## **Stochastic Petri Net**

#### Serge Haddad

LSV
ENS Paris-Saclay & CNRS & Inria
haddad@lsv.fr

Petri Nets 2019, June 24th 2019

- Stochastic Petri Net
- Markov Chain
- Markovian Stochastic Petri Net
- Generalized Markovian Stochastic Petri Net (GSPN)
- 5 Product-form Petri Nets

## **Outline**

Stochastic Petri Net

**Markov Chain** 

Markovian Stochastic Petri Net

Generalized Markovian Stochastic Petri Net (GSPN)

**Product-form Petri Nets** 

## Stochastic Petri Net versus Time Petri Net

- In TPN, the delays are non deterministically chosen.
- In Stochastic Petri Net (SPN), the delays are *randomly* chosen by sampling distributions associated with transitions.

... but these distributions are not sufficient to eliminate non determinism.

#### Policies for a net

One needs to define:

- The choice policy.
   What is the next transition to fire?
- The service policy.
   What is the influence of the enabling degree of a transition on the process?
- The memory policy.
   What become the samplings of distributions that have not be used?

# **Choice Policy**

In the net, associate a distribution  $D_i$  and a weight  $w_i$  with every transition  $t_i$ .

#### Preselection w.r.t. a marking m and enabled transitions $T_m$

- $\bullet$  Normalize weights  $w_i$  of the enabled transitions:  $w_i' \equiv \frac{w_i}{\sum_{t_j \in T_m} w_j}$
- ullet Sample the distribution defined by the  $w_i'$ 's.
- Let  $t_i$  be the selected transition, sample  $D_i$  giving the value  $d_i$ .

#### versus

#### Race policy with postselection w.r.t. a marking m

- For every  $t_i \in T_m$ , sample  $D_i$  giving the value  $d_i$ .
- Let T' be the subset of  $T_m$  with the smallest delays. Normalize weights  $w_i$  of transitions of T':  $w_i' \equiv \frac{w_i}{\sum_{t_i \in T'} w_j}$
- Sample the distribution defined by the  $w_i'$ 's yielding some  $t_i$ .

Priorities between transitions could added to refine the selection.

## **Choice Policy: Illustration**



Preselection Race Policy

Sample (1/5, 2/5, 2/5)

Sample (D,,D,,D)

Outcome t,

Outcome (3.2, 6.5, 3.2)

Sample D

Sample (1/3, -, 2/3)

Outcome 4.2

Outcome t,

# **Server Policy**

#### A transition t can be viewed as server for firings:

- A single server t allows a single instance of firings in m if m[t).
- An infinite server t allows d instances of firings in m where  $d = \min(\left|\frac{m(p)}{Pre(p,t)}\right| \mid p \in {}^{\bullet}t)$  is the enabling degree.
- A multiple server t with bound b allows min(b, d) instances of firings in m.



This can be generalised by marking-dependent services.

# Memory Policy (1)



#### Resampling Memory

Every sampling not used is forgotten.

This could correspond to a "crash" transition.

# Memory Policy (2)



#### **Enabling Memory**

- The samplings associated with still enabled transitions are kept and decremented  $(d'_3 = d_3 d_1)$ .
- ullet The samplings associated with disabled transitions are forgotten (like  $d_2$ ).

Disabling a transition could correspond to abort a service.

# Memory Policy (3)



#### Age Memory

- All the samplings are kept and decremented  $(d_3' = d_3 d_1 \text{ and } d_2' = d_2 d_1)$ .
- The sampling associated with a disabled transition is frozen until the transition become again enabled (like  $d_2'$ ).

Disabling a transition could correspond to suspend a service.

# Memory Policy (4)

#### Specification of memory policy

To be fully expressive, it should be defined w.r.t. any pair of transitions.



#### Interaction between memory policy and service policy

Assume enabling memory for  $t_1$  when firing  $t_2$  and infinite server policy for  $t_1$ . Which sample should be forgotten?

- The last sample performed,
- The first sample performed,
- The greatest sample, etc.

Warning: This choice may have a critical impact on the complexity of analysis.

