a probability space with P(Ej) ∈ {0, 1}.
Then equation 2.2 holds for every n-tuple of events.

Notations. We say that a sum s =
∑n
k=1(−1)k+1αk satisfies the alternating inequalities if:

(−1)l

(
s+

l∑
k=1

(−1)kαk

)
≥ 0

We also introduce the notation (n)k = n!
(n−k)! and given an integer random variable X, we define

the r-factorial moment by:
Er(X) ≡ E((X)r)

Theorem 13 Let E1, . . . , En be events in a probability space and pk be the probability that exactly
k events among the Eis occur. Define EI ≡

∧
i∈I Ei and for every r ≤ n, let sr =

∑
|I|=r P(EI).

Then:

pk =

n∑
r=k

(−1)r+k
(
r

k

)
sr (2.3)

and the sum satisfies the alternating inequalities.

22

Corollary 2 Let X be a random variable with values in {0, 1, . . . , n}. Then:

P(X = k) =

n∑
r=k

(−1)r+k
Er(X)

k!(r − k)!

and the sum satisfies the alternating inequalities.

Corollary 3 Let X be a random variable with values in N with Er(X) finite for any 1 ≤ r ≤ R.
Then for any s, t ≤ R with k + s odd and k + t even:

s∑
r=k

(−1)r+k
Er(X)

k!(r − k)!
≤ P(X = k) ≤

t∑
r=k

(−1)r+k
Er(X)

k!(r − k)!

Corollary 4 Let X be a random variable with values in N with Er(X) finite for any r and such
that for every k, limr→∞Er(X) r

k

r! = 0. Then for every k:

P(X = k) =

∞∑
r=k

(−1)r+k
Er(X)

k!(r − k)!

and the sum satisfies the alternating inequalities.

The next theorem shows that in a particular useful case, the convergence of the moments
towards moments of some law implies the convergence of the distributions.

Theorem 14 Let X,X1, X2, . . . be random variables with values in N such that Er(X) and
Er(Xn) is finite for any r, n. Suppose that:

∀r, k lim
n→∞

Er(Xn) = Er(X) and lim
r→∞

Er(X)
rk

r!
= 0

Then:
lim
n→∞

P(Xn = k) = P(X = k)

This corollary is a typical illustration of the previous theorem.

Corollary 5 Let λ ≥ 0 and X1, X2, . . . be random variables with values in N such that Er(Xn) is
finite for any r, n. Suppose that:

∀r lim
n→∞

Er(Xn) = λr

Then:

lim
n→∞

P(Xn = k) =
λk

k!
e−λ

2.2.2 Graph notations
The order of a graph is its number of vertices. We are particularly interested in the connectivity
of the graphs. As usual we partition the vertices of a graph in connected components that will be
called more shortly components. We distinguish three kinds of components:

1. tree components, i.e. components with no cycle.

2. unicyclic components, i.e. components with a single cycle.

3. multicyclic components, i.e. components with several cycles.

23

We introduce the notation C(k, k + l) with k ∈ N and −1 ≤ l ≤ k(k − 1)/2− k defined as the
number of connected graphs over a (fixed) set of k vertices with k + l edges.

Given a graph, we also introduce some relevant indicators. Ck (resp. Tk) denotes the number of
components (resp. tree components) of order k. NT (resp. NU , NM and NC) denotes the number
of tree components (resp. unicyclic components, multicyclic components and cyclic components).
VT (resp. VU , VM and VC) denotes the number of vertices contained in tree components (resp.
unicyclic components, multicyclic components and cyclic components). L1 (resp. Li, LT) denotes
the order of the largest component (resp. the ith largest component, the largest tree component).

2.2.3 Combinatorial formulas
In the sequel, we often count objects so asymptotic expressions and bounds for binomial expressions
are required.

Proposition 4 (Stirling Formula) Let n ∈ N. Then:

n! =
(n
e

)n√
2πn eαn

where 1/(12n+ 1) < αn < 1/12n
Thus:

n! ∼
(n
e

)n√
2πn

Proposition 5 Let k < n ∈ N. Then:

(n)k ≤ nke−(
k(k−1)

2n +
(2k−1)k(k−1)

12n2) ≤ nke−(
k(k−1)

2n) ≤ nk

Furthermore if k depends on n and k � n
3
4 then:

(n)k = nke−(
k2

2n+ k3

6n2 +O(k
4

n3)) ∼ nke−(
k2

2n+ k3

6n2)

Proof
(n)k = nk

∏k−1
i=0 (1− i

n) = nke
∑k−1
i=0 log(1− i

n) = nke−
∑
j∈N∗ 1/j

∑k−1
i=0

ij

nj = nke−
∑
j∈N∗

skj
j

with skj ≡
∑k−1
i=0

ij

nj

Then: (n)k ≤ nke−(sk1+
sk2
2) = nke−(

k(k−1)
2n +

(2k−1)k(k−1)

12n2)

Observe that skj ∼ n
∫ k
0
xj = kj+1

jnj . Thus if k � n
3
4 � n one get:∑

j≥3
skj
j = O(k

3

n4) = o(1)

Consequently (n)k ∼ nke−(
k(k−1)

2n +
(2k−1)k(k−1)

12n2) ∼ nke−(
k2

2n+ k3

6n2)

(using again k � n)

q.e.d. ♦♦♦

Proposition 6 (Cayley’s Tree Formula) Let V = {1, . . . , n} a set of vertices. Then C(n, n−
1) the number of different trees whose vertices are V is equal to nn−2.

Proof
Let Tn be the set of trees over V and An be the set of functions from {1, . . . , n} to {1, . . . , n}. We
prove that there is a bijection from An to Tn × V × V . The result follows.
Let f ∈ An. We build an oriented graph Gf over V as follows: there is an edge from i to j iff
j = f(i). Since the number of edges is n, there is at least one cycle. More precisely, let v be
any vertex, then by a standard finite cardinality argument there is a smallest k such that fk(v)
belongs to a cycle. So the shape of the graph is the following one. It consists in disconnected

24

cycles C1, . . . , Cm where each vertex on a cycle is the root of an inverted oriented tree from leaves
to the root (possibly reduced to this vertex).
Let vi = min(v | v ∈ Ci) and assume w.l.o.g. that the cycles are ordered w.r.t vi: i < j ⇒ vi < vj .
Then delete all the edges vi → f(vi) and for i < m add the edge vi → f(vi+1). Forgetting the
orientation, we obtain a tree with two (possibly equal) marked vertices: (Tf , f(v1), vm). Thus we
have defined a function from An to Tn × V × V .
Let us describe the inverse function. Given (T, u, v) a tree with two (possibly equal) marked
vertices, there is single path u = w1, . . . , wl = v in T from u to v. All the other vertices belong
to subtrees rooted at some vertex of the path. For such a vertex w, define f(w) as the father of
w in the corresponding subtree. Now define recursively (while hi < l) wh1

= min(wi | 1 ≤ i ≤ l)
and whs+1

= min(wi | si < i ≤ l). Fix now f(wi) = wi+1 if i /∈ {h1, . . . , hm} and f(wh1
) = w1

and f(whs+1) = whs+1. We claim that this function is the reciprocal function of the previous one
(straightforward proof left to the reader).

q.e.d. ♦♦♦

Proposition 7 Let C(n, n+k) be the number of connected graphs over n vertices with n+k edges.
Then there exists a constant c such that for every n, k:

C(n, n+ k) ≤
(

c

k + 2

)k/2
nn+(3k−1)/2 and C(n, n+ k) ≤

(en
2

)n+k
Proposition 8 Let y = xe−x with 0 ≤ x ≤ 1 and 0 ≤ y ≤ e−1.
Then x =

∑
k≥1

kk−1yk

k! . In particular
∑
k≥1

kk−1e−k

k! = 1.

Proof
Apply the Lagrange reversion formula with x0 = 0 and f = ex and g the identity.

Lagrange reversion formula
If x = x0 + yf(x) then for any function g,
g(x) = g(x0) +

∑∞
k=1

yk

k! (fkg′)(k−1)(x0)

where u(r) denotes the rth derivate of u.

q.e.d. ♦♦♦

2.3 Between the thresholds
We informally describe the (almost sure) behaviour of the random graph as the density p increases
(see figure 2.1).

• When p� n−2, the graph is empty.

• When n−1−
1
k � p � n−1−

1
k+1 for some k ∈ N, the components are trees of order at most

k + 1 and the number of their occurrences is arbitrary large.

• When n−1−ε � p � n−1 for any ε > 0, the components are trees of any order and the
number of their occurrences is arbitrary large.

• When n−1 � p � n−1 log(n), the small components are trees of any order or unicyclic
components. There is a huge component covering almost all vertices.

• When n−1 log(n) � p � n−1+ε for any ε > 0, the graph is connected but there are no
subgraph whose number of edges is greater than the number of vertices.

• n−
v
a is a threshold function for every balanced graph (to be defined later) with v vertices

and a edges.

25

0 1cn­v/an­1+εlog(n)/n1/nn­1­εn­2 n­1­1/k n­1­1/(k+1)

Figure 2.1: An overview of the behaviour of the random graph

• When p is a constant, there is an arbitrary number of occurrences of every pattern of sub-
graph.

We first establish a trivial lemma relatively to monotone properties. A graph property ϕ is
monotone when for every graphs G,H such that H is obtained by adding edges to G, the following
holds:

G |= ϕ⇒ H |= ϕ

Lemma 16 Let p1 < p2 be two edges distributions (depending on n) and ϕ be a monotone prop-
erty. Then:

P(Gp1(n) |= ϕ) ≤ P(Gp2(n) |= ϕ)

Proof
Observe that sampling Gp2(n) can be obtained by the following process: sample a graph G1

of Gp1(n) and a graph G of G p2−p1
1−p1

(n)G(n) and take the union of the two graphs. Since ϕ is
monotone, we conclude.

q.e.d. ♦♦♦

2.3.1 The empty graph
This section is related to very sparse random graphs.

Proposition 9 Let p� n−2 and xn be the probability that there is at least one edge in the graph
random graph Gp. Thus:

lim
n→∞

xn = 0

Proof
Using Markov lemma, xn ≤ pn(n−1)

2 = o(1).

q.e.d. ♦♦♦

Corollary 6 Let p� n−2. Then the following sentence is an asymptotical property.

∀x ∀y ¬x ∼ y

In particular there is a single countable graph fulfilling this property: the empty graph. So the
almost sure theory is complete.

26

2.3.2 The Alice’s Restaurant graph
This section is related to very dense random graphs.

Definition 2 A graph is said to fulfill the Alice’s Restaurant property if for every finite disjoint
sets X and Y of vertices there exists a vertex z /∈ X ∪ Y such that z is adjacent to every vertex of
X and to no vertex of Y .

Obviously, this property can only by satisfied by infinite graphs (why?). Furthermore, we can
express it by an (infinite) set of first order formulas. For every r, s ∈ N:

∀x1 . . . ∀xr ∀y1, . . . ,∀ys

∧
i,j

xi 6= yj

⇒
∃z∧

i

xi ∼ z ∧ xi 6= z ∧
∧
j

¬yj ∼ z ∧ yj 6= z


Proposition 10 Let p be some constant with 0 < p < 1. Then almost surely every first order
formula of the Alice’s Restaurant holds.

Proof
We fix some r, s-formula of the Alice’s Restaurant property. Let Ev be the event that this formula
is no satisfied. In this case, there must exist a set of r vertices and a disjoint set of s vertices such
that no remaining vertex satisfies the requirement associated with the formula:

P(Ev) ≤
(
n

r

)(
n− r
s

)
(1− prqs)n−r−s ≤ nr+s (1− prqs)n−r−s

The first term increases polynomially w.r.t. n while the second decreases exponentially. So
limn→∞P(Ev) = 0 which establishes the result.

q.e.d. ♦♦♦

Proposition 11 Let p be some constant with 0 < p < 1. There is a single countable graph (up to
ismorphism) fulfilling the Alice’s Restaurant property. So the almost sure theory is complete.

2.3.3 Appearance of tree components
Once edges occur in still sparse graphs, they only occur in bounded tree components. Observe
that the first and the third property are first-order sentences (prove it) while the second one could
be expressed by an infinite conjunction of first order sentences (there is no cycle of length l, for
every l ≥ 3).

Proposition 12 Let k ∈ N∗ and n−1−
1
k � p � n−1−

1
k+1 . Then the following properties are

almost sure.

• There is no component with at least k + 2 vertices.

• There is no cycle.

• For everym ∈ N and every tree Tr with at most k+1 vertices, there are at leastm components
isomorphic to Tr.

