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Stochastic Petri Net versus Time Petri Net

In TPN, the delays are non deterministically chosen.

In Stochastic Petri Net (SPN), the delays are randomly chosen
by sampling distributions associated with transitions.

... but these distributions are not sufficient to eliminate non determinism.

Policies for a net
One needs to define:

The choice policy.
What is the next transition to fire?

The service policy.
What is the influence of the enabling degree of a transition on the process?

The memory policy.
What become the samplings of distributions that have not be used?
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Choice Policy

In the net, associate a distribution Di and a weight wi with every transition ti.

Preselection w.r.t. a marking m and enabled transitions Tm

Normalize weights wi of the enabled transitions: w′i ≡ wi∑
tj∈Tm

wj

Sample the distribution defined by the w′i’s.

Let ti be the selected transition, sample Di giving the value di.

versus

Race policy with postselection w.r.t. a marking m

For every ti ∈ Tm, sample Di giving the value di.

Let T ′ be the subset of Tm with the smallest delays.
Normalize weights wi of transitions of T ′: w′i ≡ wi∑

tj∈T ′
wj

Sample the distribution defined by the w′i’s yielding some ti.

Priorities between transitions could added to refine the selection.
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Choice Policy: Illustration
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Server Policy

A transition t can be viewed as server for firings:

A single server t allows a single instance of firings in m if m[t〉.
An infinite server t allows d instances of firings in m

where d = min(
⌊

m(p)
Pre(p,t)

⌋
| p ∈ •t) is the enabling degree.

A multiple server t with bound b allows min(b, d) instances of firings in m.
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This can be generalised by marking-dependent services.
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Memory Policy (1)
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Resampling Memory

Every sampling not used is forgotten.

This could correspond to a “crash” transition.
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Memory Policy (2)
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Enabling Memory

The samplings associated with still enabled transitions are kept and
decremented (d′3 = d3 − d1).

The samplings associated with disabled transitions are forgotten (like d2).

Disabling a transition could correspond to abort a service.
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Memory Policy (3)
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Age Memory

All the samplings are kept and decremented (d′3 = d3 − d1 and d′2 = d2 − d1).

The sampling associated with a disabled transition is frozen until the
transition become again enabled (like d′2).

Disabling a transition could correspond to suspend a service.
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Memory Policy (4)

Specification of memory policy

To be fully expressive, it should be defined w.r.t. any pair of transitions.
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Interaction between memory policy and service policy

Assume enabling memory for t1 when firing t2 and infinite server policy for t1.
Which sample should be forgotten?

The last sample performed,

The first sample performed,

The greatest sample, etc.

Warning: This choice may have a critical impact on the complexity of analysis.
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Discrete Time Markov Chain (DTMC)

A DTMC is a stochastic process which fulfills:

For all n, Tn is the constant 1

The process is memoryless
Pr(Sn+1 = sj | S0 = si0 , ..., Sn−1 = sin−1

, Sn = si)
= Pr(Sn+1 = sj | Sn = si)

≡ P[i, j]

A DTMC is defined by S0 and P
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Analysis: the State Status
The transient analysis is easy and effective in the finite case:

πn = π0 · Pn with πn the distribution of Sn

The steady-state analysis (∃? limn→∞ πn) requires theoretical developments.

Classification of states w.r.t. the asymptotic behaviour of the DTMC

A state is transient if the probability of a return after a visit is less than one.
Hence the probability of its occurrence will go to zero. (p < 1/2)

A state is recurrent null if the probability of a return after a visit is one
but the mean time of this return is infinite.
Hence the probability of its occurrence will go to zero. (p = 1/2)

A state is recurrent non null if the probability of a return after a visit is one
and the mean time of this return is finite. (p > 1/2)
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State Status in Finite DTMC
In a finite DTMC

The status of a state only depends on the graph associated with the chain.

A state is transient iff it belongs to
a non terminal strongly connected component (scc) of the graph.

A state is recurrent non null iff it belongs to a terminal scc.

6 7

8

0.70.3

1

0.80.2

1 2

3

0.7

0.2

0.8
0.1

0.1
4 5

0.5

1

0.3
T={1,2,3}

C
1
={4,5}

C
2
={6,7,8}

0.5

0.4

0.3 0.1



15/45

Analysis: Irreducibility and Periodicity
Irreducibility and Periodicity

A chain is irreducible if its graph is strongly connected.

The periodicity of an irreducible chain is the greatest integer p such that:
the set of states can be partionned in p subsets S0, . . . ,Sp−1
where every transition goes from Si to Si+1%p for some i.

Computation of the periodicity
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Analysis of a DTMC: a Particular Case

A particular case

The chain is irreducible and aperiodic (i.e. its periodicity is 1)

π∞ ≡ limn→∞ πn exists and its value is independent from π0.

