Stochastic Petri Net

Serge Haddad

LSV
ENS Paris-Saclay & CNRS & Inria
haddad@lsv.fr

Petri Nets 2019, June 24th 2019

- Stochastic Petri Net
- Markov Chain
- Markovian Stochastic Petri Net
- Generalized Markovian Stochastic Petri Net (GSPN)
- 5 Product-form Petri Nets

Outline

Stochastic Petri Net

Markov Chain

Markovian Stochastic Petri Net

Generalized Markovian Stochastic Petri Net (GSPN)

Product-form Petri Nets

Stochastic Petri Net versus Time Petri Net

- In TPN, the delays are non deterministically chosen.
- In Stochastic Petri Net (SPN), the delays are *randomly* chosen by sampling distributions associated with transitions.

... but these distributions are not sufficient to eliminate non determinism.

Policies for a net

One needs to define:

- The choice policy.
 What is the next transition to fire?
- The service policy.
 What is the influence of the enabling degree of a transition on the process?
- The memory policy.
 What become the samplings of distributions that have not be used?

Choice Policy

In the net, associate a distribution D_i and a weight w_i with every transition t_i .

Preselection w.r.t. a marking m and enabled transitions T_m

- \bullet Normalize weights w_i of the enabled transitions: $w_i' \equiv \frac{w_i}{\sum_{t_j \in T_m} w_j}$
- ullet Sample the distribution defined by the w_i' 's.
- Let t_i be the selected transition, sample D_i giving the value d_i .

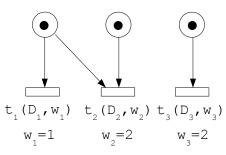
versus

Race policy with postselection w.r.t. a marking m

- For every $t_i \in T_m$, sample D_i giving the value d_i .
- Let T' be the subset of T_m with the smallest delays. Normalize weights w_i of transitions of T': $w_i' \equiv \frac{w_i}{\sum_{t_i \in T'} w_j}$
- Sample the distribution defined by the w_i' 's yielding some t_i .

Priorities between transitions could added to refine the selection.

Choice Policy: Illustration



Preselection Race Policy

Sample (1/5, 2/5, 2/5)

Sample (D,,D,,D)

Outcome t,

Outcome (3.2, 6.5, 3.2)

Sample D

Sample (1/3, -, 2/3)

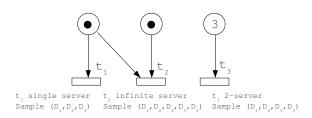
Outcome 4.2

Outcome t,

Server Policy

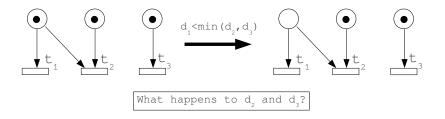
A transition t can be viewed as server for firings:

- A single server t allows a single instance of firings in m if m[t).
- An infinite server t allows d instances of firings in m where $d = \min(\left|\frac{m(p)}{Pre(p,t)}\right| \mid p \in {}^{\bullet}t)$ is the enabling degree.
- A multiple server t with bound b allows min(b, d) instances of firings in m.



This can be generalised by marking-dependent services.

Memory Policy (1)

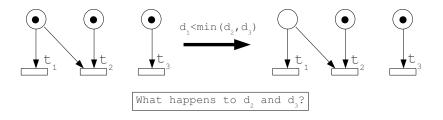


Resampling Memory

Every sampling not used is forgotten.

This could correspond to a "crash" transition.

Memory Policy (2)

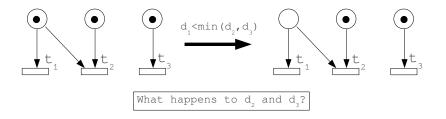


Enabling Memory

- The samplings associated with still enabled transitions are kept and decremented $(d'_3 = d_3 d_1)$.
- ullet The samplings associated with disabled transitions are forgotten (like d_2).

Disabling a transition could correspond to abort a service.

Memory Policy (3)



Age Memory

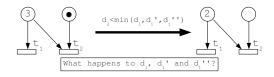
- All the samplings are kept and decremented $(d_3' = d_3 d_1 \text{ and } d_2' = d_2 d_1)$.
- The sampling associated with a disabled transition is frozen until the transition become again enabled (like d_2').

Disabling a transition could correspond to suspend a service.

Memory Policy (4)

Specification of memory policy

To be fully expressive, it should be defined w.r.t. any pair of transitions.