## **Outline**

**Stochastic Petri Net** 

2 Markov Chain

Markovian Stochastic Petri Net

Generalized Markovian Stochastic Petri Net (GSPN)

**Product-form Petri Nets** 

# Discrete Time Markov Chain (DTMC)

#### A DTMC is a stochastic process which fulfills:

- For all n,  $T_n$  is the constant 1
- The process is *memoryless*

$$Pr(S_{n+1} = s_j \mid S_0 = s_{i_0}, ..., S_{n-1} = s_{i_{n-1}}, S_n = s_i)$$

$$= Pr(S_{n+1} = s_j \mid S_n = s_i)$$

$$\equiv P[i, j]$$

#### A DTMC is defined by $S_0$ and P





# **Analysis: the State Status**

The *transient analysis* is easy and effective in the finite case:  $\pi_n = \pi_0 \cdot P^n$  with  $\pi_n$  the distribution of  $S_n$ 

The steady-state analysis  $(\exists ? \lim_{n\to\infty} \pi_n)$  requires theoretical developments.

#### Classification of states w.r.t. the asymptotic behaviour of the DTMC

- A state is *transient* if the probability of a return after a visit is less than one. Hence the probability of its occurrence will go to zero. (p < 1/2)
- A state is recurrent null if the probability of a return after a visit is one but the mean time of this return is infinite. Hence the probability of its occurrence will go to zero. (p=1/2)
- A state is recurrent non null if the probability of a return after a visit is one and the mean time of this return is finite. (p > 1/2)



## **State Status in Finite DTMC**

#### In a finite DTMC

- The status of a state only depends on the graph associated with the chain.
- A state is transient iff it belongs to
   a non terminal strongly connected component (scc) of the graph.
- A state is recurrent non null iff it belongs to a terminal scc.



# **Analysis: Irreducibility and Periodicity**

#### Irreducibility and Periodicity

- A chain is *irreducible* if its graph is strongly connected.
- The *periodicity* of an irreducible chain is the greatest integer p such that: the set of states can be partionned in p subsets  $S_0, \ldots, S_{p-1}$ where every transition goes from  $S_i$  to  $S_{i+1\%p}$  for some i.

#### Computation of the periodicity



## Analysis of a DTMC: a Particular Case

#### A particular case

The chain is irreducible and aperiodic (i.e. its periodicity is 1)

- $\pi_{\infty} \equiv \lim_{n \to \infty} \pi_n$  exists and its value is independent from  $\pi_0$ .
- $\pi_{\infty}$  is the unique solution of  $X = X \cdot P \wedge X \cdot 1 = 1$  where one can omit an arbitrary equation of the first system.



$$\pi_{\infty} = \left(1/8 \ 7/16 \ 7/16\right)$$

$$\pi_1 = 0.3\pi_1 + 0.2\pi_2$$
  $\pi_2 = 0.7\pi_1 + 0.8\pi_3$   $\pi_3 = \pi_2$ 

# Analysis of a DTMC: the "General" Case

#### Almost general case: every terminal scc is aperiodic

- $\pi_{\infty}$  exists.
- $\pi_{\infty} = \sum_{s \in S} \pi_0(s) \sum_{i \in I} \mathtt{preach}_i[s] \cdot \pi_{\infty}^i$  where:
  - lacksquare S is the set of states,
  - $\{C_i\}_{i\in I}$  is the set of terminal scc,
  - $\bullet$   $\pi^i_{\infty}$  is the steady-state distribution of  $\mathcal{C}_i$ ,
  - **1** and preach<sub>i</sub>[s] is the probability to reach  $C_i$  starting from s.