π∞ is the unique solution of X = X · P ∧X · 1 = 1
where one can omit an arbitrary equation of the first system.
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Analysis of a DTMC: the “General” Case

Almost general case: every terminal scc is aperiodic

π∞ exists.

π∞ =
∑
s∈S π0(s)

∑
i∈I preachi[s] · πi∞ where:

1 S is the set of states,
2 {Ci}i∈I is the set of terminal scc,
3 πi

∞ is the steady-state distribution of Ci,
4 and preachi[s] is the probability to reach Ci starting from s.

Computation of the reachability probability for transient states

Let T be the set of transient states
(i.e. not belonging to a terminal scc)

Let PT,T be the submatrix of P restricted to transient states

Let PT,i be the submatrix of P transitions from T to Ci
Then preachi = (

∑
n∈N(PT,T )

n) · PT,i · 1 = (Id− PT,T )
−1 · PT,i · 1
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Illustration: SCC and Matrices
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Continuous Time Markov Chain (CTMC)
A CTMC is a stochastic process which fulfills:

Memoryless state change

Pr(Sn+1 = sj | S0 = si0 , ..., Sn−1 = sin−1
, T0 < τ0, ..., Tn < τn, Sn = si)

= Pr(Sn+1 = sj | Sn = si) ≡ P[i, j]

Memoryless transition delay

Pr(Tn < τ | S0 = si0 , ..., Sn−1 = sin−1
, T0 < τ0, ..., Tn−1 < τn−1, Sn = si)

= Pr(Tn < τ | Sn = si) = 1− e−λiτ

Notations and properties

P defines an embedded DTMC (the chain of state changes)

Let π(τ) the distribution de X(τ), for δ going to 0 it holds that:
π(τ + δ)(si) ≈ π(τ)(si)(1− λiδ) +

∑
j π(τ)(sj)λjδP[j, i]

Hence, let Q the infinitesimal generator defined by:
Q[i, j] ≡ λiP[i, j] for j 6= i and Q[i, i] ≡ −

∑
j 6=i Q[i, j]

Then: dπ
dτ = π · Q
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The exponential distribution
Let F be defined by: F (τ) = 1− e−λτ

Then F is the exponential distribution with rate λ > 0.

The exponential distribution is memoryless.

Let X be a random variable with a λ-exponential distribution.

Pr(X > τ ′ | X > τ) =
Pr(X > τ ′)

Pr(X > τ)
=
e−λτ

′

e−λτ
= e−λ(τ

′−τ) = Pr(X > τ ′ − τ)

The minimum of exponential distributions is an exponential distribution.

Let Y be independent from X with µ-exponential distribution.

Pr(min(X,Y ) > τ) = e−λτe−µτ = e−(λ+µ)τ

The minimal variable is selected proportionally to its rate.

Pr(X < Y ) =

∫ ∞
0

Pr(Y > τ)FX{dτ} =
∫ ∞
0

e−µτλe−λτdτ =
λ

λ+ µ
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Convoluting the exponential distribution
The nth convolution of a distribution F is defined by:

Fn? def= F ? · · · ? F (n times)

Let fn (resp. Fn) be the density (resp. distribution) of the nth convolution
of the λ-exponential distribution. Then:

fn(x) = λe−λx
(λx)n−1

(n− 1)!
and Fn(x) = 1− e−λx

∑
0≤m<n

(λx)m

m!

Sketch of proof

Recall that: f1(x) = λe−λx.

fn+1(x) =
∫ x
0
fn(x− u)f1(u)du =

∫ x
0
λe−λ(x−u) (λ(x−u))

n−1

(n−1)! λe−λudu

= λe−λx
∫ x
0
λ (λ(x−u))n−1

(n−1)! du = λe−λx (λx)n

n!

Deduce Fn+1 by:
d
dx

(
1− e−λx

∑
0≤m≤n

(λx)m

m!

)
=

e−λx(λ
∑

0≤m≤n
(λx)m

m! −
∑

0≤m≤n−1 λ
(λx)m

m! ) = fn+1(x)
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CTMC: Illustration and Uniformization
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Analysis of a CTMC

Transient Analysis

Construction of a uniform version of the CTMC (λ, P)
such that P[i, i] > 0 for all i.

Computation by case decomposition w.r.t. the number of transitions:

π(τ) = π(0)
∑
n∈N(e

−λτ ) τ
n

n! P
n

Steady-state analysis

The steady-state distribution of visits is given by the steady-state distribution
of (λ, P) (by construction, the terminal scc are aperiodic) ...

equal to the steady-state distribution since the sojourn times follow the same
distribution.