Proof
We observe that a component with at least k+2 vertices contains a tree with exactly k+2 vertices.
There are O(nk+2) different choices of k+ 2 vertices and O(1) choices of trees over a fixed number
of vertices. Thus the expected number of such trees is:
O(nk+2pk+1)� nk+2n−k−2 = 1
which establishes the first property by Markov inequality.

27

The probability of a cycle of length l < k+ 2 is bounded by the number of subset of l vertices (in
O(nl)) times the choice of cycles covering such a subset (in O(1)) times pl, the probability of the
edges constituting the cycle. This probability belongs to O((np)l) � n−

l
k+1 and then converges

to 0. Due to the first property, the probability of a greater cycle also converges to 0.
Given a tree Tr with l ≤ k + 1 vertices, let NTr be the number of components isomorphic to
Tr in Gn. Let us estimate E(NTr). Given a set of l vertices, we note by BTr the number
of different trees over these vertices isomorphic to Tr. Let S be a tree isomorphic to Tr over
Vn. Define 1S as the boolean random variable indicating that S is a component of Gn. Then
E(NTr) =

∑
S over Vn E(1S). Thus:

E(1S) = pl−1q
l(2n−l−2)+1

2 ≥ pl−1qln ≥ pl−1(1− lnp)

Thus BTr
(
n
l

)
pl−1(1− lnp) ≤ E(NTr) ≤ BTr

(
n
l

)
pl−1. Since (1− lnp) converges to 1 when n→∞,

E(NTr) ∼ BTr
(
n
l

)
pl−1.

Observe now that
(
n
l

)
pl−1 � nln−(l−1)−

(l−1)
k = n1−

(l−1)
k ≥ 1 since l − 1 ≤ k.

So limn→∞E(NTr) =∞.
Let us consider two trees S 6= S′ isomorphic to Tr sharing at least a vertex. Then 1S1S′ = 0 as
the two trees cannot occur simultaneously as components of Gn. Thus:

E
(
(NTr)

2
)
=

∑
S,S′ over Vn

E(1S1S′) =
∑

S over Vn

E(1S) +
∑

S,S′ not sharing
vertices over Vn

E(1S1S′) = E(NTr) +
∑

S,S′ not sharing
vertices over Vn

E(1S1S′)

Observe now that for S, S′ not sharing a vertex:

E(1S1S′)−E(1S)E(1S′) ≤ p2(l−1) − p2(l−1)(1− lnp)2 ≤ 2lnpp2(l−1)

So:

V(NTr) ≤ E(NTr) + 2lnp(BTr)
2

(
n

l

)2

p2(l−1) ∼ E(NTr)
2

(
1

E(NTr)
+ 2lnp

)
= o

(
E(NTr)

2)
Applying lemma 15, we conclude.

q.e.d. ♦♦♦

Proposition 13 Let k ∈ N∗ and n−1− 1
k � p� n−1−

1
k+1 . Then there is a single countable graph

(up to isomorphism) satisfying the almost sure theory. So this theory is complete.

Proof
Every component of the countable graph is a tree over at most k + 1 vertices and every tree over
at most k+ 1 occurs as a component an infinite number of times. So the graph is a disjoint union
of a countable number of copies of every tree over at most k + 1 vertices.

q.e.d. ♦♦♦

2.3.4 Occurrences of all trees
Proposition 14 Let p be such that for every k ∈ N∗ and n−1− 1

k � p� n−1. Then almost surely
the following properties hold.

• For all m ∈ N and every tree Tr, there are at least m connected components isomorphic to
Tr.

• There is no cycle.

28

Proof
The first assertion is immediate if one observes that the proof of the third assertion of proposition 12
only uses n−1−

1
k � p� n−1.

Let us count the number of cycles of length l ≥ 3. There are
(
n
l

)
different choices of l vertices and

(l− 1)!/2 ways to build a cycle. Such a cycle has an occurrence probability equal to pl. Then the
expected number of cycles (C) is equal to:

E(C) =
1

2

n∑
l=3

(
n

l

)
(l − 1)!pl =

n∑
l=3

n(n− 1) . . . (n− l + 1)

2l
pl ≤

n∑
l=3

(np)l

Fix some ε > 0, there exists n0 such that for every n ≥ n0, np ≤ ε and E(C) ≤ ε3

1−ε . So this
expectation converges to 0 and using Markov inequality we conclude.

q.e.d. ♦♦♦

There may be different countable graphs, models of this theory but it is still complete. The
proof is postponed until section 2.5.

2.3.5 Appearance of cycles
Now we jump over the first important threshold (1n).

Proposition 15 Let p be such that 1
n � p� log(n)

n . Then almost surely the following properties
hold.

• For every k ∈ N, there are no k vertices adjacent to (at least) k + 1 edges.

• For every m ∈ N and every k ≥ 3, there are at least m cycles of length k.

• For all m ∈ N and every tree Tr, there are at least m components isomorphic to Tr.

• For every s, d, k ∈ N with k ≥ 3, there does not exist a cycle of length k and a vertex of
degree d at distance s of the cycle.

There may be different countable graphs, models of this theory but it is still complete. The
proof is postponed until section 2.5.

2.3.6 Beyond connectivity

Now we jump over the second important threshold (log(n)n).

Proposition 16 Let p be such that log(n)
n � p� n−1+ε for every ε > 0. Then almost surely the

following properties hold.

• For every k ∈ N, there are no k vertices adjacent to (at least) k + 1 edges.

• For every m ∈ N and every k ≥ 3, there are at least m cycles of length k.

• For all d ∈ N, all vertices have at least d neighbours.

Proof
The two first propositions are particular cases of the proposition 17 related to occurrences of
(balanced) graphs developed later.

Let us estimate the mean number of vertices which have exactly d neighbours. We note p ≡ ω log(n)
n

with ω going to infinity.

n

(
n− 1

d

)
pd(1− p)n−d−1 ≤ n(np)dep(d+1)e−pn ≤ ed+1n1+dεn−ω = o(1)

29

Thus almost surely, there are no vertices with at most d edges (by a finite sum argument). The
third assertion follows.

q.e.d. ♦♦♦

There may be different countable graphs, models of this theory but it is still complete. The
proof is postponed until section 2.5.

2.3.7 Appearance of balanced graphs
The density ratio (or more shortly the ratio) of a graph is defined by a/v where a is its number of
edges and v its number of vertices. A connected graph is said to be balanced if its ratio is always
greater or equal than the ratio of any of its subgraph.

For instance, a tree of order k has a ratio 1 − 1/k and any of its subgraph has a ratio less or
equal than 1− 1/(k − 1) (prove it). Thus a tree is balanced. A cycle has a ratio 1 and any of its
subgraph has a ratio less than 1 (prove it). Thus a cycle is balanced. A clique of order k has a
ratio of (k− 1)/2 which is strictly greater than the ratio of any of its subgraph (prove it). Thus a
clique is balanced.

There are connected graphs which are not balanced. Take a clique of order 4 and add a vertex
connected to a single a vertex of the clique. Then the ratio of the graph is 7/5 < 3/2 the ratio of
the clique.

We observe that the ratio over balanced graphs not reduced to a single vertex spans a range
from 1/2 to ∞. Thus the next proposition exhibits “numerous” threshold functions beyond n−1.

Proposition 17 Let G be a graph with v vertices and a > 0 edges.

• If p� n−v/a then almost surely there is no subgraph of Gp isomorphic to G.

• If p � n−v/a and G is balanced then for any m ∈ N, almost surely there are at least m
subgraphs of Gp isomorphic to G.

2.4 Looking at the thresholds

2.4.1 The double jump
We are now looking at the threshold defined by p = c

n where c > 0 and we focus on the evolution
of the greatest component.

• As proved in proposition 17, while p� 1
n all components are isolated trees.

• When p = c
n with 0 < c < 1, there may be unicyclic components but no multicyclic compo-

nents. However, almost surely, the greatest component is a tree and its size is Θ(log(n)).

• When p = 1
n almost surely, the size of the greatest component is “close” to n

2
3 . This means

that for every function ω(n) going to ∞ (as slowly as possible), almost surely this size is

between n
2
3

ω and ωn
2
3 . Furthermore almost surely, there is a tree of this order (not necessarily

the greatest component).

• When p = c
n with 1 < c almost surely, the size of the greatest component is Θ(n). Further-

more almost surely, there is a single component with this property and it is called in the
literature the giant component. This component is cyclic.

The threshold 1
n is very spectacular with the three magnitude orders. This phenomenon is called

the double jump. The table 2.4.1 summarizes the main results about this threshold.

General results

30

p = c
n Largest Is the largest Largest Number of vertices

tree component component a tree? component in cyclic components
in

c < 1 1
α(c)

(
log(n)− 5

2 log(log(n))
)
± ω yes ≤ ω

in

c = 1 [n
2
3

ω , n
2
3ω] maybe ≤ n 2

3ω

in in in
c > 1 1

α(c)

(
log(n)− 5

2 log(log(n))
)
± ω no (1− t(c))n± ηn (1− t(c))n± ω

√
n

for all η > 0 and all ω such that limn→∞ ω(n) =∞

with α(c) = c− 1− log(c) and t(c) = c−1
∑∞
k=1

kk−1

k! (ce−c)k

Table 2.1: The threshold p = c
n

The next proposition that states some properties related to fixed order components that hold
almost surely whatever c should not be misunderstood. For instance there can be multicyclic
components but in this case almost surely their size goes to ∞.

Proposition 18 Let p = c
n , k ∈ N and ω be any function going to ∞. Then:

• Almost surely, the number of vertices V Tk contained in tree components of order k fulfills:
|V Tk − nk

k−1

k! c
k−1e−ck| ≤

√
nω

• Almost surely, the number of vertices V Uk contained in unicyclic components of order k
fulfills: V Uk ≤ ω

• Almost surely, there are no multicyclic components of size k.

When c 6= 1

The case c = 1 is pathological. Thus excluding it allows to obtain important results. First we
introduce the function t(c) defined by t(c) ≡ c−1

∑∞
k=1

kk−1

k! (ce−c)k. Since ce−c < 1, this function
is well defined. Moreover using proposition 8, we know that x = kk−1

k! (ce−c)k is the only solution
of 0 ≤ x ≤ 1 and xe−x = ce−c. Thus:

• If c ≤ 1 then x = c and so t(c) = 1.

• Otherwise as c > 1 increases ce−c, x and finally t(c) decrease and go to 0 when c goes to ∞.

Due to it importance, we also define g(c) ≡ 1− t(c).

Proposition 19 Let p = c
n with c 6= 1 and ω(n) be any function with limn→∞ ω =∞. Let VT be

the number of vertices contained in tree components. Then E(VT) = t(c)n+O(1).

Proof
We denote by Tk the number of tree components of size k. We must refine our previous analyis
since now k is variable.

E(Tk) =

(
n

k

)
kk−2

(c
n

)k−1 (
1− c

n

)kn− k(k+3)
2 +1

31

Hence if 1 ≤ k ≤ n 1
2 :

E(Tk) ≤ nk
k−2

k!
ck−1e−cke

ck2

2n + 3ck
2n ≤ nk

k−2

k!
ck−1e−ck(1 +

c1k
2

n
)

where c1 only depends on c. And:

E(Tk) ≥ nk
k−2

k!
(1− k

n
)kck−1e−cke−

ck2

n ≤ nk
k−2

k!
ck−1e−ck(1− c2k

2

n
)

(using 1− x ≥ e−x−x2

when x is small) where c2 only depends on c. So when m ≤ n 1
2 :∣∣∣∣∣E

(
m∑
k=1

kTk

)
− n

m∑
k=1

kk−1

k!
ck−1e−ck

∣∣∣∣∣ ≤ max(c1, c2)

m∑
k=1

kk+1

k!
ck−1e−ck = O(1)

as the corresponding infinite sum converges (proof left to the reader) when c 6= 1.
Observe first that:

E((k + 1)Tk+1)

E(kTk)
= (n− k)

(
1 +

1

k

)k−1
c

n

(
1− c

n

)n−k−2
≤ c(1− k

n
)ee−c(1−

k
n)
(

1− c

n

)−2
≤
(

1− c

n

)−2
since xe1−x ≤ 1. Thus:

E

(
n∑

k=m

kTk

)
≤ E(kTk)

n∑
j=0

(
1− c

n

)−2j
≤ (n+ 1)e2c+2c2/nE(kTk) = O(n)E(mTm)

Let m = n1/d with d an integer greater than 1.
Then E(mTm) ∼ (2π)−1/2n1−3/2d(ce−1/c)n

1/d

= o(n−s) for any s ∈ N since ce1−c < 1.