Interaction between memory policy and service policy

Assume enabling memory for t_1 when firing t_2 and infinite server policy for t_1 . Which sample should be forgotten?

- The last sample performed,
- The first sample performed,
- The greatest sample, etc.

Warning: This choice may have a critical impact on the complexity of analysis.

Outline

Stochastic Petri Net

2 Markov Chain

Markovian Stochastic Petri Net

Generalized Markovian Stochastic Petri Net (GSPN)

Product-form Petri Nets

Discrete Time Markov Chain (DTMC)

A DTMC is a stochastic process which fulfills:

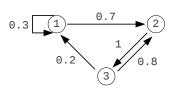
- For all n, T_n is the constant 1
- The process is *memoryless*

$$Pr(S_{n+1} = s_j \mid S_0 = s_{i_0}, ..., S_{n-1} = s_{i_{n-1}}, S_n = s_i)$$

$$= Pr(S_{n+1} = s_j \mid S_n = s_i)$$

$$\equiv P[i, j]$$

A DTMC is defined by S_0 and P



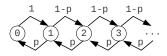
Analysis: the State Status

The *transient analysis* is easy and effective in the finite case: $\pi_n = \pi_0 \cdot P^n$ with π_n the distribution of S_n

The steady-state analysis $(\exists ? \lim_{n\to\infty} \pi_n)$ requires theoretical developments.

Classification of states w.r.t. the asymptotic behaviour of the DTMC

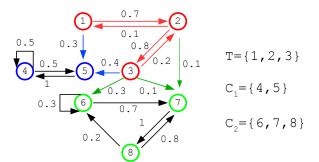
- A state is *transient* if the probability of a return after a visit is less than one. Hence the probability of its occurrence will go to zero. (p < 1/2)
- A state is recurrent null if the probability of a return after a visit is one but the mean time of this return is infinite. Hence the probability of its occurrence will go to zero. (p=1/2)
- A state is recurrent non null if the probability of a return after a visit is one and the mean time of this return is finite. (p > 1/2)



State Status in Finite DTMC

In a finite DTMC

- The status of a state only depends on the graph associated with the chain.
- A state is transient iff it belongs to
 a non terminal strongly connected component (scc) of the graph.
- A state is recurrent non null iff it belongs to a terminal scc.

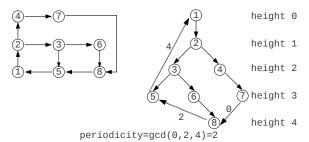


Analysis: Irreducibility and Periodicity

Irreducibility and Periodicity

- A chain is *irreducible* if its graph is strongly connected.
- The *periodicity* of an irreducible chain is the greatest integer p such that: the set of states can be partionned in p subsets S_0, \ldots, S_{p-1} where every transition goes from S_i to $S_{i+1\%p}$ for some i.

Computation of the periodicity

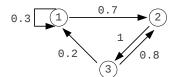


Analysis of a DTMC: a Particular Case

A particular case

The chain is irreducible and aperiodic (i.e. its periodicity is 1)

- $\pi_{\infty} \equiv \lim_{n \to \infty} \pi_n$ exists and its value is independent from π_0 .
- π_{∞} is the unique solution of $X = X \cdot P \wedge X \cdot 1 = 1$ where one can omit an arbitrary equation of the first system.



$$\pi_{\infty} = \left(1/8 \ 7/16 \ 7/16\right)$$

$$\pi_1 = 0.3\pi_1 + 0.2\pi_2$$
 $\pi_2 = 0.7\pi_1 + 0.8\pi_3$ $\pi_3 = \pi_2$

Analysis of a DTMC: the "General" Case

Almost general case: every terminal scc is aperiodic

- π_{∞} exists.
- $\pi_{\infty} = \sum_{s \in S} \pi_0(s) \sum_{i \in I} \mathtt{preach}_i[s] \cdot \pi_{\infty}^i$ where:
 - lacksquare S is the set of states,
 - $\{C_i\}_{i\in I}$ is the set of terminal scc,
 - \bullet π^i_{∞} is the steady-state distribution of \mathcal{C}_i ,
 - **1** and preach_i[s] is the probability to reach C_i starting from s.