A particular case: P irreducible
the steady-state distribution π is the unique solution of X · Q = 0 ∧X · 1 = 1
where one can omit an arbitrary equation of the first system.
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Markovian Stochastic Petri Net

Hypotheses

The distribution of every transition ti has a density function e−λiτ

where the parameter λi is called the rate of the transition.

For simplicity reasons, the server policy is single server.

First observations

The weights for choice policy are no more required
since equality of two samples has a null probability.
(due to continuity of distributions)

The residual delay dj − di of transition tj
knowing that ti has fired (i.e. di is the shortest delay)
has the same distribution as the initial delay.
Thus the memory policy is irrelevant.
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Markovian Net and Markov Chain
Key observation: given a marking m with Tm = t1, . . . , tk

The sojourn time in m is an exponential distribution with rate
∑
i λi.

The probability that ti is the next transition to fire is λi

(
∑

j λj)
.

Thus the stochastic process is a CTMC whose states are markings and
whose transitions are the transitions of the reachability graph.
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Generalizing Distributions for Nets

Modelling delays with exponential distributions is reasonable when:

Only mean value information is known about distributions.

Exponential distributions (or combination of them)
are enough to approximate the “real” distributions.

Modelling delays with exponential distributions is not reasonable when:

The distribution of an event is known and is poorly approximable with
exponential distributions:

a time-out of 10 time units

The delays of the events have different magnitude orders:
executing an instruction versus performing a database request

In the last case, the 0-Dirac distribution is required.
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Generalized Markovian Stochastic Petri Net
(GSPN)

Generalized Markovian Stochastic Petri Nets (GSPN) are nets whose:

timed transitions have exponential distributions,

and immediate transitions have 0-Dirac distributions.

Their analysis is based on Markovian Renewal Process,

a generalization of Markov chains.
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Markovian Renewal Process

A Markovian Renewal Process (MRP) fulfills:

a relative memoryless property

Pr(Sn+1 = sj , Tn < τ | S0 = si0 , ..., Sn−1 = sin−1 , T0 < τ0, ..., Sn = si)
= Pr(Sn+1 = sj , Tn < τ | Sn = si) ≡ Q[i, j, τ ]

The embedded chain is defined by: P[i, j] = limτ→∞ Q[i, j, τ ]

The sojourn time Soj has a distribution defined by:

Pr(Soj[i] < τ) =
∑
j Q[i, j, τ ]

Analysis of a MRP

The steady-state distribution (if there exists) π is deduced from the
steady-state distribution of the embedded chain π′ by:

π(si) =
π′(si)E(Soj[i])∑
j π
′(sj)E(Soj[j])

Transient analysis is much harder ... but the reachability probabilities only
depend on the embedded chain.
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A GSPN is a Markovian Renewal Process
Observations

Weights are required for immediate transitions.

The restricted reachability graph corresponds to the embedded DTMC.
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Steady-State Analysis of a GSPN (1)

Standard method for MRP

Build the restricted reachability graph equivalent to the embedded DTMC

Deduce the probability matrix P

Compute π∗ the steady-state distribution of the visits of markings: π∗ = π∗P

Compute π the steady-state distribution of the sojourn in tangible markings:

π(m) =
π∗(m)Soj(m)∑

m′ tangible π
∗(m′)Soj(m′)

How to eliminate the vanishing markings sooner in the computation?
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Steady-State Analysis of a GSPN (2)
An alternative method

As before, compute the transition probability matrix P .

Compute the transition probability matrix P ′ between tangible markings.

Compute π′∗ the (relative) steady-state distribution of the visits of tangible
markings: π′∗ = π′∗P ′.

Compute π the steady-state distribution of the sojourn in tangible markings:

π(m) =
π′∗(m)Soj(m)∑

m′ tangible π
′∗(m′)Soj(m′)

Computation of P ′

Let PX,Y the probability transition matrix from subset X to subset Y .

Let V (resp. T ) be the set of vanishing (resp. tangible) markings.

P ′ = PT,T + PT,V (
∑
n∈N P

n
V,V )PV,T = PT,T + PT,V (Id− PV,V )−1PV,T

Iterative (resp. direct) computations uses the first (resp. second) expression.
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Steady-State Analysis: Illustration
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Steady-State Analysis of a Queue

Client
arrivals

Service
time

λ μ
0 1 2 ...

λ λ λ

μ μ μ3

A (Markovian) queue is a CTMC

Interarrival time: exponential distribution with parameter λ

Service time: exponential distribution with parameter µ

Let ρ = λ
µ

be the utilization

The steady-state distribution π∞ exists iff ρ < 1

The probability of n clients in the queue is π∞(n) = ρn(1− ρ)
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Analysis of Two Queues in Tandem
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Observation. The associated Markov chain is more complex than the one
corresponding to two isolated queues. However ...