#### Computation of the reachability probability for transient states

- Let T be the set of transient states (i.e. not belonging to a terminal scc)
- ullet Let  $P_{T,T}$  be the submatrix of P restricted to transient states
- ullet Let  $\mathtt{P}_{T,i}$  be the submatrix of P transitions from T to  $\mathcal{C}_i$
- Then  $\operatorname{preach}_i = (\sum_{n \in \mathbb{N}} (\mathsf{P}_{T,T})^n) \cdot \mathsf{P}_{T,i} \cdot \mathbf{1} = (Id \mathsf{P}_{T,T})^{-1} \cdot \mathsf{P}_{T,i} \cdot \mathbf{1}$

## **Illustration: SCC and Matrices**

$$\mathbf{P}_{\mathsf{T},\mathsf{T}} = \begin{pmatrix} 0.0 & 0.7 & 0.0 \\ 0.1 & 0.0 & 0.8 \\ 0.0 & 0.2 & 0.0 \end{pmatrix} \qquad \mathbf{T} = \{1,2,3\}, \, \mathbf{C}_1 = \{4,5\}, \, \mathbf{C}_2 = \{6,7,8\} \}$$

$$\mathbf{P}_{\mathsf{T},\mathsf{T}} = \begin{pmatrix} 0.0 & 0.3 \\ 0.0 & 0.0 \\ 0.0 & 0.4 \end{pmatrix} \begin{pmatrix} 1.0 \\ 1.0 \\ 1.0 \\ 0.4 \end{pmatrix} = \begin{pmatrix} 0.0 \\ 0.3 \\ 0.1 \\ 0.3 \\ 0.0 \\ 0.2 \end{pmatrix} \begin{pmatrix} 0.7 \\ 0.1 \\ 0.3 \\ 0.0 \\ 0.3 \\ 0.8 \end{pmatrix} \begin{pmatrix} 0.1 \\ 0.3 \\ 0.0 \\ 0.4 \end{pmatrix} \begin{pmatrix} 0.5 \\ 0.7 \\ 0.7 \\ 0.2 \\ 0.8 \end{pmatrix} \begin{pmatrix} 0.1 \\ 0.3 \\ 0.8 \\ 0.8 \end{pmatrix}$$

$$\mathbf{P}_{\mathsf{T},\mathsf{T}} \cdot \mathbf{1} = \begin{pmatrix} 0.0 & 0.0 & 0.0 \\ 0.0 & 0.1 & 0.0 \\ 0.3 & 0.1 & 0.0 \\ 0.3 & 0.1 & 0.0 \end{pmatrix} \begin{pmatrix} 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \end{pmatrix} = \begin{pmatrix} 0.0 \\ 0.1 \\ 0.4 \end{pmatrix}$$

# Continuous Time Markov Chain (CTMC)

#### A CTMC is a stochastic process which fulfills:

Memoryless state change

$$Pr(S_{n+1} = s_j \mid S_0 = s_{i_0}, ..., S_{n-1} = s_{i_{n-1}}, T_0 < \tau_0, ..., T_n < \tau_n, S_n = s_i)$$
  
=  $Pr(S_{n+1} = s_j \mid S_n = s_i) \equiv P[i, j]$ 

Memoryless transition delay

$$Pr(T_n < \tau \mid S_0 = s_{i_0}, ..., S_{n-1} = s_{i_{n-1}}, T_0 < \tau_0, ..., T_{n-1} < \tau_{n-1}, S_n = s_i)$$
  
=  $Pr(T_n < \tau \mid S_n = s_i) = 1 - e^{-\lambda_i \tau}$ 

#### Notations and properties

- P defines an embedded DTMC (the chain of state changes)
- Let  $\pi(\tau)$  the distribution de  $X(\tau)$ , for  $\delta$  going to 0 it holds that:  $\pi(\tau + \delta)(s_i) \approx \pi(\tau)(s_i)(1 \lambda_i \delta) + \sum_j \pi(\tau)(s_j)\lambda_j \delta P[j, i]$
- Hence, let Q the infinitesimal generator defined by:  $\mathbb{Q}[i,j] \equiv \lambda_i \mathbb{P}[i,j]$  for  $j \neq i$  and  $\mathbb{Q}[i,i] \equiv -\sum_{j \neq i} \mathbb{Q}[i,j]$  Then:  $\frac{d\pi}{d\tau} = \pi \cdot \mathbb{Q}$

## The exponential distribution

Let F be defined by:  $F(\tau) = 1 - e^{-\lambda \tau}$ 

Then F is the exponential distribution with rate  $\lambda > 0$ .

The exponential distribution is memoryless.