Computation of the reachability probability for transient states

- Let T be the set of transient states (i.e. not belonging to a terminal scc)
- ullet Let $P_{T,T}$ be the submatrix of P restricted to transient states
- ullet Let $\mathtt{P}_{T,i}$ be the submatrix of P transitions from T to \mathcal{C}_i
- Then $\operatorname{preach}_i = (\sum_{n \in \mathbb{N}} (\mathsf{P}_{T,T})^n) \cdot \mathsf{P}_{T,i} \cdot \mathbf{1} = (Id \mathsf{P}_{T,T})^{-1} \cdot \mathsf{P}_{T,i} \cdot \mathbf{1}$

Illustration: SCC and Matrices

$$\mathbf{P}_{\mathsf{T},\mathsf{T}} = \begin{pmatrix} 0.0 & 0.7 & 0.0 \\ 0.1 & 0.0 & 0.8 \\ 0.0 & 0.2 & 0.0 \end{pmatrix} \qquad \mathbf{T} = \{1,2,3\}, \, \mathbf{C}_1 = \{4,5\}, \, \mathbf{C}_2 = \{6,7,8\} \}$$

$$\mathbf{P}_{\mathsf{T},\mathsf{T}} = \begin{pmatrix} 0.0 & 0.3 \\ 0.0 & 0.0 \\ 0.0 & 0.4 \end{pmatrix} \begin{pmatrix} 1.0 \\ 1.0 \\ 1.0 \\ 0.4 \end{pmatrix} = \begin{pmatrix} 0.0 \\ 0.3 \\ 0.1 \\ 0.3 \\ 0.0 \\ 0.2 \end{pmatrix} \begin{pmatrix} 0.7 \\ 0.1 \\ 0.3 \\ 0.0 \\ 0.3 \\ 0.8 \end{pmatrix} \begin{pmatrix} 0.1 \\ 0.3 \\ 0.0 \\ 0.4 \end{pmatrix} \begin{pmatrix} 0.5 \\ 0.7 \\ 0.7 \\ 0.2 \\ 0.8 \end{pmatrix} \begin{pmatrix} 0.1 \\ 0.3 \\ 0.8 \\ 0.8 \end{pmatrix}$$

$$\mathbf{P}_{\mathsf{T},\mathsf{T}} \cdot \mathbf{1} = \begin{pmatrix} 0.0 & 0.0 & 0.0 \\ 0.0 & 0.1 & 0.0 \\ 0.3 & 0.1 & 0.0 \\ 0.3 & 0.1 & 0.0 \end{pmatrix} \begin{pmatrix} 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \end{pmatrix} = \begin{pmatrix} 0.0 \\ 0.1 \\ 0.4 \end{pmatrix}$$

Continuous Time Markov Chain (CTMC)

A CTMC is a stochastic process which fulfills:

Memoryless state change

$$Pr(S_{n+1} = s_j \mid S_0 = s_{i_0}, ..., S_{n-1} = s_{i_{n-1}}, T_0 < \tau_0, ..., T_n < \tau_n, S_n = s_i)$$

= $Pr(S_{n+1} = s_j \mid S_n = s_i) \equiv P[i, j]$

Memoryless transition delay

$$Pr(T_n < \tau \mid S_0 = s_{i_0}, ..., S_{n-1} = s_{i_{n-1}}, T_0 < \tau_0, ..., T_{n-1} < \tau_{n-1}, S_n = s_i)$$

= $Pr(T_n < \tau \mid S_n = s_i) = 1 - e^{-\lambda_i \tau}$

Notations and properties

- P defines an embedded DTMC (the chain of state changes)
- Let $\pi(\tau)$ the distribution de $X(\tau)$, for δ going to 0 it holds that: $\pi(\tau + \delta)(s_i) \approx \pi(\tau)(s_i)(1 \lambda_i \delta) + \sum_j \pi(\tau)(s_j)\lambda_j \delta P[j, i]$
- Hence, let Q the infinitesimal generator defined by: $\mathbb{Q}[i,j] \equiv \lambda_i \mathbb{P}[i,j]$ for $j \neq i$ and $\mathbb{Q}[i,i] \equiv -\sum_{j \neq i} \mathbb{Q}[i,j]$ Then: $\frac{d\pi}{d\tau} = \pi \cdot \mathbb{Q}$

The exponential distribution

Let F be defined by: $F(\tau) = 1 - e^{-\lambda \tau}$

Then F is the exponential distribution with rate $\lambda > 0$.

The exponential distribution is memoryless.