Similarly: n
∑∞
k≥n1/t

kk−1

k! c
k−1e−ck ∼ n 1√

2π

∑∞
k≥n1/d n1−3/2d(ce1−c)n

1/d

= o(n−s) for any s ∈ N.
Choosing d = 2 and combining the three magnitude orders, we obtain:∣∣∣∣∣E

(
n∑
k=1

kTk

)
− n

∞∑
k=1

kk−1

k!
ck−1e−ck

∣∣∣∣∣ = O(1)

q.e.d. ♦♦♦

Proposition 20 Let p = c
n with c 6= 1 and ω be any function with limn→∞ ω =∞. Let LT be the

size of the largest tree component. Then almost surely:

• LT ≤ α−1
(
log(n)− 5

2 log(log(n))
)

+ ω

• LT ≥ α−1
(
log(n)− 5

2 log(log(n))
)
− ω

where α ≡ c− 1− log(c) (and thus α > 0)

Proof
W.l.o.g. we assume that ω = o(log(n)). As before, Tk denotes the number of tree components of
size k. Observe that:

P(LT ≥ m) = P(
∑
k≥m

Tk ≥ 1) ≤
∑
k≥m

E(Tk)

We already know that:∑
k≥n1/3

E(Tk) ≤
∑

k≥n1/3

E(kTk) = o(n−s) for any s ∈ N

32

Now using the same lines as those of the proof of proposition 19. One has for k ≤ n1/3:

E(Tk) = n
kk−2

k!
ck−1e−ck(1 +O(n−1/3))

Thus: ∑
m≤k

E(Tk) ∼
∑

m≤k≤n1/3

n
kk−2

k!
ck−1e−ck ∼ n√

2π

∑
m≤k≤n1/3

k−5/2(ce1−c)k

= Θ(nm−5/2(ce1−c)m) = Θ(nm−5/2e−αm)

Choose m = α−1
(
log(n)− 5

2 log(log(n))
)

+ ω. Then:∑
m≤k

E(Tk) = Θ(nm−5/2n−1 log(n)
5
2 e−ω) = Θ(e−ω)

which proves the first assertion.
Choose now m = α−1

(
log(n)− 5

2 log(log(n))
)
− ω. Then:∑

m≤k

E(Tk) = Θ(eω)

In order to conclude we estimate V(
∑
m≤kNk).

Let k ≤ l. We first observe that E(TkTl) ≤ nE(Tl) = o(n−s) for any s ∈ N as soon as k ≥ n1/3.
Thus we limit the sums to indices k, l ≤ n1/3.

E(TkTl) =

(
n

k

)(
n− k
l

)
kk−2ll−2

(c
n

)k+l−2 (
1− c

n

)(k+l)(n−k−l)+(k+l2)−k−l+2

≤ E(Tk)E(Tl)
(

1− c

n

)−kl
≤ E(Tk)E(Tl)

(
1 +

2ckl

n

)
for n enough large

On the other hand

E(T 2
k) = E(Tk(Tk − 1)) + E(Tk) ≤ E(Tk)2

(
1 +

2ck2

n

)
+ E(Tk)

Thus

E((
∑

m≤k≤n1/3

Tk)2) ≤
∑

m≤k≤n1/3

(
E(Tk)2

(
1 +

2ck2

n

)
+ E(Tk)

)
+2

∑
m≤k<l≤n1/3

E(Tk)E(Tl)

(
1 +

2ckl

n

)

≤ (1 + 2cn−1/3)E

 ∑
m≤k≤n1/3

Tk

2

+ E

 ∑
m≤k≤n1/3

Tk


Thus

V(
∑
m≤k

Tk) = n−1/3O

E

∑
m≤k

Tk

2
+O

E

∑
m≤k

Tk

 = o

E

∑
m≤k

Tk

2


which proves the second assertion.

q.e.d. ♦♦♦

When c < 1

With the previous results, handling this case is straightforward.

33

Proposition 21 Let p = c
n with 0 < c < 1 and ω be any function that goes to ∞. Then LC , the

size of the largest cyclic component, almost surely fulfills Lc ≤ ω.

Proof
We apply proposition 19. Since c < 1, we know that E(VC) the mean number of vertices contained
in cyclic components is O(1), i.e. less than some fixed value say a. Assume by contradiction that
for some function ω there exists ε > 0 and n1 < n2 < · · · with P(VC > ω(ni)) ≥ ε for every i.
Then εω(ni) ≤ E(VC) ≤ a for every ni enough large which is impossible since ω goes to ∞.

q.e.d. ♦♦♦

Corollary 7 Let p = c
n with 0 < c < 1 and L1 be the size of the largest component. Then almost

surely:

• L1 ≤ α−1
(
log(n)− 5

2 log(log(n))
)

+ ω

• L1 ≥ α−1
(
log(n)− 5

2 log(log(n))
)
− ω

where α ≡ c− 1− log(c)

Proof
By proposition 21, we know that the almost surely the size the largest cyclic component grows
“very slowly”. For instance, we can choose ω ≡ log(log(n)). Thus using proposition 20, almost
surely the largest component is a tree component and the assertions of the current proposition
hold.

q.e.d. ♦♦♦

When c = 1
We handle this case in two steps:

• First we show that almost surely the number of vertices not contained in tree components
is less than n2/3ω (with ω defined as usual). So the size of the greatest cyclic component is
also less than n2/3ω almost surely.

• Then we study the size of greatest tree component and we show that almost surely this size
is between n2/3

ω and n2/3ω.

Combining these two results, we obtain that the size of the greatest component is between n2/3

ω

and n2/3ω.

Lemma 17
∞∑
k=1

kk−1

k!
e−k−

k3

6n2 = 1− n− 1
3

(
1√
2π

∫ ∞
0

t−
3
2

(
1− e− t

3

6

)
dt

)
+O(n−1)

Proof
Let us recall some relations between (possibly infinite) sums and integrals. Let f be a monotone
function on an interval I ≡ [a, a+Kδ/n[(where K may be equal to ∞). Then:∣∣∣∑0≤k<K n

−1δf(a+ kδ/n)−
∫ a+Kδ/n
a

f(x)dx
∣∣∣ ≤ ||f ||δn−1

If f is monotone on r consecutive subintervals constituting a partition of I, then:∣∣∣∑0≤k<K n
−1δf(a+ kδ/n)−

∫ a+Kδ/n
a

f(x)dx
∣∣∣ ≤ (2r − 1)||f ||δn−1 = O(n−1) when f is bounded

We first use the equality
∑∞
k=1

kk−1

k! e
−k = 1.

∞∑
k=1

kk−1

k!
e−ke−

k3

6n2 = 1−
∞∑
k=1

kk−1

k!
e−k(1− e−

k3

6n2)

34

Now using Stirling formula:
∞∑
k=1

kk−1

k!
e−k(1− e−

k3

6n2) = (2π)−
1
2

∞∑
k=1

k−
3
2 e−αk(1− e−

k3

6n2)

Observe that:
∞∑
k=1

k−
3
2 (1− e−αk)(1− e−

k3

6n2) ≤
∞∑
k=

k−
3
2

1

12k
(1− e−

k3

6n2) =
1

12

∞∑
k=1

k−
5
2 (1− e−

k3

6n2)

=
n−1

12

∞∑
k=1

n−2/3(kn−2/3)−
5
2 (1− e−

(kn−2/3)3

6)

=
n−1

12

∫ ∞
n−2/3

x−
5
2 (1− e− x

3

6)dx+O(n−5/3) ≤ n−1

12

∫ ∞
0

t−
5
2 (1− e− t

3

6)dt+O(n−5/3) = O(n−1)

(using the fact that x−
5
2 (1− e− x

3

6) is bounded and increases and then decreases)
Let us now consider:

(2π)−
1
2

∞∑
k=1

k−
3
2 (1− e−

k3

6n2) = (2π)−
1
2n−1/3

∞∑
k=1

n−2/3(kn−2/3)−
3
2 (1− e−

(kn−2/3)3

6)

= n−
1
3 (2π)−

1
2

∫ ∞
n−

2
3

t−
3
2 (1− e− t

3

6)dt+O(n−1)

(using the fact that x−
3
2 (1− e− x

3

6) is bounded and increases and then decreases)

= O(n−2) + n−
1
3 (2π)−

1
2

∫ ∞
0

t−
3
2 (1− e− t

3

6)dt+O(n−1)

Combining the three equalities the result follows.

q.e.d. ♦♦♦

Proposition 22 Let p = 1
n and VT be the number of vertices contained in tree components. Then

E(VT) = n− an2/3 +O(n1/3) where a = 1√
2π

∫∞
0
t−

3
2

(
1− e− t

3

6

)
dt.

Proof
Let Nk be the number of tree components of order k and Vk be the number of vertices contained
in tree components of order k. Then:

E(VT) =
∑
k

kE(Tk) =
∑
k

k

(
n

k

)
kk−2n−k(1− 1

n
)kn−

(k−1)(k−2)
2

We choose some α ∈]2/3, 3/4[and we divide the sum depending on the threshold nα. First let:

x ≡
∑
k≥nα

k

(
n

k

)
kk−2n−(k−1)(1− 1

n
)kn−

(k−1)(k−2)
2 ≤

∑
k≥nα

nk

k!
e−k

2/2n−k3/6n2

kk−1n−(k−1)e−
1
n (kn− (k−1)(k−2)

2)

= n
∑
k≥nα

kk−1

k!
e−ke−k

3/6n2−3k/n+2/n

In the exponent the dominant term is k3/6n2. So:

x ≤ n
∑
k≥nα

kk−1

k!
e−ke−ck

3/n2

for some c > 0

35

Thus:

x ≤ ne−cn
3α−2 ∑

k≥nα

kk−1

k!
e−k ≤ ne−cn

3α−2

Now let:
y ≡

∑
k<nα

k

(
n

k

)
kk−2n−(k−1)(1− 1

n
)kn−

(k−1)(k−2)
2

=
∑
k<nα

nk

k!
e−

k2

2n−
k3

6n2 +O(k
4

n3)kk−1n−(k−1)e(−
1
n−O(n−2))(kn− (k−1)(k−2)

2)

= n
∑
k<nα

kk−1

k!
e−k−

k3

6n2 +O(k
4

n3)+O(kn)

= n
∑
k<nα

kk−1

k!
e−k−

k3

6n2 + n
∑
k<nα

kk−1

k!
e−k−

k3

6n2 (1− eO(k
4

n3)+O(kn))

Observe that:

n
∑
k<nα

kk−1

k!
e−k−

k3

6n2 (1− eO(k
4

n3)+O(kn)) = n
∑
k<nα

kk−1

k!
e−k−

k3

6n2 (O(
k4

n3
) +O(

k

n
))

Let us estimate:

O(n
∑
k<nα

kk−1

k!
e−k−

k3

6n2
k4

n3
) = O(n−2

∑
k<nα

kk+3

k!
e−k−

k3

6n2)

By Stirling formula:

n−2
∑
k<nα

kk+3

k!
e−k−

k3

6n2 = O(n−2
∑
k<nα

k5/2e−
k3

6n2)

= O(n−2
∫ ∞
0

x5/2e−
x3

6n2 dx) = O(n−2
∫ ∞
0

n5/3t5/2e−
t3

6 n2/3dt) = O(n1/3)

Similarly let us estimate:

O(n
∑
k<nα

kk−1

k!
e−k−

k3

6n2
k

n
) = O(

∑
k<nα

kk

k!
e−k−

k3

6n2)

By Stirling formula: ∑
k<nα

kk

k!
e−k−

k3

6n2 = O(
∑
k<nα

k−1/2e−
k3

6n2)

= O(

∫ ∞
0

x−1/2e−
x3

6n2 dx) = O(

∫ ∞
0

n−1/3t1/2e−
t3

6 n2/3dt) = O(n1/3)

On the other hand:

n
∑
k<nα

kk−1

k!
e−k−

k3

6n2 = n

∞∑
k=1

kk−1

k!
e−k−

k3

6n2 +O(ne−cn
3α−2

)

Thus using the previous lemma we obtain the result.

q.e.d. ♦♦♦

36

Corollary 8 Let p = 1
n and ω be any function such that limn→∞ ω(n) =∞. Then almost surely

VC , the number of vertices in (uni and multi)cyclic components is less than ωn2/3. A fortiori,
almost surely the size of the largest cyclic component is less than ωn2/3.

Proof
We reason by contradiction. Assume there exist ε > 0 and n1 < n2 < . . . such that for every ni,
the probability that VC ≥ ω(ni)n

2/3
i is greater than ε. Then for every ni, E(VC) ≥ εω(ni)n

2/3
i .

Since ω goes to infinity there is a contradiction with the previous proposition.

q.e.d. ♦♦♦

Proposition 23 Let p = 1
n , ω be any function such that limn→∞ ω(n) = ∞ and LT be the size

of the largest tree component. Then almost surely n2/3

ω ≤ LT ≤ ωn2/3.