Let X be a random variable with a  $\lambda$ -exponential distribution.

$$\mathbf{Pr}(X > \tau' \mid X > \tau) = \frac{\mathbf{Pr}(X > \tau')}{\mathbf{Pr}(X > \tau)} = \frac{e^{-\lambda \tau'}}{e^{-\lambda \tau}} = e^{-\lambda(\tau' - \tau)} = \mathbf{Pr}(X > \tau' - \tau)$$

The minimum of exponential distributions is an exponential distribution.

Let Y be independent from X with  $\mu$ -exponential distribution.

$$\mathbf{Pr}(\min(X,Y) > \tau) = e^{-\lambda \tau} e^{-\mu \tau} = e^{-(\lambda + \mu)\tau}$$

The minimal variable is selected proportionally to its rate.

$$\mathbf{Pr}(X < Y) = \int_0^\infty \mathbf{Pr}(Y > \tau) F_X \{ d\tau \} = \int_0^\infty e^{-\mu \tau} \lambda e^{-\lambda \tau} d\tau = \frac{\lambda}{\lambda + \mu}$$

# Convoluting the exponential distribution

The  $n^{th}$  convolution of a distribution F is defined by:

$$F^{n\star} \stackrel{\text{\tiny def}}{=} F \star \dots \star F \qquad (n \text{ times})$$

Let  $f_n$  (resp.  $F_n$ ) be the density (resp. distribution) of the  $n^{th}$  convolution of the  $\lambda$ -exponential distribution. Then:

$$f_n(x) = \lambda e^{-\lambda x} \frac{(\lambda x)^{n-1}}{(n-1)!}$$
 and  $F_n(x) = 1 - e^{-\lambda x} \sum_{0 \le m < n} \frac{(\lambda x)^m}{m!}$ 

#### Sketch of proof

Recall that:  $f_1(x) = \lambda e^{-\lambda x}$ .

$$f_{n+1}(x) = \int_0^x f_n(x-u) f_1(u) du = \int_0^x \lambda e^{-\lambda(x-u)} \frac{(\lambda(x-u))^{n-1}}{(n-1)!} \lambda e^{-\lambda u} du$$
$$= \lambda e^{-\lambda x} \int_0^x \lambda \frac{(\lambda(x-u))^{n-1}}{(n-1)!} du = \lambda e^{-\lambda x} \frac{(\lambda x)^n}{n!}$$

Deduce  $F_{n+1}$  by:

$$\frac{d}{dx}\left(1 - e^{-\lambda x} \sum_{0 \le m \le n} \frac{(\lambda x)^m}{m!}\right) = e^{-\lambda x} \left(\lambda \sum_{0 \le m \le n} \frac{(\lambda x)^m}{m!} - \sum_{0 \le m \le n-1} \lambda \frac{(\lambda x)^m}{m!}\right) = f_{n+1}(x)$$

## **CTMC: Illustration and Uniformization**

#### A CTMC



A uniform version of the CTMC (equivalent w.r.t. the states)

# **Analysis of a CTMC**

#### Transient Analysis

- Construction of a uniform version of the CTMC  $(\lambda, P)$  such that P[i,i]>0 for all i.
- Computation by case decomposition w.r.t. the number of transitions:

$$\pi(\tau) = \pi(0) \sum_{n \in \mathbb{N}} (e^{-\lambda \tau}) \frac{\tau^n}{n!} \mathbf{P}^n$$

#### Steady-state analysis

- The steady-state distribution of visits is given by the steady-state distribution of  $(\lambda, P)$  (by construction, the terminal scc are aperiodic) ...
- equal to the steady-state distribution since the sojourn times follow the same distribution.
- A particular case: P irreducible the steady-state distribution  $\pi$  is the unique solution of  $X \cdot \mathbf{Q} = 0 \wedge X \cdot \mathbf{1} = 1$  where one can omit an arbitrary equation of the first system.

## **Outline**

**Stochastic Petri Net** 

**Markov Chain** 

Markovian Stochastic Petri Net

Generalized Markovian Stochastic Petri Net (GSPN)

**Product-form Petri Nets** 

## Markovian Stochastic Petri Net

#### Hypotheses

- The distribution of every transition  $t_i$  has a density function  $e^{-\lambda_i \tau}$  where the parameter  $\lambda_i$  is called *the rate* of the transition.
- For simplicity reasons, the server policy is single server.