Let X be a random variable with a λ -exponential distribution.

$$\mathbf{Pr}(X > \tau' \mid X > \tau) = \frac{\mathbf{Pr}(X > \tau')}{\mathbf{Pr}(X > \tau)} = \frac{e^{-\lambda \tau'}}{e^{-\lambda \tau}} = e^{-\lambda(\tau' - \tau)} = \mathbf{Pr}(X > \tau' - \tau)$$

The minimum of exponential distributions is an exponential distribution.

Let Y be independent from X with μ -exponential distribution.

$$\mathbf{Pr}(\min(X,Y) > \tau) = e^{-\lambda \tau} e^{-\mu \tau} = e^{-(\lambda + \mu)\tau}$$

The minimal variable is selected proportionally to its rate.

$$\mathbf{Pr}(X < Y) = \int_0^\infty \mathbf{Pr}(Y > \tau) F_X \{ d\tau \} = \int_0^\infty e^{-\mu \tau} \lambda e^{-\lambda \tau} d\tau = \frac{\lambda}{\lambda + \mu}$$

Convoluting the exponential distribution

The n^{th} convolution of a distribution F is defined by:

$$F^{n\star} \stackrel{\text{\tiny def}}{=} F \star \dots \star F \qquad (n \text{ times})$$

Let f_n (resp. F_n) be the density (resp. distribution) of the n^{th} convolution of the λ -exponential distribution. Then:

$$f_n(x) = \lambda e^{-\lambda x} \frac{(\lambda x)^{n-1}}{(n-1)!}$$
 and $F_n(x) = 1 - e^{-\lambda x} \sum_{0 \le m < n} \frac{(\lambda x)^m}{m!}$

Sketch of proof

Recall that: $f_1(x) = \lambda e^{-\lambda x}$.

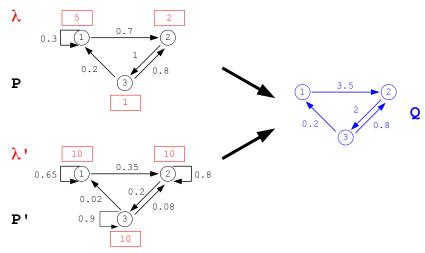
$$f_{n+1}(x) = \int_0^x f_n(x-u) f_1(u) du = \int_0^x \lambda e^{-\lambda(x-u)} \frac{(\lambda(x-u))^{n-1}}{(n-1)!} \lambda e^{-\lambda u} du$$
$$= \lambda e^{-\lambda x} \int_0^x \lambda \frac{(\lambda(x-u))^{n-1}}{(n-1)!} du = \lambda e^{-\lambda x} \frac{(\lambda x)^n}{n!}$$

Deduce F_{n+1} by:

$$\frac{d}{dx}\left(1 - e^{-\lambda x} \sum_{0 \le m \le n} \frac{(\lambda x)^m}{m!}\right) = e^{-\lambda x} \left(\lambda \sum_{0 \le m \le n} \frac{(\lambda x)^m}{m!} - \sum_{0 \le m \le n-1} \lambda \frac{(\lambda x)^m}{m!}\right) = f_{n+1}(x)$$

CTMC: Illustration and Uniformization

A CTMC



A uniform version of the CTMC (equivalent w.r.t. the states)

Analysis of a CTMC

Transient Analysis

- Construction of a uniform version of the CTMC (λ, P) such that P[i,i]>0 for all i.
- Computation by case decomposition w.r.t. the number of transitions:

$$\pi(\tau) = \pi(0) \sum_{n \in \mathbb{N}} (e^{-\lambda \tau}) \frac{\tau^n}{n!} \mathbf{P}^n$$

Steady-state analysis

- The steady-state distribution of visits is given by the steady-state distribution of (λ, P) (by construction, the terminal scc are aperiodic) ...
- equal to the steady-state distribution since the sojourn times follow the same distribution.
- A particular case: P irreducible the steady-state distribution π is the unique solution of $X \cdot \mathbf{Q} = 0 \wedge X \cdot \mathbf{1} = 1$ where one can omit an arbitrary equation of the first system.

Outline

Stochastic Petri Net

Markov Chain

Markovian Stochastic Petri Net

Generalized Markovian Stochastic Petri Net (GSPN)

Product-form Petri Nets

Markovian Stochastic Petri Net

Hypotheses

- The distribution of every transition t_i has a density function $e^{-\lambda_i \tau}$ where the parameter λ_i is called *the rate* of the transition.
- For simplicity reasons, the server policy is single server.