Proof
As before, Tk denotes the number of tree components of size k. Observe that:

P(LT ≥ m) = P(
∑
k≥m

Nj ≥ 1) ≤
∑
k≥m

E(Tk)

Recall that: ∑
k≥m

E(Tk) =
∑
k≥m

(
n

k

)
kk−2n−k(1− 1

n
)kn−

(k−1)(k−2)
2

=
∑
k≥m

(
n

k

)
kk−2n−(k−1)(1− 1

n
)kn−

(k−1)(k−2)
2 ≤

∑
k≥m

nk

k!
e−k

2/2n−k3/6n2

kk−1n−(k−1)e−
1
n (kn− (k−1)(k−2)

2)

= n
∑
k≥m

kk−2

k!
e−ke−k

3/6n2−3k/n+2/n ≤ n
∑
k≥m

kk−2

k!
e−ke−k

3/6n2

Now:

n
∑
k≥m

kk−2

k!
e−ke−k

3/6n2

∼ n√
2π

∑
k≥m

k5/2e−k
3/6n2

∼ n√
2π

∫ ∞
m

x−5/2e−x
3/6n2

dx

∼ n√
2π

∫ ∞
m

n2/3

n−5/3t−5/2e−t
3/6n2/3dt ∼ 1√

2π

∫ ∞
m

n2/3

t−5/2e−t
3/6dt

Choosing m = ωn2/3, as the integral is convergent we deduce that:

lim
n→∞

P(LT ≥ ωn2/3) = 0

We now study
∑

n2/3

ω ≤k≤n2/3
E(Tk).

∑
n2/3

ω ≤k≤n2/3

E(Tk) ∼ n
∑

n2/3

ω ≤k≤n2/3

kk−2

k!
e−ke−k

3/6n2

∼ 1√
2π

∫ 1

1
ω

t−5/2e−t
3/6dt

At the neighbourhood of 0 the expression under the integral is equivalent to t−5/2.
Thus

∑
n2/3

ω ≤k≤n2/3
E(Tk) = Θ(ω3/2) and goes to infinity.

In order to prove the second assertion we need to study V
(∑

n2/3

ω ≤k≤n2/3
Tk

)
.

E

(
∑

n2/3

ω ≤k≤n2/3

Tk)2


37

=
∑

n2/3

ω ≤k≤n2/3

E(T 2
k) + 2

∑
n2/3

ω ≤k<l≤n2/3

E(TkTl)

=
∑

n2/3

ω ≤k≤n2/3

E(Tk) +
∑

n2/3

ω ≤k≤n2/3

E(Tk(Tk − 1)) + 2
∑

n2/3

ω ≤k<l≤n2/3

E(TkTl)

Let us study:

E(Tk(Tk − 1)) =

(
n

k

)(
n− k
k

)
p2k−2q2nk−(k−1)(k−2)−k

2

∼ (n)2k
k!2

n−2k+2e−2k+2k2/n ∼ n2

k!2
e−2k

2/n−3k3/4n2

e−2k+2k2/n ∼ n2

k!2
e−2k−3k

3/4n2

E(Tk)2 = (

(
n

k

)
)2p2k−2q2nk−(k−1)(k−2)

∼ ((n)k)2

k!2
n−2k+2e−2k+k

2/n ∼ n2

k!2
e−k

2/n−k3/3n2

e−2k+k
2/n ∼ n2

k!2
e−2k−k

3/3n2

Thus E(Tk(Tk − 1)) ≤ E(Tk)2

Let us study:

E(TkTl)) =

(
n

k

)(
n− k
l

)
pk+l−2qn(k+l)−

(k−1)(k−2)
2 − (l−1)(l−2)

2 −kl

∼ (n)k+l
k!l!

n−k−l+2e−k−l+k
2/n+l2/n+kl/n ∼ n2

k!l!
e−(k+l)

2/2n−(k+l)3/6n2

e−k−l+k
2/2n+l2/2n+kl/n

∼ n2

k!l!
e−k−l−(k+l)

3/6n2

E(Tk)E(Tl) ∼
n2

k!l!
e−k−l−k

3/6n2−l3/6n2

Thus E(TkTl) ≤ E(Tk)E(Tl)

Summarizing:

V

 ∑
n2/3

ω ≤k≤n2/3

Tk

 ≤ ∑
n2/3

ω ≤k≤n2/3

E(Tk) = Θ(ω3/2)

which concludes the proof.

q.e.d. ♦♦♦

When c > 1
This case is tricky and requires:

• First to refine the previous result about the number of vertices contained in tree components
and prove that this number is almost surely “close” to t(c)n.

• Then using decomposing the random graph G c+ε
n

as the union of the graph G c
n
(with 0 < ε)

and an additional random graph, we show the size of the greatest component is almost surely
close g(c)n = (1− t(c))n.

• Thus the size of the second greatest component is almost surely o(n).

Proposition 24 Let p = c
n with c > 1 and ω be any function with limn→∞ ω(n) =∞. Let VT be

the number of vertices contained in tree components. Then almost surely |VT − t(c)n| ≤ ωn
1
2 .

38

Proof
Due to proposition 20, we know that almost surely there are no vertices in tree components of
size at least n

1
t for any integer t. Thus it is enough to prove that |WT − t(c)n| ≤ ωn

1
2 where

WT ≡
∑
k≤n1/2 kTk with Tk the number of tree components of size k. The proof of proposition 19

includes E(WT)−t(c)n = O(1). So in order to conclude, we only have to prove thatV(WT) = O(n)
and apply the Bienaymé-Tchebychev inequality.
Let k ≤ l. With the the same notations as in the previous proposition:

E(TkTl) =

(
n

k

)(
n− k
l

)
kk−2ll−2

(c
n

)k+l−2 (
1− c

n

)(k+l)(n−k−l)+(k+l2)−k−l+2

≤ E(Tk)E(Tl)
(

1− c

n

)−kl
≤ E(Tk)E(Tl)

(
1 +

2ckl

n

)
On the other hand

E(T 2
k) = E(Tk(Tk − 1)) + E(Tk) ≤ E(Tk)2

(
1 +

2ck2

n

)
+ E(Tk)

Thus

E(W 2
T) ≤

∑
k≤n1/2

k2
(
E(Tk)2

(
1 +

2ck2

n

)
+ E(Tk)

)
+ 2

∑
k<l≤n1/2

klE(Tk)E(Tl)

(
1 +

2ckl

n

)

≤ E(WT)2 + n−1O


 ∑
k≤n1/2

k2E(Tk)

2
+O

 ∑
k≤n1/2

k2E(Tk)2


Let us recall that:

E(Tk) ≤ nk
k−2

k!
ck−1e−ck(1 +

c1k
2

n
)

Thus ∑
k≤n1/2

k2E(Tk) ≤
∑

k≤n1/2

n
kk

k!
ck−1e−ck(1 +

c1k
2

n
)

≤ n(1 + c1)/c
∑

k≤n1/2

k−1/2(ce1−c)k = O(n)

since the corresponding infinite sum is convergent. Thus V(WT) = O(n).

q.e.d. ♦♦♦

Lemma 18 Let p = c
n and p′ = c+ε

n with 1 ≤ c and 0 < ε. Let Gp′ be obtained by union of Gp
with Gp′′ where p′′ = G ε

n−c
. Let 0 < δ < 1 and K ∈ N such that (1) either c > 1 and K ≥ e

εδ (2)
or c = 1 and K ≥ e

(εδ)2 where e only depends on c. Let Sp,K be the set of vertices of Gp belonging
to components of order greater than k. Then almost surely a ratio of 1− δ of vertices of Sp,K are
in the same connected component of Gp′ .

Proof
Let us denote Np,K the size of Sp,K . We know that almost surely the number of vertices not
contained in Sp,K is equal to Np,K =

∑
k≤K n

kk−1

k! c
k−1e−ck + o(n).

Let us denote f(K, c) ≡ 1−
∑
k≤K

kk−1

k! c
k−1e−ck. Observe that f(K, c) ≥ g(c).

Then for any τ > 0, almost surely |Np,K − nf(K, c)| < τnf(K, c). We fix some small τ (less than
1/3 see below)
Now let m be the number of connected components of Gp′ restricted to Sp,K . Assume that there
is no component with size at least (1− δ)Np,K . Then we can split the set of components into two

39

subsets V 1
p,K and V 2

p,K such that δ
2Np,K ≤ V 1

p,K ≤ V 2
p,K ≤ (1− δ

2)Np,K (proof left to the reader).

The number of possible partitions is at most 2
Np,K
A .

Thus (assuming the almost sure events) the probability of the above event is bounded by:

2
(1+τ)nf(K,c)

K

(
1− ε

n− c

)(1− δ2)
δ
2 (1−τ)

2n2f(K,c)2

≤ 2
(1+τ)nf(K,c)

K e−
ε

n−c (1−
δ
2)
δ
2 (1−2τ)n

2f(K,c)2

= elog(2)
(1+τ)nf(K,c)

K − ε
n−c (1−

δ
2)
δ
2 (1−2τ)n

2f(K,c)2 = e(1+τ)nf(K,c)(
log(2)
K − ε

n−c (1−
δ
2)
δ
2 (1−3τ)nf(K,c)))

≤ e(1+τ)nf(K,c)(
log(2)
K − ε

n−c (1−
δ
2)
δ
2 (1−3τ)nf(K,c)) ≤ e(1+τ)nf(K,c)(

log(2)
K − εδ4 (1−3τ)f(K,c))

Observe that g(c) is greater than 0 if c > 1 (see proposition 8). Thus in this case it is enough
to choose K such that log(2)

K − εδ
4 (1 − τ)t(c) < 0. In the particular case c = 1, f(K, c) =∑

k>K
kk−1

k! e
−k ∼

∑
k>K

k−3/2
√
2π
≥ dK−1/2 for some d > 0. Thus in this case it is enough to choose

K such that log(2)
K − εδ

4 (1− τ) d√
K
< 0.

q.e.d. ♦♦♦

Proposition 25 Let p = c
n with c > 1. Let L1 be the size of the greatest connected component

and L2 be the size of the second greatest connected component. Then for any η > 0, it holds almost
surely that:

• |L1

n − g(c)| ≤ η

• L2 ≤ ηn

Proof
We have shown in the previous lemma that for any ε > 0, δ > 0 and any K enough large, there
exists almost surely a connected component of size at least (1 − δ)f(K, c − ε)n vertices. Let us
choose ε such that c− ε ≥ 1 and g(c− ε) ≥ g(c)−η/2, δ = η/2. Recall that f(K, c) ≥ g(c)). Then
the size of this component say L fulfills L

n ≥ g(c)− η.
We now examine the sizes of the other connected components. First we estimate the number
of vertices of connected components which are not trees, say VC . We know that the number of
vertices that are in the connected components which are trees, say VT , fulfills almost surely for
every η > 0, |VTn − t(c)| ≤ η. Since VC = n − VT − L, we deduce that almost surely VC ≤ ηn (a
fortiori the same holds for the corresponding components) and that L

n ≤ g(c) + η.
We know that almost surely the size of the greatest tree, say LT which is a connected component
fulfills: LT ≤ d log(n) for some constant d. So we conclude that L corresponds to the size of the
greatest component and that the two assertions hold.

q.e.d. ♦♦♦

2.4.2 Connectivity

We are now looking at the threshold defined by p = log(n)+c
n with c ∈ R and we focus on the

connectivity of the random graph. We proceed in three steps.

• We first study the distribution of the number of isolated vertices and we show that the
limiting distribution follows a Poison law.

• Then we show that almost surely the graph consists of the giant component and isolated
vertices.

• We thus obtain the limiting probability that the graph is connected and letting c go to ∞
or −∞, we prove the threshold for connectivity.

40

Isolated vertices

Proposition 26 Let p = log(n)+c
n with c ∈ R and πn(k) be the probability that there are exactly k

isolated vertices in G(n, p). Then:

lim
n→∞

πn(k) =
λk

k!
e−λ

with λ = e−c.

Proof
Define X as the random variable counting the isolated vertices. Then Er(X) is the mean number
of (ordered) r-tuples of isolated vertices. By linearity of expectation:

Er(X) = (n)rq
r(n−r)+ r(r−1)

2

As q → 1 when n→∞, one obtains:
Er(X) ∼ (n)rq

rn = (n)r(1− log(n)+c
n)rn ∼ nre−r(log(n)+c) ∼ (e−c)r

We now apply corollary 5 to conclude.

q.e.d. ♦♦♦

Corollary 9
Let ω be a function such that limn→∞ ω(n) =∞.

Let p ≤ log(n)−ω
n then for every r ∈ N almost surely there at least r isolated vertices.

Let log(n)+ω
n ≤ p then almost surely there are no isolated vertices.