#### First observations

- The weights for choice policy are no more required since equality of two samples has a null probability. (due to continuity of distributions)
- The residual delay  $d_j-d_i$  of transition  $t_j$  knowing that  $t_i$  has fired (i.e.  $d_i$  is the shortest delay) has the same distribution as the initial delay.
  - Thus the memory policy is irrelevant.

## Markovian Net and Markov Chain

Key observation: given a marking m with  $T_m = t_1, \ldots, t_k$ 

- The sojourn time in m is an exponential distribution with rate  $\sum_i \lambda_i$ .
- The probability that  $t_i$  is the next transition to fire is  $\frac{\lambda_i}{(\sum_j \lambda_j)}$ .
- Thus the stochastic process is a CTMC whose states are markings and whose transitions are the transitions of the reachability graph.





## **Outline**

**Stochastic Petri Net** 

**Markov Chain** 

Markovian Stochastic Petri Net

4 Generalized Markovian Stochastic Petri Net (GSPN)

**Product-form Petri Nets** 

## **Generalizing Distributions for Nets**

#### Modelling delays with exponential distributions is **reasonable** when:

- Only mean value information is known about distributions.
- Exponential distributions (or combination of them) are enough to approximate the "real" distributions.

#### Modelling delays with exponential distributions is **not reasonable** when:

 The distribution of an event is known and is poorly approximable with exponential distributions:

a time-out of 10 time units

• The delays of the events have different magnitude orders: executing an instruction versus performing a database request

In the last case, the 0-Dirac distribution is required.

# Generalized Markovian Stochastic Petri Net (GSPN)

Generalized Markovian Stochastic Petri Nets (GSPN) are nets whose:

- timed transitions have exponential distributions,
- and *immediate transitions* have 0-Dirac distributions.

Their analysis is based on Markovian Renewal Process,

a generalization of Markov chains.

## Markovian Renewal Process

#### A Markovian Renewal Process (MRP) fulfills:

a relative memoryless property

$$Pr(S_{n+1} = s_j, T_n < \tau \mid S_0 = s_{i_0}, ..., S_{n-1} = s_{i_{n-1}}, T_0 < \tau_0, ..., S_n = s_i)$$
  
=  $Pr(S_{n+1} = s_j, T_n < \tau \mid S_n = s_i) \equiv \mathbb{Q}[i, j, \tau]$ 

- $\bullet$  The embedded chain is defined by:  $\mathtt{P}[i,j] = \lim_{\tau \to \infty} \mathtt{Q}[i,j,\tau]$
- The sojourn time Soj has a distribution defined by:

$$Pr(\mathtt{Soj}[i] < au) = \sum_{j} \mathtt{Q}[i,j, au]$$

#### Analysis of a MRP

• The steady-state distribution (if there exists)  $\pi$  is deduced from the steady-state distribution of the embedded chain  $\pi'$  by:

$$\pi(s_i) = \frac{\pi'(s_i)E(\text{Soj}[i])}{\sum_j \pi'(s_j)E(\text{Soj}[j])}$$

• Transient analysis is much harder ... but the reachability probabilities only depend on the embedded chain.

## A GSPN is a Markovian Renewal Process

#### Observations

- Weights are required for immediate transitions.
- The restricted reachability graph corresponds to the embedded DTMC.



# Steady-State Analysis of a GSPN (1)

#### Standard method for MRP

- Build the restricted reachability graph equivalent to the embedded DTMC
- ullet Deduce the probability matrix P
- $\bullet$  Compute  $\pi^*$  the steady-state distribution of the visits of markings:  $\pi^*=\pi^*P$
- Compute  $\pi$  the steady-state distribution of the sojourn in tangible markings:

$$\pi(m) = \frac{\pi^*(m) \text{Soj}(m)}{\sum_{m' \ tangible} \pi^*(m') \text{Soj}(m')}$$

How to eliminate the vanishing markings sooner in the computation?