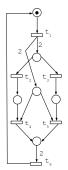
First observations

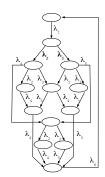
- The weights for choice policy are no more required since equality of two samples has a null probability. (due to continuity of distributions)
- The residual delay d_j-d_i of transition t_j knowing that t_i has fired (i.e. d_i is the shortest delay) has the same distribution as the initial delay.
 - Thus the memory policy is irrelevant.

Markovian Net and Markov Chain

Key observation: given a marking m with $T_m = t_1, \ldots, t_k$

- The sojourn time in m is an exponential distribution with rate $\sum_i \lambda_i$.
- The probability that t_i is the next transition to fire is $\frac{\lambda_i}{(\sum_j \lambda_j)}$.
- Thus the stochastic process is a CTMC whose states are markings and whose transitions are the transitions of the reachability graph.





Outline

Stochastic Petri Net

Markov Chain

Markovian Stochastic Petri Net

4 Generalized Markovian Stochastic Petri Net (GSPN)

Product-form Petri Nets

Generalizing Distributions for Nets

Modelling delays with exponential distributions is **reasonable** when:

- Only mean value information is known about distributions.
- Exponential distributions (or combination of them) are enough to approximate the "real" distributions.

Modelling delays with exponential distributions is **not reasonable** when:

 The distribution of an event is known and is poorly approximable with exponential distributions:

a time-out of 10 time units

• The delays of the events have different magnitude orders: executing an instruction versus performing a database request

In the last case, the 0-Dirac distribution is required.

Generalized Markovian Stochastic Petri Net (GSPN)

Generalized Markovian Stochastic Petri Nets (GSPN) are nets whose:

- timed transitions have exponential distributions,
- and *immediate transitions* have 0-Dirac distributions.

Their analysis is based on Markovian Renewal Process,

a generalization of Markov chains.

Markovian Renewal Process

A Markovian Renewal Process (MRP) fulfills:

a relative memoryless property

$$Pr(S_{n+1} = s_j, T_n < \tau \mid S_0 = s_{i_0}, ..., S_{n-1} = s_{i_{n-1}}, T_0 < \tau_0, ..., S_n = s_i)$$

= $Pr(S_{n+1} = s_j, T_n < \tau \mid S_n = s_i) \equiv \mathbb{Q}[i, j, \tau]$

- \bullet The embedded chain is defined by: $\mathtt{P}[i,j] = \lim_{\tau \to \infty} \mathtt{Q}[i,j,\tau]$
- The sojourn time Soj has a distribution defined by:

$$Pr(\mathtt{Soj}[i] < au) = \sum_{j} \mathtt{Q}[i,j, au]$$

Analysis of a MRP

• The steady-state distribution (if there exists) π is deduced from the steady-state distribution of the embedded chain π' by:

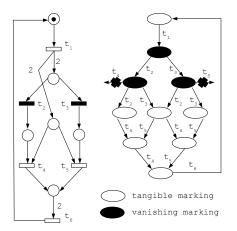
$$\pi(s_i) = \frac{\pi'(s_i)E(\text{Soj}[i])}{\sum_j \pi'(s_j)E(\text{Soj}[j])}$$

• Transient analysis is much harder ... but the reachability probabilities only depend on the embedded chain.

A GSPN is a Markovian Renewal Process

Observations

- Weights are required for immediate transitions.
- The restricted reachability graph corresponds to the embedded DTMC.



Steady-State Analysis of a GSPN (1)

Standard method for MRP

- Build the restricted reachability graph equivalent to the embedded DTMC
- ullet Deduce the probability matrix P
- \bullet Compute π^* the steady-state distribution of the visits of markings: $\pi^*=\pi^*P$
- Compute π the steady-state distribution of the sojourn in tangible markings:

$$\pi(m) = \frac{\pi^*(m) \text{Soj}(m)}{\sum_{m' \ tangible} \pi^*(m') \text{Soj}(m')}$$

How to eliminate the vanishing markings sooner in the computation?