Proof
Using lemma 16, we conclude in the former case that the asymptotic probability that there are at
least r isolated vertices is greater or equal than 1−

∑
h<k

e−ch

h! e
−e−c for every c. Letting c→ −∞,

this probability must be equal to 1.
Using the same lemma, we conclude in the latter case that the asymptotic probability that there
are no isolated vertices is greater or equal than e−e

−c
for every c. Letting c→∞, this probability

must be equal to 1.

q.e.d. ♦♦♦

Connected components

Proposition 27 Let p = log(n)+c
n with c ∈ R. Then for any ε > 0, almost surely there are less

than nε vertices outside the giant component.

Proof
Recall that the giant component almost surely contains at least δn vertices for any 0 < δ < 1.
Let us estimate the mean number of sets of nε vertices outside the giant component. This value
is bounded by:(

n

nε

)
(1− p)δn

1+ε

≤
(en
nε

)nε
e−pδn

1+ε

=
(en
nε

)nε
e−(log(n)+c)δn

ε

=
(
e1−cδn1−δ−ε

)nε
Choosing δ > 1− ε this value converges to 0 and so the result follows.

q.e.d. ♦♦♦

41

Proposition 28 Let p be some density function and k be any function such that:

k �
(
q

p

)2/3

Then there exists some constant α such that for n enough large,

E(Ck) ≤ E(Tk)(1 +
αpk3/2

q
) = E(Tk)(1 + o(1))

where Ck is the number of components of order k and Tk is the number of tree components of
order k.

Proof

E(Ck) ≤ E(Tk) +

(
n

k

) k(k−1)/2+1∑
d=1

C(k, k + d− 1)pk+d−1qkn−(k−1)(k−2)/2−d)

≤
(
n

k

)
pk−1qkn−(k−1)(k−2)/2k

k−2

1 +

k(k−1)/2+1∑
d=1

(
c

d+ 2

)d/2
k3d/2pdq−d


= E(Tk)

1 +

k(k−1)/2+1∑
d=1

(√
cpk3/2

q
√
d+ 2

)d
Here we have used Cayley tree formula and the first bound for C(k, k + d). Applying now the
hypothesis, the result follows.

q.e.d. ♦♦♦

Proposition 29 Let p = log(n)+c
n with c ∈ R and πn(k) be the probability that there are exactly k

isolated vertices in G(n, p) and a single component. Then:

lim
n→∞

πn(k) =
λk

k!
e−λ

with λ = e−c.

Proof
Since 1

n � p, we know that almost surely the size of all components but the greatest one are less
than n/2. The probability that the graph has a connected component of order 2 is at most:(

n

2

)
p(1− p)2(n−2) ≤ n

2
(log(n) + c)e−2

n−2
n (log(n)+c) = O

(
log(n)

n

)
Then almost surely there is no component of order 2.
Using the previous proposition, we know that almost surely there are no components of order
greater than nε for any fixed ε > 0. The probability that the graph has a tree component of order
between 3 and nε is at most:

nε∑
k=3

(
n

k

)
kk−2pk−1(1− p)k(n−k) ≤

nε∑
k=3

(en
k

)k kk−2
k1/2

(
log(n) + c

n

)k−1
e−pk(n−k)

=

nε∑
k=3

nk−5/2ek(1+log(log(n)+c)−log(n)(1−nε−1)

42

In the parentheseses, the dominant term is log(n) and so for n enough large, this sum is bounded
by:

= n

nε∑
k=3

k−5/2e(−1/2)k log(n) ≤ n−1/2
∞∑
k=3

k−5/2

Thus the mean number of tree components of order at least 3 converges to 0. This is also the case
for the mean number of components of order at least 3 using proposition 28 and choosing ε < 2/3.
So almost surely, the graph consists of the giant component and isolated vertices. Furthermore
the distribution of the number of isolated vertices is given by proposition 26.

q.e.d. ♦♦♦

Corollary 10
Let ω be a function such that limn→∞ ω(n) =∞.

Let p ≤ log(n)−ω
n then almost surely the graph is disconnected.

Let log(n)+ω
n ≤ p then almost surely the graph is connected.

Proof
Using lemma 16, we conclude in the former case that the asymptotic probability that there are
at least 1 isolated vertices is greater or equal than 1 − e−e−c for every c. Letting c → −∞, this
probability must be equal to 1.
Using the same lemma, we conclude in the latter case that the asymptotic probability that there
are no isolated vertices (and thus that the graph is connected) is greater or equal than e−e

−c
for

every c. Letting c→∞, this probability must be equal to 1.

q.e.d. ♦♦♦

2.5 More on almost sure theories
In order to show that some of the almost sure theories described above are complete, we introduce
Ehrenfeucht games on graphs. Such a game is played over two (possibly infinite) graphs G1, G2

by two players, the spoiler called S and the duplicator called D. This game is parametrized by k,
the number of rounds of the game. It is denoted EHR(G1, G2, k). The ith round is performed as
follows.

• First, S chooses a graph and marks a vertex of this graph.

• Then D marks a vertex of the other graph.

• The vertex of G1 is denoted xi and the vertex of G2 is denoted yi.

The game is won by D if:

∀i, j ≤ k xi ∼ xj iff yi ∼ yj and xi = xj iff yi = yj

This game is (obviously) determined: there is a winning strategy for one of the two players. We
observe that if both graphs have at least k vertices, S has no interest to mark a vertex already
marked (why?) and thus against such a strategy D must also mark unmarked vertices (why?). If
some graph has less than k vertices, observe that D wins iff G1 and G2 are isomorphic (why?).
We slightly generalize the game by playing over (G1, x1, . . . , xs) and (G2, y1, . . . , ys) where the xi’s
(resp. the yi’s) are vertices of G1 (resp. G2) and 0 ≤ s ≤ k with k − s remaining rounds. The
winner of the game is obtained as before.
We note (G1, x1, . . . , xs) ≡k (G2, y1, . . . , ys) if there is a winning strategy for D. we claim that
≡k is an equivalence relation (prove it). We note [(G1, x1, . . . , xs)]k the equivalence class of
(G1, x1, . . . , xs).

43

Lemma 19 The number of equivalence classes of ≡k for marked graphs (G1, x1, . . . , xs) is finite.

Proof
We prove it by backward induction on s. When s = k, there is exactly one equivalence class per
different graph over k vertices.
Let Ck,s the different equivalence classes of ≡k for marked graphs (G1, x1, . . . , xs). Assume that
|Ck,s+1| < ∞. Let (G1, x1, . . . , xs) (resp. (G2, y1, . . . , ys)) be some marked graph and define
C1 = {[(G1, x1, . . . , xs, x)]k | x vertex of G1} (resp. C2 = {[(G2, y1, . . . , ys, y)]k | y vertex of G2}).
Then if C2 = C1, D has a straightforward strategy if S chooses G1 and marks some x then D marks
some y with [(G2, y1, . . . , ys, y)]k = [(G1, x1, . . . , xs, x)]k and vice versa. Thus |Ck,s| ≤ 2Ck,s+1 .

q.e.d. ♦♦♦

The next theorem shows the close connection between first-order logic and Ehrenfeucht games.

Theorem 15 Let k ≥ 1 and 0 ≤ s ≤ k. Then:

• (G1, x1, . . . , xs) ≡k (G2, y1, . . . , ys) iff G1 and G2 has the same truth value for first-order
formulas of quantifier depth k − s with s free variables when these variables are given the
values x1, . . . , xs and y1, . . . , ys respectively.

• For every equivalence class c = [(G1, x1, . . . , xs)]k, there is a first-order formula ϕc of quanti-
fier depth k−s with s free variables such that ϕ is true for (G2, y1, . . . , ys) when the variables
are given the values y1, . . . , ys iff (G1, x1, . . . , xs) ≡k (G2, y1, . . . , ys).

Proof
We prove it by a simultaneous backward induction on s.
When s = k, the considered formulas are without quantifiers thus simply boolean combinations
of expressions ui = uj or ui ∼ uj where u1, . . . , uk are the free variables. (G1, x1, . . . , xk) ≡k
(G2, y1, . . . , yk) iff ∀i, j j ≤ k xi ∼ xj iff yi ∼ yj and xi = xj iff yi = yj which implies that the
considered formulas have the same truth value on (G1, x1, . . . , xk) and (G2, y1, . . . , yk). On the
other hand, let P∼ = {(i, j) | xj ∼ xj} and P= = {(i, j) | xj = xj} then the formula:∧

(i,j)∈P∼

ui ∼ uj ∧
∧

(i,j)/∈P∼

¬ui ∼ uj ∧
∧

(i,j)∈P=

ui = uj ∧
∧

(i,j)/∈P=

¬ui = uj

is true for (G2, y1, . . . , yk) iff (G1, x1, . . . , xk) ≡k (G2, y1, . . . , yk).
Now assume the result is true for s + 1. The s + 1 free variables of ϕc′ for c′ ∈ Ck,s+1 are
noted u1, . . . , us+1. Given some c = [(G1, x1, . . . , xs)]k, we note C1 = {[(G1, x1, . . . , xs, x)]k |
x vertex of G1}. Then we define

ϕc ≡
∧
c∈C1

∃us+1ϕc′
∧

c∈Ck,s+1\C1

¬∃us+1ϕc′

and we let the reader prove that if ϕc is true for G2 with the free variables instantiated by y1, . . . , ys
then D has a winning strategy and otherwise S has a winning strategy. This establishes the second
assertion.
Assume that G1 and G2 has the same truth value for first-order formulas of quantifier depth
k − s with s free variables when these variables are given the values x1, . . . , xs and y1, . . . , ys
respectively. Since they both satisfy the tautology

∨
c∈Ck,s ϕc they must satisfy exactly one ϕc,

thus (G1, x1, . . . , xs) ≡k (G2, y1, . . . , ys).
Assume that (G1, x1, . . . , xs) ≡k (G2, y1, . . . , ys). Let ψ be a formula of quantifier depth k−s with
s free variables. By definition ψ is (equivalent to) a boolean combination of formulas ∃us+1θ where
θ has quantifier depth k− s− 1 and s+ 1 free variables. By induction, the truth value of θ for the
marked graph (G1, x1, . . . , xs, x) (resp. (G2, y1, . . . , ys, y)) is determined by [(G1, x1, . . . , xs, x)]k

44

(resp. [(G2, y1, . . . , ys, y)]k). Assume there is an x such that (G1, x1, . . . , xs, x) satisfies θ and let
y chosen by the winning strategy of D after the choice of x by S, since [(G1, x1, . . . , xs, x)]k =
[(G2, y1, . . . , ys, y)]k, (G2, y1, . . . , ys, y) satisfies θ. The same reasoning applies if there is a y such
that (G2, y1, . . . , ys, y) satisfies θ. So (G1, x1, . . . , xs) satisfies ∃us+1θ iff (G2, y1, . . . , ys) satisfies
∃us+1θ. Thus we have established the first assertion.

q.e.d. ♦♦♦

The next corollary whose proof is immediate is the crucial one for establishing completeness
of theories.

Corollary 11 Two graphs G1, G2 satisfy the same first-order sentences iff D has a winning strat-
egy for every game EHR(G1, G2, k).

We mention the following corollary with also an immediate proof that allows to show the limit
of first-order logic.

Corollary 12 Let ϕ be some graph property and {G1,k}k≥1, {G2,k}k≥1 be two families of graphs
such that G1,k |= ϕ and G2,k 6|= ϕ. Assume that D has a winning strategy for every game
EHR(G1,k, G2,k, k). Then ϕ is not equivalent to any first order sentence.

In the sequel we use the usual notion of distance denoted ρ between vertices of a graph and
also between sets of vertices. When the (sets of) vertices are not connected the distance is equal
to ∞. We now introduce some notations related to the game on graphs.

• Given a vertex x, the d-neighbourhood of x is the set of vertices y such that ρ(x, y) ≤ d

• Given a sequence of vertices x1, . . . , xk the d-picture of x1, . . . , xk is the union of their d-
neighbourhoods.

• Given two sequences of vertices x1, . . . , xk and y1, . . . , yk in different graphs we say that they
have the same d-picture if there is a graph isomorphism between their d-pictures that sends
every xi to yi.

We give now a first condition for D to win the game.

Theorem 16 Let G1 and G2 be two graphs and k ∈ N∗. Define d ≡ 3k−1
2 . Assume that:

• For every y ∈ G2 and every x1, . . . , xk−1 ∈ G1, there is an x ∈ G1 with x, y having the same
d-neighbourhood and ρ(x, xi) > 2d+ 1 for every i.

• For every x ∈ G1 and every y1, . . . , yk−1 ∈ G2, there is an y ∈ G2 with x, y having the same
d-neighbourhood and ρ(y, yi) > 2d+ 1 for every i.