# Steady-State Analysis of a GSPN (2)

#### An alternative method

- ullet As before, compute the transition probability matrix P.
- ullet Compute the transition probability matrix P' between tangible markings.
- Compute  $\pi'^*$  the (relative) steady-state distribution of the visits of tangible markings:  $\pi'^* = \pi'^* P'$ .
- ullet Compute  $\pi$  the steady-state distribution of the sojourn in tangible markings:

$$\pi(m) = \frac{\pi'^*(m) \text{Soj}(m)}{\sum_{m' \ tangible} \pi'^*(m') \text{Soj}(m')}$$

#### Computation of P'

- Let  $P_{X,Y}$  the probability transition matrix from subset X to subset Y.
- ullet Let V (resp. T) be the set of vanishing (resp. tangible) markings.
- $P' = P_{T,T} + P_{T,V}(\sum_{n \in \mathbb{N}} P_{V,V}^n) P_{V,T} = P_{T,T} + P_{T,V}(Id P_{V,V})^{-1} P_{V,T}$
- Iterative (resp. direct) computations uses the first (resp. second) expression.

# **Steady-State Analysis: Illustration**



 $\begin{array}{ll} p_{2}\!=\!w_{2}/\left(w_{2}\!+\!w_{3}\right) & p_{3}\!=\!w_{3}/\left(w_{2}\!+\!w_{3}\right) \\ p_{a}\!=\!\!\lambda_{a}/\left(\lambda_{a}\!+\!\lambda_{a}\right) & p_{a}\!=\!\!\lambda_{a}/\left(\lambda_{a}\!+\!\lambda_{a}\right) \end{array}$ 

"c" and "d" are normalizing constants

## **Outline**

**Stochastic Petri Net** 

**Markov Chain** 

Markovian Stochastic Petri Net

Generalized Markovian Stochastic Petri Net (GSPN)

5 Product-form Petri Nets

# Steady-State Analysis of a Queue



#### A (Markovian) queue is a CTMC

- ullet Interarrival time: exponential distribution with parameter  $\lambda$
- ullet Service time: exponential distribution with parameter  $\mu$

## Let $\rho = \frac{\lambda}{\mu}$ be the *utilization*

- The steady-state distribution  $\pi_{\infty}$  exists iff  $\rho < 1$
- The probability of n clients in the queue is  $\pi_{\infty}(n) = \rho^n(1-\rho)$

# **Analysis of Two Queues in Tandem**





**Observation.** The associated Markov chain is more complex than the one corresponding to two isolated queues. However ...

Assume 
$$ho_1=rac{\lambda}{\mu}<1$$
 and  $ho_2=rac{\lambda}{\delta}<1$ 

- The steady-state distribution  $\pi_{\infty}$  exists.
- The probability of  $n_1$  clients in queue 1 and  $n_2$  clients in queue 2 is  $\pi_\infty(n_1,n_2)=\rho_1^{n_1}(1-\rho_1)\rho_2^{n_2}(1-\rho_2)$
- It is the product of the steady-state distributions corresponding to two isolated queues.

# **Analysis of an Open Queuing Network**



#### In a steady-state

- ullet Define the (input and output) flow through queue 1 (resp. 2) as  $\gamma_1$  (resp.  $\gamma_2$ ).
- Then  $\gamma_1=\lambda+q\gamma_2$  and  $\gamma_2=p\gamma_1$ . Thus  $\gamma_1=\frac{\lambda}{1-pq}$  and  $\gamma_2=\frac{p\lambda}{1-pq}$

# Assume $ho_1=rac{\gamma_1}{\mu}<1$ and $ho_2=rac{\gamma_2}{\delta}<1$

- The steady-state distribution  $\pi_{\infty}$  exists.
- The probability of  $n_1$  clients in queue 1 and  $n_2$  clients in queue 2 is  $\pi_{\infty}(n_1,n_2)=\rho_1^{n_1}(1-\rho_1)\rho_{n_2}^n(1-\rho_2)$
- It is the product of the steady-state distributions corresponding to two isolated queues.