Assume ρ1 =
λ
µ
< 1 and ρ2 =

λ
δ
< 1

The steady-state distribution π∞ exists.

The probability of n1 clients in queue 1 and n2 clients in queue 2 is
π∞(n1, n2) = ρn1

1 (1− ρ1)ρn2
2 (1− ρ2)

It is the product of the steady-state distributions corresponding to two
isolated queues.
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Analysis of an Open Queuing Network

λ
μp

μ(1-p)

δq

λ μ δp

1-p

q

1-q
δ(1-q)

In a steady-state

Define the (input and output) flow through queue 1 (resp. 2) as γ1 (resp. γ2).

Then γ1 = λ+ qγ2 and γ2 = pγ1. Thus γ1 = λ
1−pq and γ2 = pλ

1−pq

Assume ρ1 =
γ1
µ
< 1 and ρ2 =

γ2
δ
< 1

The steady-state distribution π∞ exists.

The probability of n1 clients in queue 1 and n2 clients in queue 2 is
π∞(n1, n2) = ρn1

1 (1− ρ1)ρnn2
(1− ρ2)

It is the product of the steady-state distributions corresponding to two
isolated queues.
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Analysis of a Closed Queuing Network

μp

3

1

μ(1-p)

δq

λ

p

1-p

q

1-q
δ(1-q)

μ

2

λ
δ

Visit ratios (up to a constant)

Define the visit ratio flow of queue i as vi.

Then v1 = v3 + qv2, v2 = pv1 and v3 = (1− p)v1 + (1− q)v2.
Thus v1 = 1, v2 = p and v3 = 1− pq.

Define ρ1 =
v1
µ

, ρ2 =
v2
δ

and ρ3 =
v3
λ

The steady-state probability of ni clients in queue i is
π∞(n1, n2, n3) =

1
Gρ

n1
1 ρn2

2 ρn3
3 (with n1 + n2 + n3 = n)

where G the normalizing constant can be efficiently computed by dynamic
programming.
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Queuing Networks and Petri Nets

Observations

A (single client class) queuing network can easily be represented by a Petri
net.

Such a Petri net is a state machine: every transition has at most a single
input and a single output place.

Can we define a more general subclass of Petri nets with a product form
for the steady-state distribution?
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Product Form Stochastic Petri Nets
(PFSPN)

t1 t2 t3p1 p2 p3

t4 t5 t6p4 p5 p6

t7

Principles

Transitions can be partionned into subsets corresponding to several classes of
clients with their specific activities

Places model resources shared between the clients.

Client states are implicitely represented.
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Bags and Transitions in PFSPN

t1 t2 t3p1 p2 p3

t4 t5 t6p4 p5 p6

t7

t1p1+p4
t2

t3

p2 p3

t4

p4
t5

t6

p5 p6

t7

The resource graph

The vertices are the input and the ouput bags of the transitions.

Every transition of the net t yields a graph transition •t
t−→ t•

Client classes correspond to the connected components of the graph.

First requirement: The connected components of the graph must be
strongly connected.
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Witnesses in PFSPN

t1 t2 t3p1 p2 p3

t4 t5 t6p4 p5 p6

t7

t1p1+p4

t3

Vector -p2-p3 is a witness for bag p1+p4:

(-p2-p3).W(t3)=1

(-p2-p3).W(t1)=-1

(-p2-p3).W(t)=0 for every other t

where W is the incidence matrix

Witness for a bag b

Let In(b) (resp. Out(b)) the transitions with input (resp. output) b.

Let v be a place vector, v is a witness for b if:

∀t ∈ In(b) v ·W (t) = −1 (where W (t) is the incidence of t)
∀t ∈ Out(b) v ·W (t) = 1
∀t /∈ In(b) ∪Out(b) v ·W (t) = 0

Second requirement: Every bag must have a witness.
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Steady-State Distributions of PFSPN

t1

2

t2 t3p1 p2 p3

t4

3

t5 t6p4 p5 p6

t7

The reachability space:

m(p1)+ m(p2)+ m(p3)=2

m(p4)+ m(p5)+ m(p6)=m(p1)+1

Steady-state distribution

Assume the requirements are fulfilled, with w(b) the witness for bag b.

Compute the ratio visit of bags v(b) on the resource graph.

The output rate of a bag b is µ(b) =
∑
t|•t=b µ(t) with µ(t) the rate of t.

Then: π∞(m) = 1
G

∏
b

(
v(b)
µ(b)

)w(b)·m

Observation. The normalizing constant can be efficiently computed if the
reachability space is characterized by linear place invariants.
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