Then D wins EHR(G1, G2, k).

Proof
We inductively introduce distances ds by d0 ≡ 0 and ds ≡ 3ds−1+1. Observe that ds = 3s−1

2 so that
d = dk. We describe the winning strategy of D. Suppose x1, . . . , xk−s ∈ G1 and y1, . . . , yk−s ∈ G2

have been played. The duplicator strategy consists to keep the same ds-pictures for x1, . . . , xk−s
and y1, . . . , yk−s. If she succeeds, when s = 0 they have the same 0-picture meaning that there is
a graph isomorphism between x1, . . . , xk and y1, . . . , yk.
Assume that the property holds for x1, . . . , xk−s and y1, . . . , yk−s. Due to the symmetrical prop-
erties of graphs, w.l.o.g. assume that S picks some x ∈ G1.
Case ρ(x, {x1, . . . , xk−s}) ≤ 2ds−1 + 1
Let xi be such that ρ(x, xi) ≤ 2ds−1 + 1. Then the ds−1-neighbourhood of x is contained in
the ds−1-neighbourhood of xi Indeed ρ(x′, xi) ≤ ρ(x′, x) + ρ(x, xi) ≤ ρ(x′, x) + 2ds−1 + 1. Thus

45

ρ(x′, x) ≤ ds−1 ⇒ ρ(x′, xi) ≤ 3ds−1 + 1 = ds. So D uses the graph isomorphism (say f) between
the ds-pictures and choose y = f(x).
Case ρ(x, {x1, . . . , xk−s}) > 2ds−1 + 1
Then we claim that the ds−1-neighbourhood of x is a component of the ds−1-picture of x1, . . . , xk−s, x.
Assume there is an x′ in the ds−1-neighbourhood of x and an x′′ in the ds−1-picture of x1, . . . , xk−s
such that either x′ = x′′ or x′ ∼ x′′. There there is an xi with ρ(xi, x

′′) ≤ ds−1. So ρ(xi, x) ≤
ρ(xi, x

′′) + ρ(x′′, x′) + ρ(x′, x) ≤ 2ds−1 + 1 contrary to the assumption.
Now by hypothesis there exists an y with ρ(y, {y1, . . . , yk−s} > dk ≥ 2ds−1 + 1 with the same
dk-neighbourhood of the one of x (thus also the same ds−1-neighbourhood). D chooses y. The
new graph isomorphism is obtained by f restricted to the ds−1 picture of {x1, . . . , xk−s} completed
by the graph isomorphism from the ds−1-neighbourhood of x to the one of y.

q.e.d. ♦♦♦

The next corollary is a well-known result of first-order expressiveness in the framework of
graphs.

Corollary 13 The connectivity of a graph is not expressible by a first-order formula.

Proof
Let k ≥ 1. Choose for G1,k a cycle of length (k − 1)(4dk + 3) + 1 and for G2,k two disjoint cycles
of length (k − 1)(4dk + 3) + 1. These graphs fulfil the hypotheses of theorem 16 thus D wins the
game EHR(G1,k, G2,k, k). We apply now the corollary 12 to conclude.

q.e.d. ♦♦♦

We present now a slight variation of theorem 16 when the winning strategy of D also relies on
two subsets of vertices whose neighbourhoods are isomorphic.

Theorem 17 Let G1 and G2 be two graphs and k ∈ N∗. Define d ≡ 3k−1
2 . Assume that there

exists S1 (resp. S2) a subset of vertices of G1 (resp. G2) with the following properties:

• The restrictions of G1 to S1 and G2 to S2 are isomorphic and this isomorphism can be
extended to one between the d-neighbourhoods of S1 and S2.

• Let d′ ≤ d. For every y ∈ G2 with ρ(y, S2) > 2d′+1 and every x1, . . . , xk−1 ∈ G1, there is an
x ∈ G1 with x, y having the same d′-neighbourhood and ρ(x, S1 ∪ {x1, . . . , xk−1}) > 2d′ + 1.

• Let d′ ≤ d. For every x ∈ G1 with ρ(x, S1) > 2d′+1 and every y1, . . . , yk−1 ∈ G2, there is an
y ∈ G2 with x, y having the same d′-neighbourhood and ρ(y, S2 ∪ {y1, . . . , yk−1}) > 2d′ + 1.

Then D wins EHR(G1, G2, k).

Using Theorem 16, we obtain completeness of an almost sure theory.

Proposition 30 Let p be such that log(n)
n � p � n−1+ε for every ε > 0. Then the associated

almost sure theory is complete.

In theorems 16 and 17, we require that for some x ∈ G1 we can find an y ∈ G2 with some
isomorphic neighbourhood (and additional conditions) and vice versa. However this requirement
is sometimes too strong. So we introduce the weaker notion of k-similarityvia a new game, the
distance Ehrenfeucht game, denoted DEHR(G1, G2, k). This game is played as before with an
additional requirement for D. She must ensure that ∀i, j ≤ k ρ(xi, xj) = ρ(yi, yj).

The d-neighbourhood of x and y, say resp. H1 and H2, are called k-similar if D has a winning
strategy for DEHR(H1, H2, k) starting with x and y marked.

We generalise this notion to the d-pictures of x1, . . . , xs and y1, . . . , ys. These d-pictures are k
similar if:

46

1. They have the same number of components.

2. ∀i, j ≤ k, xi and xj belong to the same component iff yi and yj belong to the same component.

3. Let C and D be corresponding components in the d-pictures. Then D has a winning strategy
for DEHR(C,D, k) starting with every pair (xi, yi) marked when xi ∈ C (and so yi ∈ D).

Before stating a new condition for the existence of a winning strategy for D, we make some
observations on the k-similarity.

Lemma 20 The vertices xi and xj lie in the same component of the d-picture of x1, . . . , xs iff
there exists a sequence i = i0, . . . , im = j such that ∀0 ≤ t < m ρ(xit , xit+1

) ≤ 2d+ 1.

Proof
Observe that if such a sequence exists then xit , xit+1 lie in the same component. Indeed let u ∼ v
be on the path from xit to xit+1

with ρ(xit , u) ≤ d and ρ(v, xit+1
) ≤ d; then u (resp. v) belongs

to the d-neighbourhood of xit (resp. xit+1
). So also xi and xj lie in this component.

Let xi = u0, . . . , um = xj be a path in the d-picture of x1, . . . , xs. Then for every ut there is some
xit with ρ(xit , ut) ≤ d. By the triangular inequality, this provides the desired sequence.

q.e.d. ♦♦♦

Lemma 21 Let the d-pictures of x1, . . . , xs and y1, . . . , ys be k-similar and 0 ≤ d′ < d. Then the
d′-pictures of x1, . . . , xs and y1, . . . , ys are k-similar.

Proof
xi and xj belong to the same component of d′-pictures of x1, . . . , xs
iff there exists a sequence i = i0, . . . , im = j such that ∀0 ≤ t < m ρ(xit , xit+1) ≤ 2d′ + 1
(due to the previous lemma)
iff there exists a sequence i = i0, . . . , im = j such that ∀0 ≤ t < m ρ(yit , yit+1

) ≤ 2d′ + 1
(as k-similarity preserve distance between marked vertices)
iff yi and yj belong to the same component of d′-pictures of y1, . . . , ys
(due to the previous lemma)
Thus the two first properties of similarity are fulfilled.
In order to win D mimics its winning strategy for the d-picture, the only thing that could prevent
it woulde be the following one. When S picks a vertex x say in a component of the d′-picture
of x1, . . . , xs, D could not pick the desired vertex say y as y would not belong the corresponding
component the d′-picture of y1, . . . , ys. However, by definition, there is some xi with ρ(xi, x) ≤ d′.
As the (original) strategy of D must preserve the distances ρ(yi, y) ≤ d′. Thus the original strategy
can be played.

q.e.d. ♦♦♦

We give now a third condition for D to win the game.

Theorem 18 Let G1 and G2 be two graphs and k ∈ N∗. Define d ≡ 3k−1
2 . Assume that:

• For every y ∈ G2 and every x1, . . . , xk−1 ∈ G1, there is an x ∈ G1 with x, y having k-similar
d-neighbourhoods and ρ(x, xi) > 2d+ 1 for every i.

• For every x ∈ G1 and every y1, . . . , yk−1 ∈ G2, there is an y ∈ G2 with x, y having k-similar
d-neighbourhoods and ρ(y, yi) > 2d+ 1 for every i.

Then D wins EHR(G1, G2, k).

47

Proof
We inductively introduce distances ds by d0 ≡ 0 and ds ≡ 3ds−1+1. Observe that ds = 3s−1

2 so that
d = dk. We describe the winning strategy of D. Suppose x1, . . . , xk−s ∈ G1 and y1, . . . , yk−s ∈ G2

have been played. The duplicator strategy consists to keep s-similar the ds-pictures for x1, . . . , xk−s
and y1, . . . , yk−s. If she succeeds, when s = 0 they have 0-similar 0-pictures. As similarity preserves
distances, for every i, j,≤ k, xi ∼ xj (resp. xi = xj) iff yi ∼ yj (resp. xi = xj).
Assume that the property holds for x1, . . . , xk−s and y1, . . . , yk−s. Due to the symmetrical prop-
erties of graphs, w.l.o.g. assume that S picks some x ∈ G1.
Case ρ(x, {x1, . . . , xk−s}) ≤ 2ds−1 + 1
Let C be the component of the ds-picture of x1, . . . , xk−s containing x and D be the corresponding
component in the ds-picture of y1, . . . , yk−s. By inductive hypothesis, D has a winning strategy
for DEHR(C,D, s) with the pairs (xi, yi) contained in C ×D marked. Thus D picks the y of this
strategy. Let (xα(1), yα(1)), . . . , (xα(l), yα(l)) be the pairs contained in C × D. Then D has a
winning strategy for DEHR(C,D, s− 1) with the pairs (xα(1), yα(1)), . . . , (xα(l), yα(l)), (x, y) marked
meaning that the ds-pictures xα(1), . . . , xα(l), x and yα(1), . . . , yα(l), y) in C andD are s−1-similar.
Using the previous lemma, the ds−1 pictures xα(1), . . . , xα(l), x and yα(1), . . . , yα(l), y in C and
D are s − 1-similar. But the case hypothesis (and the choice of y) ensures that the ds−1 picture
of xα(1), . . . , xα(l), x (resp. yα(1), . . . , yα(l), y) in C (resp. D) is the same as the ds−1 picture
xα(1), . . . , xα(l), x (resp. yα(1), . . . , yα(l), y) in G1 (resp. G2). Again by the previous lemma, the
other components of the ds+1-pictures of x1, . . . , xk−s, x and y1, . . . , yk−s, y are s-similar and a
fortiori s− 1-similar.
Case ρ(x, {x1, . . . , xk−s}) > 2ds−1 + 1
Then the ds−1-neighbourhood of x is a component of the ds−1-picture of x1, . . . , xk−s, x (see the
previous proofs).
Now by hypothesis there exists an y with ρ(y, {y1, . . . , yk−s} > 2dk + 1 ≥ 2ds−1 + 1 with the
k-similar dk-neighbourhood of the one of x thus also k-similar ds−1-neighbourhood by the pre-
vious lemma and a fortiori s − 1-similar ds−1-neighbourhood. D chooses y. Here also the ds−1-
neighbourhood of y is a component of the ds−1-picture of y1, . . . , yk−s, x. The other pairs of
components of the ds-pictures remain unchanged so there are s− 1-similar and once more by the
previous lemma their restriction to the ds−1-neighbourhoods are also s− 1-similar.

q.e.d. ♦♦♦

We now consider rooted trees meaning a tree with a distinguished vertex, the root, that gives
an orientation to the tree such that one can speak of parent, child, ancestor, descendant, depth,
etc. Given an oriented tree T and a vertex w, Tw is the subtree rooted at w. The next definition
is closely related to similarity between trees.

Definition 3 Let d, s ≥ 1 be two integers. Then the (d, s)-value of tree (rooted) tree T is defined
as follows. We call V al(d, s) the possible values.

• V al(1, s) ≡ {0, . . . , s,∞}. If the root has at most s children, the (1, s)-value of T is the
number of children otherwise it is ∞.

• V al(d+1, s) ≡ {0, . . . , s,∞}V al(d,s). Let v ∈ V al(d, s), then (d+1, s)-value of T (a mapping)
associates with v the number of children having v for (d, s)-value or ∞ if this number exceeds
s.

Theorem 19 Let T1 and T2 be two trees with roots r1 and r2 which have the same (d, k−1)-value.
Then the d-neighbourhoods of r1 and r2 are k-similar.

Proof
The proof is by induction on d.