# **Analysis of a Closed Queuing Network**





#### Visit ratios (up to a constant)

- Define the visit ratio flow of queue i as  $v_i$ .
- Then  $v_1=v_3+qv_2$ ,  $v_2=pv_1$  and  $v_3=(1-p)v_1+(1-q)v_2$ . Thus  $v_1=1$ ,  $v_2=p$  and  $v_3=1-pq$ .

Define 
$$ho_1=rac{v_1}{\mu}$$
,  $ho_2=rac{v_2}{\delta}$  and  $ho_3=rac{v_3}{\lambda}$ 

- The steady-state probability of  $n_i$  clients in queue i is  $\pi_{\infty}(n_1, n_2, n_3) = \frac{1}{G} \rho_1^{n_1} \rho_2^{n_2} \rho_3^{n_3}$  (with  $n_1 + n_2 + n_3 = n$ )
- ullet where G the normalizing constant can be efficiently computed by dynamic programming.

# **Queuing Networks and Petri Nets**

#### Observations

- A (single client class) queuing network can easily be represented by a Petri net.
- Such a Petri net is a *state machine*: every transition has at most a single input and a single output place.

Can we define a more general subclass of Petri nets with a product form for the steady-state distribution?

# Product Form Stochastic Petri Nets (PFSPN)



#### **Principles**

- Transitions can be partionned into subsets corresponding to several classes of clients with their specific activities
- Places model resources shared between the clients.
- Client states are implicitely represented.

# **Bags and Transitions in PFSPN**





#### The resource graph

- The vertices are the input and the ouput bags of the transitions.
- Every transition of the net t yields a graph transition • $t \xrightarrow{t} t$ •
- Client classes correspond to the connected components of the graph.

First requirement: The connected components of the graph must be strongly connected.

### Witnesses in PFSPN





Vector  $-p_2-p_3$  is a witness for bag  $p_1+p_4$ :

$$(-p_2-p_3) \cdot W(t_3)=1$$
  $(-p_2-p_3) \cdot W(t_1)=-1$   $(-p_2-p_3) \cdot W(t)=0$  for every other t

where  $\ensuremath{\mathbf{W}}$  is the incidence matrix

#### Witness for a bag b

- Let In(b) (resp. Out(b)) the transitions with input (resp. output) b.
- Let v be a place vector, v is a witness for b if:
  - $\forall t \in In(b) \ v \cdot W(t) = -1$  (where W(t) is the incidence of t)
  - $\forall t \in Out(b) \ v \cdot W(t) = 1$
  - $\forall t \notin In(b) \cup Out(b) \ v \cdot W(t) = 0$

Second requirement: Every bag must have a witness.

## Steady-State Distributions of PFSPN



#### The reachability space:

$$m(p_1) + m(p_2) + m(p_3) = 2$$
  
 $m(p_4) + m(p_5) + m(p_6) = m(p_1) + 1$ 

#### Steady-state distribution

- Assume the requirements are fulfilled, with w(b) the witness for bag b.
- Compute the ratio visit of bags v(b) on the resource graph.
- The output rate of a bag b is  $\mu(b) = \sum_{t|\bullet_t=b} \mu(t)$  with  $\mu(t)$  the rate of t.
- Then:  $\pi_{\infty}(m) = \frac{1}{G} \prod_b \left( \frac{v(b)}{\mu(b)} \right)^{w(b) \cdot m}$

Observation. The normalizing constant can be efficiently computed if the reachability space is characterized by linear place invariants.



## **Some References**

M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, G. Franceschinis Modelling with Generalized Stochastic Petri Nets

Wiley series in parallel computing, John Wiley & Sons, 1995 Freely available on the Web site of GreatSPN

#### S. Haddad, P. Moreaux

Chapter 7: Stochastic Petri Nets

Petri Nets: Fundamental Models and Applications Wiley pp. 269-302, 2009

S. Haddad, P. Moreaux, M. Sereno, M. Silva

Product-form and stochastic Petri nets: a structural approach.

Performance Evaluation, 59: 313-336, 2005.

#### S. Haddad, J. Mairesse and H.-T. Nguyen

Synthesis and Analysis of Product-form Petri Nets.

Fundamenta Informaticae 122(1-2), pages 147-172, 2013.