Steady-State Analysis of a GSPN (2)

An alternative method

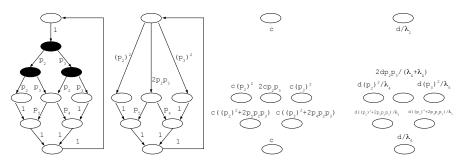
- ullet As before, compute the transition probability matrix P.
- ullet Compute the transition probability matrix P' between tangible markings.
- Compute π'^* the (relative) steady-state distribution of the visits of tangible markings: $\pi'^* = \pi'^* P'$.
- ullet Compute π the steady-state distribution of the sojourn in tangible markings:

$$\pi(m) = \frac{\pi'^*(m) \text{Soj}(m)}{\sum_{m' \ tangible} \pi'^*(m') \text{Soj}(m')}$$

Computation of P'

- Let $P_{X,Y}$ the probability transition matrix from subset X to subset Y.
- ullet Let V (resp. T) be the set of vanishing (resp. tangible) markings.
- $P' = P_{T,T} + P_{T,V}(\sum_{n \in \mathbb{N}} P_{V,V}^n) P_{V,T} = P_{T,T} + P_{T,V}(Id P_{V,V})^{-1} P_{V,T}$
- Iterative (resp. direct) computations uses the first (resp. second) expression.

Steady-State Analysis: Illustration



 $\begin{array}{ll} p_{2}\!=\!w_{2}/\left(w_{2}\!+\!w_{3}\right) & p_{3}\!=\!w_{3}/\left(w_{2}\!+\!w_{3}\right) \\ p_{a}\!=\!\!\lambda_{a}/\left(\lambda_{a}\!+\!\lambda_{a}\right) & p_{a}\!=\!\!\lambda_{a}/\left(\lambda_{a}\!+\!\lambda_{a}\right) \end{array}$

"c" and "d" are normalizing constants

Outline

Stochastic Petri Net

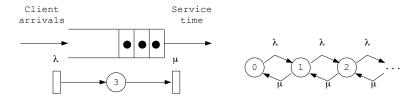
Markov Chain

Markovian Stochastic Petri Net

Generalized Markovian Stochastic Petri Net (GSPN)

5 Product-form Petri Nets

Steady-State Analysis of a Queue



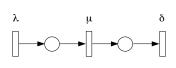
A (Markovian) queue is a CTMC

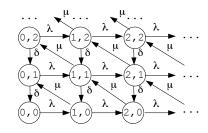
- ullet Interarrival time: exponential distribution with parameter λ
- ullet Service time: exponential distribution with parameter μ

Let $\rho = \frac{\lambda}{\mu}$ be the *utilization*

- The steady-state distribution π_{∞} exists iff $\rho < 1$
- The probability of n clients in the queue is $\pi_{\infty}(n) = \rho^n(1-\rho)$

Analysis of Two Queues in Tandem



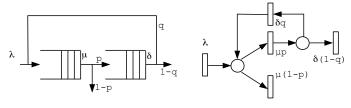


Observation. The associated Markov chain is more complex than the one corresponding to two isolated queues. However ...

Assume
$$ho_1=rac{\lambda}{\mu}<1$$
 and $ho_2=rac{\lambda}{\delta}<1$

- The steady-state distribution π_{∞} exists.
- The probability of n_1 clients in queue 1 and n_2 clients in queue 2 is $\pi_\infty(n_1,n_2)=\rho_1^{n_1}(1-\rho_1)\rho_2^{n_2}(1-\rho_2)$
- It is the product of the steady-state distributions corresponding to two isolated queues.

Analysis of an Open Queuing Network



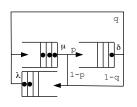
In a steady-state

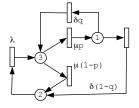
- ullet Define the (input and output) flow through queue 1 (resp. 2) as γ_1 (resp. γ_2).
- Then $\gamma_1=\lambda+q\gamma_2$ and $\gamma_2=p\gamma_1$. Thus $\gamma_1=\frac{\lambda}{1-pq}$ and $\gamma_2=\frac{p\lambda}{1-pq}$

Assume $ho_1=rac{\gamma_1}{\mu}<1$ and $ho_2=rac{\gamma_2}{\delta}<1$

- The steady-state distribution π_{∞} exists.
- The probability of n_1 clients in queue 1 and n_2 clients in queue 2 is $\pi_{\infty}(n_1,n_2)=\rho_1^{n_1}(1-\rho_1)\rho_{n_2}^n(1-\rho_2)$
- It is the product of the steady-state distributions corresponding to two isolated queues.