48

Case d = 1. If S picks a new vertex (necessarily) a child of the root then D picks a new child of
the root in the other tree. Since both trees have the same number of children or a number that is
at least s, this strategy is winning.
Inductive case. Assume the result is true for d. Let us call a vertex a subroot if it is a child of
the root. Given x a vertex which is not a root, x∗ denotes the subroot on the path from x to the
root. By symmetry let us assume that at some arbitrary round S picks a vertex x in T1, if x = r1
then D picks r2. Otherwise, D plays as if S have played x and x∗ for free.
D first answer x∗. Either x∗ is already marked and it chooses the corresponding y∗ or it chooses a
subroot y∗ in T2 which has the same (d, k− 1)-value. Since r1 and r2 have the same (d+ 1, k− 1)-
value, during the k rounds, S will always find such an appropriate subroot. Then to find the answer
y to x, she applies on the game over T x

∗

1 T y
∗

2 the winning strategy which exists by induction.
Let us examine whether the global strategy is winning. Let us examine the distance between xi
and xj . If they are in the same subtree then by induction the distance between yi and yj is equal.
Otherwise, the distance is obtained by the sum of their depth which are equal by induction to the
ones of yi and yj (as their corresponding subroots are marked in the subgame).

q.e.d. ♦♦♦

For any (d, k)-value there is a finite rooted tree that reaches this value (why?). We are now in
position to achieve our study of completeness.

Proposition 31 Let p be such that n−1−ε � p � n−1 for every ε > 0. Then the associated
almost sure theory is complete.

Proposition 32 Let p be such that 1
n � p � log(n)

n . Then the associated almost sure theory is
complete.

49

Chapter 3

Exercises

Exercises 1

Question 1. Assume that a certain (unknown) number of processes (having a unique identity)
are ordered in a unidirectional ring, each of them knowing its neighbours. We present here Chang
and Roberts’ algorithm, enabling them to elect a leader. We assume that all the processes want
to be elected. More precisely,

• Every process starts such an algorithm by sending its identity to its left neighbour.

• If a process has stored a temporary id′ as leader (which is initially itself) and receives an
identity, it ignores the message if id > id′. Otherwise, it stores this new identity as that of
the temporary leader and forwards it to its left neighbour.

• When a process received its identity, it knows it has been elected. It then send an end
message to its left neighbour. When a process receives this end message, its forwards it. The
protocol terminates when this message gets back to the leader.

1.1) Assume that there are 5 players, with the identities 3, 4, 5, 2, 7. Give an example of an
execution of the algorithm.

1.2) Write the algorithm in pseudo-language.

1.3) Prove it by showing that 1) a leader will be elected and 2) only one confirmation message
will be sent on the ring.

1.4) In such protocols, we denote by complexity the maximum number of messages exchanged
during the execution of the protocol. Show that the complexity in the worst case is less than
n2 + n if there are n players around the ring. Considering the fact that all processes are trying to
be elected, show that this complexity (in the worst case) is bigger than n+ n(n+ 1)/2.

1.5) We now want to estimate the complexity in the average case. Denote i0, i1, . . . , in−1 the
processes, i0 being the process with the minimal identity. The processes are not assumed to be
ordered according to the value of their identities. Let Xk be the random variable counting the
number of times the initial query of ik (k 6= 0) is transmitted, before being replaced by a smaller
identity.

1. Show that P (Xk > k + 1) = 0 and P (Xk > t) = 1/t for t ∈ N, t 6 k.

2. Show that E(Xk) =
∑k
t=1 1/t, using for example the fact that tP (X = t) =

∑t
s=1 P (X = t).

50

3. The complexity in the average case is the sum of these expectations plus the number of
messages corresponding to the query of i0, plus the messages of the confirmation round.
Show that this complexity is equal to n

∑n
t=1 1/t + n and give an equivalent when n goes

to ∞.

Question 2. We now assume that the ring is bidirectional, which means that each player can
send messages to both its neighbours. Franklin’s leader election algorithm works as follows:

• Every process starts such an algorithm by sending its identity to both its neighbours.

• When a process receives two identities, it only survives until the following round if it identity
is the smallest of the three.

• In the following rounds, the active processes keep on sending their identities, while the dead
processes only forward the messages they receive.

• The leader is elected when a process knows it is (or will be in the next round) the only
survivor, either when it receives its own identity, or when its receives the same identity from
both sides.

• When a process knows it has been elected, it sends an end message to its left neighbour.
When a process receives this end message, its forwards it. The protocol terminates when
this message gets back to the leader.

2.1) Give an example of the execution of the algorithm in the case of 5 processes, with the
identities 3, 4, 5, 2, 7.

2.2) Write the algorithm in pseudo-language and prove it.

2.3) A process can be executing round i + 1 while its neighbour its still executing round i.
Describe a case in which such a situation can happen.

2.4) By considering the number of processes eliminated in each round, show that the number of
rounds is bounded by blog2(n)c+ 1. Deduce from this value that the complexity in the worst case
is bounded by n log(n).

51

Exercises 2
We consider a gossip protocol where, in a social network of n agents, some special agent has
an information that he wants to share with the other agents. At the initial round, the special
agent randomly chooses an agent (including himself) and transmits to him the information. At
every round, any of the informed agents randomly chooses an agent and transmits to him the
information. We want to analyze the random number of rounds denoted T1,n necessary to inform
all the agents. More precisely, we want to establish that:

T1,n
log2(n)

→ 1 + log(2) in probability when n→∞

We first give another view of a process execution. We consider that during a round the informed
agents sequentially transmit the information (in an arbitrary order). So an execution is denoted
by (w1, w2, . . . , wn−1) where wi represents the number of message trensmissions with i agents
informed (here every wi > 0). More generally at the beginning of a round the remaining sequence
is denoted by w1, w2, . . . , wn−1 with wi > 0 ⇒ wi+1 > 0 for all 1 6 i < n. Given a complete
execution sequence (w1

1, w
1
2, . . . , w

1
n−1) it is straightforward to inductively deduce the remaining

sequence at the beginning of the ith round. Let (wi1, w
i
2, . . . , w

i
n−1) be the remaining sequence at

the ith round. Then:

• the corresponding number of informed agents is ai = min(j | wij > 0) if the sequence is
different from 0, 0, . . . , 0. Otherwise it is n;

• When ai < n, the remaining sequence at the i + 1th round is obtained by considering
u = min(j |

∑
k6j w

i
k > ai). If such a u does not exist then the remaining sequence is

0, 0, . . . , 0. Otherwise it is defined by wi+1
j = 0 for j < u, wi+1

u =
∑
k6u w

i
k − ai and

wi+1
j = wij for j > u.

In the sequelWi denotes the random variable associated with the number of message transmissions
when i agents are informed. So the tuple (W1, . . . ,Wn) is an alternative view of the stochastic
process. Observe that these variables are independent and that their distribution is given by:

P(Wi = r) =

(
i

n

)r−1
(1− i

n
)

that the expectation and the variance are given by:

E(Wi) =
n

n− i
and V(Wi) =

ni

(n− i)2

and the moment-generating function is given by:

E(etWi) =
n− i

ne−t − i
if et <

n

i

We now fix some (strictly) positive numbers γ, η with the additional requirement that η < 1/3.

Question 1. Let 4γ/η < N be a fixed number (i.e. independent of n). Thus N < n for n
enough large. Let TN be the number of rounds necessary to get N agents informed. Show that
TN 6W1 + . . .+WN .

Question 2. Show that P(TN > 2N) = o(n−γ).

We now fix some number ξ such that 0 < ξ < (1− η)
1−η
η η

(2−η) . Consequently:(
ξ(2−η)
η

)η
< (1− η)1−η and so η

ξ(2−η) > 1.

Question 3. Let N 6 i 6 ξn. Show that:

P(Wi + · · ·+W(2−η)i > i) 6

(
ν

(
i

n

)η)i

52

with ν = (2−η)η
ηη(1−η)1−η

Question 4. Let K be the smallest integer such that N(2− η)K > ξn and TN,ξn be the number
of rounds to go from a stage where N agents are informed to a stage where ξn are informed. Fix
some integer 0 6 L < K and note m = N(2− η)L. Show that:

P(TN,ξn > K) 6 νNK
(m
n

)ηN
+

(νξη)m

1− νξη

Deduce that:
P(TN,ξn > K) = o(n−γ)

q.e.d. ♦♦♦

Question 5. Let 0 < a < b < 1 be two reals with b < 2a
1+a . Show that:

P(Wan + · · ·+Wbn > an) 6 αn

where α < 1 only depends on a and b.

Question 6. Let g(x) = (1 − η/4) 2x
1+x defined for x > 0, 0 < u0 < 1 − η/2 and ui+1 = g(ui).

Show that ui is a strictly increasing sequence with limit 1− η/2.

Question 7. Let Tξn,(1−η)n be the number of rounds starting from stage ξn to reach (at least)
stage (1− η)n. Show that:

P(Tξn,(1−η)n > K) 6 Kαn = o(n−γ)

where K is some integer and 0 < α < 1.
Let R be any integer such that R > max(3, 2γ/η).

Question 8. Let T(1−η)n,n−R be the number of rounds starting from stage (1− η)n to reach (at
least) stage n−R. Show that:

P(T(1−η)n,n−R >
1 + γ

1− γ
log(n)) = o(n−γ)

Question 9. Let Tn−R,n be the number of rounds starting from stage n − R to reach stage n.
Show that:

P(Tn−R,n >
(η + γ)

1−R/n
log(n)) = o(n−γ)

Question 10. Let T1,n be the total number of rounds. Using the previous results show that:

∀ε lim
n→∞

P(
T1,n

log2(n)
> (1 + ε)(1 + log(2)) = 0

Question 11. Give a lower bound for T1,n.

Question 12. Show that:

∀ε lim
n→∞

P(
T1,n

log2(n)
< (1− ε)(1 + log(2)) = 0

(Hint: decompose T1,n as T1,δn + Tδn,n for an arbitrary 0 < δ < 1 and use the previous question
for the first term and Chebyshev’s inequality applied to U = Wδn + · · · + Wn−1 for the second
term)

53

Exercises 3

Question 1. The theories considered will usually be complete; We study here an example in
which it is not the case. Let us define a random function f from {1, . . . , n} to {1, . . . , n} by
choosing every f(a) with an equiprobable distribution in {1, . . . , n}. The support of first order
theory is equipped with the equality and the unary function symbol f .

Show that there exists a first-order sentence ϕ with a single variable and a single quantifier
such that Pn(ϕ) neither converges to 1 nor converges to 0.

Question 2. A graph is said to fulfill the Alice’s restaurant property if for every finite disjoint
sets X and Y of vertices, there exists a vertex z /∈ X ∪ Y such that z is adjacent to every vertex
of X and to no vertex of Y .

Let p be some constant such that 0 < p < 1. Show that there exists a unique countable graph
(up to isomorphism) fulfilling the Alice’s restaurant property. This means that the almost sure
theory is complete.

Question 3. We are interested in proving that the distribution of a family of random variables
converges to some distribution. Since it is easier to prove the convergence on expectations (and
more generally on moments) rather than on random variables, the aim of this exercise is to show an
additionnal condition sufficient to prove that the convergence of moments ensures the convergence
of distributions.

In all the following, we say that a sum s =
n∑
k=1

(−1)k+1αk satisfies the alternating inequalities

if the following inequality holds for all ` ∈ {1, . . . , n}:

(−1)`

(
s+

∑̀
k=1

(−1)kαk

)
> 0

We also introduce the notation (n)k = n!
(n−k)! . Given an integer random variable, we define

the r-factorial moment Er(X) = E((X)r).

3.1) Let {ϕi}i6k be a family of boolean combinations over variables x1, . . . , xn and let α1, . . . , αk ∈
R. Suppose that the following inequality

k∑
i=1

αiP(ϕi[{xj ← Ej}j6n]) > 0 (3.1)

holds whenever E1, . . . , En are events on a probability space such that P(Ej) ∈ {0, 1}. Show that
Equation (3.1) holds for every n-tuple of events.

3.2) Let {ϕi}i6k be a family of boolean combinations over variables x1, . . . , xn and let α1, . . . , αk ∈
R. Suppose that the following equality

k∑
i=1

αiP(ϕi[{xj ← Ej}j6n]) = 0 (3.2)

holds whenever E1, . . . , En are events on a probability space such that P(Ej) ∈ {0, 1}. Deduce
from the former question that Equation (3.2) holds for every n-tuple of events.

3.3) Let E1, . . . , En be events in a probability space, and pk be the probability that exactly
k events among them occur. If we let EI =

⋂
i∈I

Ei and, for every r 6 n, sr =
∑
|I|=r

P(EI), show

that

pk =

n∑
r=k

(−1)r+k
(
r

k

)
sr

54

and this sum satisfies the alterning inequalities.