Analysis of a Closed Queuing Network





Visit ratios (up to a constant)

- Define the visit ratio flow of queue i as v_i .
- Then $v_1=v_3+qv_2$, $v_2=pv_1$ and $v_3=(1-p)v_1+(1-q)v_2$. Thus $v_1=1$, $v_2=p$ and $v_3=1-pq$.

Define
$$ho_1=rac{v_1}{\mu}$$
, $ho_2=rac{v_2}{\delta}$ and $ho_3=rac{v_3}{\lambda}$

- The steady-state probability of n_i clients in queue i is $\pi_{\infty}(n_1, n_2, n_3) = \frac{1}{G} \rho_1^{n_1} \rho_2^{n_2} \rho_3^{n_3}$ (with $n_1 + n_2 + n_3 = n$)
- ullet where G the normalizing constant can be efficiently computed by dynamic programming.

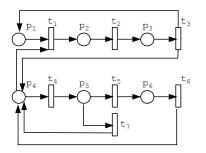
Queuing Networks and Petri Nets

Observations

- A (single client class) queuing network can easily be represented by a Petri net.
- Such a Petri net is a *state machine*: every transition has at most a single input and a single output place.

Can we define a more general subclass of Petri nets with a product form for the steady-state distribution?

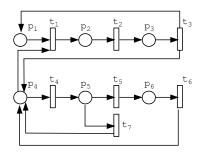
Product Form Stochastic Petri Nets (PFSPN)

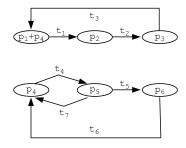


Principles

- Transitions can be partionned into subsets corresponding to several classes of clients with their specific activities
- Places model resources shared between the clients.
- Client states are implicitely represented.

Bags and Transitions in PFSPN





The resource graph

- The vertices are the input and the ouput bags of the transitions.
- Every transition of the net t yields a graph transition • $t \xrightarrow{t} t$ •
- Client classes correspond to the connected components of the graph.

First requirement: The connected components of the graph must be strongly connected.

Witnesses in PFSPN



Vector $-p_2-p_3$ is a witness for bag p_1+p_4 :

$$(-p_2-p_3) \cdot W(t_3)=1$$
 $(-p_2-p_3) \cdot W(t_1)=-1$ $(-p_2-p_3) \cdot W(t)=0$ for every other t

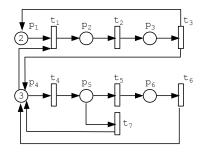
where $\ensuremath{\mathbf{W}}$ is the incidence matrix

Witness for a bag b

- Let In(b) (resp. Out(b)) the transitions with input (resp. output) b.
- Let v be a place vector, v is a witness for b if:
 - $\forall t \in In(b) \ v \cdot W(t) = -1$ (where W(t) is the incidence of t)
 - $\forall t \in Out(b) \ v \cdot W(t) = 1$
 - $\forall t \notin In(b) \cup Out(b) \ v \cdot W(t) = 0$

Second requirement: Every bag must have a witness.

Steady-State Distributions of PFSPN



The reachability space:

$$m(p_1) + m(p_2) + m(p_3) = 2$$

 $m(p_4) + m(p_5) + m(p_6) = m(p_1) + 1$

Steady-state distribution

- Assume the requirements are fulfilled, with w(b) the witness for bag b.
- Compute the ratio visit of bags v(b) on the resource graph.
- The output rate of a bag b is $\mu(b) = \sum_{t|\bullet_t=b} \mu(t)$ with $\mu(t)$ the rate of t.
- Then: $\pi_{\infty}(m) = \frac{1}{G} \prod_b \left(\frac{v(b)}{\mu(b)} \right)^{w(b) \cdot m}$

Observation. The normalizing constant can be efficiently computed if the reachability space is characterized by linear place invariants.

Some References

M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, G. Franceschinis Modelling with Generalized Stochastic Petri Nets

Wiley series in parallel computing, John Wiley & Sons, 1995 Freely available on the Web site of GreatSPN

S. Haddad, P. Moreaux

Chapter 7: Stochastic Petri Nets

Petri Nets: Fundamental Models and Applications Wiley pp. 269-302, 2009

S. Haddad, P. Moreaux, M. Sereno, M. Silva

Product-form and stochastic Petri nets: a structural approach.

Performance Evaluation, 59: 313-336, 2005.

S. Haddad, J. Mairesse and H.-T. Nguyen

Synthesis and Analysis of Product-form Petri Nets.

Fundamenta Informaticae 122(1-2), pages 147-172, 2013.