3.4) Let X be a random variable with values in {0, . . . , n}. Show that

P(X = k) =

n∑
r=k

(−1)r+k
Er(X)

k!(r − k)!

and this sum satisfies the alternating inequalities.

3.5) Let X be a random variable with values in N with Er(X) finite for all 1 6 r 6 R. Show
that, for any s, t 6 R with k + s odd and k + t even,

s∑
r=k

(−1)r+k
Er(X)

k!(r − k)!
6 P(X = k) 6

t∑
r=k

(−1)r+k
Er(X)

k!(r − k)!

3.6) Let X be a random variable with values in N with Er(X) finite for all 1 6 r 6 R and such
that, for all k, lim

r→+∞
Er(X) r

k

r! = 0. Show that, for every k,

P(X = k) =

+∞∑
r=k

(−1)r+k
Er(X)

k!(r − k)!

and this sum satisfies the alternating inequalities.

3.7) Let X,X1, X2, . . . be random variables with values in N such that Er(X) and Er(Xn) is
finite for all (r, n). Supposing that

∀r, k lim
n→+∞

Er(Xn) = Er(X) and lim
k→+∞

Er(X)
rk

r!
= 0

show that
lim

n→+∞
P(Xn = k) = P(x = k)

3.8) Application: Let λ > 0 and X1, X2, . . . be random variables with values in N such that
Er(Xn) is finite for all (r, n). Supposing that

∀r, k lim
n→+∞

Er(Xn) = λr

show that
lim

n→+∞
P(Xn = k) =

λk

k!
e−λ

55

Exercises 4

Question 1. Let p be such that 1/n� p� log(n)
n . Then almost surely the following properties

hold:

1. For every k ∈ N, there are no k vertices adjacent to (at least) k + 1 edges (ie no subgraph
with k vertices and k + 1 edges).
Hint: Let BG be the number of subgraphs with k fixed vertices and k + 1 edges. Note that
BG is a finite number. Using BG, compute E(NG), where NG is the number of subgraphs
with k vertices and k + 1 edges.

2. For every s, d, k ∈ N with k > 3, there does not exist a cycle of length k and a vertex of
degree d at distance s of the cycle.
Hint: Consider the two cases s = 0 and s 6= 0. For these two cases, evaluate the number
of choices for the cycle, the vertex, the path from the cycle to the vertex and its neighbours.
Using this number, bound the expectation of the number of such patterns.

Question 2. We remind that the density ratio of a graph is defined by a/v where a is its number
of edges and v its number of vertices. A connected graph is said to be balanced if its ratio is always
greater or equal to the ratio of any of its subgraph.

1. Prove that a tree of order k has a ratio 1 − 1/k and any of its subgraph has a ratio less or
equal to 1− 1/(k − 1). A tree is thus balanced.

2. Prove that a cycle has a ratio 1 and any if its subgraph has a ratio less than 1. A cycle is
thus balanced.

3. Show that a clique of order k has a ratio of (k− 1)/2 which is strictly greater than the ratio
of any of its subgraph. A clique is thus balanced.

4. Give an example of a connected graph which is not balanced.

5. Give an example of a graph which is neither a tree nor a clique nor a cycle, and which is
balanced.

Question 3. Let G be a graph with v vertices and a > 0 edges. Show that

1. If p� n−v/a then almost surely there is no subgraph of Gp isomorphic to G.
Hint: Use the same method as the first item of Exercise 1.

2. Let G,G′ be two subgraphs of some graph H such that (1) G is balanced, (2) G has v vertices
and a > 0 edges and (3) G and G′ share r edges. Show that G and G′ share at least rv/a
vertices.

3. If p � n−v/a and G is balanced then for any m ∈ N, almost surely there are at least
m subgraphs of Gp isomorphic to G.
Hint: Begin as in the former item and show that E(NG) → ∞. The aim is then to show
that V (NG) = o(E(NG)2).
If we let I(G) be the set of subgraphs of Gp isomorphic to G and 1H be the random variable
indicating whether a potential subgraph H of Gp occurs,

E(NG
2) =

∑
H,H′∈I(G)

E(1H1H′)

Now partition the pairs (H,H ′) according to the number r of edges they share. Show that if
r 6= 0, the fact that G is balanced implies that they share at leat rv/a vertices.

56

Question 4. Let p be such that 1/n� p� log(n)
n . Then almost surely the following properties

hold:

1. For every m ∈ N and every k > 3, there are at least m cycles of length k.

Hint: It is a consequence of the former exercise.

2. For all m ∈ N and every tree Tr, there are at least m components isomorphic to Tr.

Given a tree Tr with ` vertices, let NTr be the number of connected components isomorphic
to Tr in Gn. Given a set of ` vertices, denote BTr the number of trees over these vertices
isomorphic to Tr. If S is a tree isomorphic to Tr in Gn, define 1S as the boolean random
variable indicating that S is a connected component of Gn. Now

E(NTr) =
∑

S in Gn

E(1S) =

(
n

`

)
BTrE(1S)

Show that E(NTr) → ∞ and that V (NTr) = o(E(NTr)
2). For the second equality, compute

E((NTr)
2) and consider the two cases whether S and S′ share or not a vertex.

57

Exercises 5
The aim of these exercises is to show sufficient conditions ensuring that a theory is complete. More
precisely, we have the following implications:

Theory Th complete
m

∀G,G′ infinite models of Th,
G isomorphic to G’ (CS1)

⇒ ∀G,G′ infinite models of Th,
∀k D wins EHR(G,G′, k)

⇐ “local” k-similarity
(Theorem 18 – CS3)

⇑
“local” isomorphism
(Theorem 16 – CS2)

(particular case for
the trees (Exercise 2))

We recall the following result, seen in class:

Theorem 16 Let G1 and G2 be two graphs and k ∈ N∗. Define d = 3k−1
2 . Assume that:

• For every y ∈ G2 and every x1, . . . , xk−1 ∈ G1, there is an x ∈ G1 with x, y having the same
d-neighbourhood and ρ(x, xi) > 2d+ 1 for every i.

• For every x ∈ G1 and every y1, . . . , yk−1 ∈ G2, there is an y ∈ G2 with x, y having the same
d-neighbourhood and ρ(y, yi) > 2d+ 1 for every i.

Then D wins EHR(G1, G2, k).

Question 1. Let p be such that log(n)
n � p� n−1+ε for every ε > 0. Show that the associated

almost sure theory is complete.
Hint: Let G1 and G2 be two infinite models of the theory. Recall that for each of them (1) every

cycle of every length infinitely occurs, (2) every vertex has an infinite number of neighbours and
(3) there are no k vertices adjacent to k + 1 edges. A countable graph fulfilling these hypotheses
thus has for components:

• for every k an infinite number of (isomorphic) components consisting of a cycle of length k
where every vertex of the cycle is the “root” of an oriented tree where every vertex has an
infinite number of sons.

• A possible null, finite or infinite number of (isomorphic) trees where every vertex has an
infinite number of neighbours.

Thus the difference between G1 and G2 is the number of their tree components. Show that the
hypotheses of Theorem 16 are fulfilled by G1 and G2.

The requirement of finding a y with an isomorphic neighbourhood in Theorem 16 is sometimes
too strong, for instance when comparing a finite graph with an infinite graph. We now intro-
duce the weaker notion of k-similarity via a new game, the distance Ehrenfeucht game, denoted
DEHR(G1, G2, k), and show (in Theorem 18, assumed to be true) that it is indeed sufficient.

The game DEHR(G1, G2, k) is played as before with an additional requirement for D, who must
ensure that ∀i, j 6 k ρ(xi, xj) = ρ(yi, yj).

The d-neighbourhood of x and y, say resp. H1 and H2, are called k-similar if D has a winning
strategy for DEHR(H1, H2, k) starting with x and y marked.

Theorem 18 Let G1 and G2 be two graphs and k ∈ N∗. Define d = 3k−1
2 . Assume that:

• For every y ∈ G2 and every x1, . . . , xk−1 ∈ G1, there is an x ∈ G1 with x, y having k-similar
d-neighbourhoods and ρ(x, xi) > 2d+ 1 for every i.

• For every x ∈ G1 and every y1, . . . , yk−1 ∈ G2, there is an y ∈ G2 with x, y having k-similar
d-neighbourhoods and ρ(y, yi) > 2d+ 1 for every i.

58

Then D wins EHR(G1, G2, k).
We now consider rooted trees, meaning a tree with a distinguished vertex, the root, that gives

an orientation to the tree such that one can speak of parent, child, ancestor, descendant, depth,
etc. Given an oriented tree T and a vertex w, Tw is the subtree rooted at w. We recall a definition
introduced in the course.
Definition 3 Let d, s > 1 be two integers. Then the (d, s)-value of the (rooted) tree T is defined
as follows. We call V al(d, s) the possible values.

• V al(1, s) = {0, . . . , s,∞}. If the root has at most s children, the (1, s)-value of T is the
number of children, otherwise it is ∞.

• V al(d + 1, s) = {0, . . . , s,∞}V al(d,s). Let v ∈ V al(d, s). Then the (d + 1, s)-value of T (a
mapping) associates with v the number of children having v for (d, s)-value or ∞ if this
number exceeds s.

Question 2. Let T1 and T2 be two trees with roots r1 and r2 which have the same (d, k−1)-value.
Show that the d-neighbourhoods of r1 and r2 are k-similar.

Hint: Proof by induction.

Question 3. Let p be such that n−1−ε � p � n−1 for every ε > 0. Show that the associated
almost sure theory is complete.

Hint: Let G1 and G2 be two infinite models of the theory. Recall that for each of them (1)
there are no cycles and (2) every finite tree occurs at least r times as a component for any r ∈ N.
A countable graph fulfilling these hypotheses thus has for components:

• for every finite tree pattern, an infinite number of components isomorphic to this pattern.

• A possible null, finite or infinite number of infinite trees.

Show that the hypothese of Theorem 18 are fulfilled by G1 and G2.

Question 4. Let p be such that 1
n � p � log(n)

n . Show that the associated almost sure theory
is complete.

Hint: Let G1 and G2 be two infinite models of the theory. Recall that for each of them (1)
there are no set of k vertices with at least k+ 1 edges, (2) for every r ∈ N, k > 3 there are at least
r cycles of length k, (3) for every s, d ∈ N, k > 3 there does not exist a cycle of length k and a
vertex of degree d at distance s from the cycle and (4) every finite tree occurs at least r times as a
component for every r ∈ N. A countable graph fulfilling these hypotheses thus has for components:

• for every k > 3, an infinite number of (isomorphic) components consisting of a cycle of
length k, where every vertex of the cycle is the root of an infinite tree where every vertex has
an infinite number of childs.

• for every finite tree pattern, an infinite number of components isomorphic to this pattern.

• A possible null, finite or infinite number of infinite trees.

Show that the hypotheses of Theorem 18 are fulfilled by G1 and G2.

59

Bibliography

[Bol 85] B. Bollobás. Random Graphs. Academic Press, 1985.

[Erd 59] P. Erdös, A. Rényi. On random graphs. I. Publ. Math. Debrecen 6 p. 290-297, 1959.

[Erd 60] P. Erdös, A. Rényi. On the evolution of random graphs. Magyar Tud. Akad. Mat.
Kutató Int. Közl. 5 p. 17-61, 1960.

[Fag 76] R. Fagin. Probabilities in Finite Models. J. Symbolic Logic 41 p. 50-58, 1976.

[Luc 94] T. Luczak, B. Pittel, J.C. Wierman. The Structure of a random graph at the point
of phase transition. Transactions of AMS vol. 341 n°2 p. 721-748, 1994.

[Spe 01] J. Spencer. The Strange Logic of Random Graphs. Algorithms and Combinatorics,
Springer, 2001.

[Tel 00] G. Tel. Introduction to Distributed Algorithms. Cambridge University Press, 2000 (2nd
edition).

60

	Randomized Algorithms
	Anonymous networks
	Deterministic algorithms with a leader
	Deterministic algorithms with known size of the network
	Deterministic algorithms with unknown size of the network
	Probabilistic algorithms with known size of the network
	Probabilistic algorithms with unknown size of the network

	Fault Tolerance
	Consensus in presence of crashes
	Consensus in presence of Byzantine processes

	Random Graphs
	Introduction
	Technical background
	Probability recalls
	Graph notations
	Combinatorial formulas

	Between the thresholds
	The empty graph
	The Alice's Restaurant graph
	Appearance of tree components
	Occurrences of all trees
	Appearance of cycles
	Beyond connectivity
	Appearance of balanced graphs

	Looking at the thresholds
	The double jump
	Connectivity

	More on almost sure theories

	Exercises

