Réseaux de Petri discrets et continus : apports réciproques

Serge Haddad

LSV ENS Paris-Saclay & CNRS & Inria

Modélisation des Systèmes Réactifs, Marseille, 16/11/2017

(1) Laura Recalde, SH and Manuel Silva. Continuous Petri Nets: Expressive Power and Decidability Issues. IJFCS 21(2), 2010

> (2) Estibaliz Fraca and SH. Complexity Analysis of Continuous Petri Nets. FI 137(1), 2015

(3) Michaël Blondin, Alain Finkel, Christoph Haase and SH. Approaching the Coverability Problem Continuously, TOCL 18(3), 2017

Un système de production

Deux produits sont combinés pour en former un troisième : $P_1 + 2P_2 \rightarrow P_3$ Une première modélisation par réseau de Petri avec 17000 P_1 et 1200 P_2 :

Une deuxième modélisation avec des fractions de franchissement (ici 0.01) :

 $\begin{array}{c} p_1 & \overbrace{170}^{170} & t_1 \\ p_2 & \overbrace{12}^{12} & 2 \end{array} \qquad p_3 \\ 170p_1 + 12p_2 & \underbrace{0.01t_1}_{169.99p_1} + 11.98p_2 + 0.01p_3 \\ \text{L'espace d'états n'est plus discret.} \end{array}$

Fluidification

La fluidification « approxime » un espace discret par un espace continu.

• Optimisation.

- lorsque les contraintes et l'objectif sont linéaires ;
- on transforme les variables entières (problème NP-complet) en variables réelles ;
- et on calcule en temps polynomial une borne de la valeur optimale.

• Limite fluide.

- lorsque des populations d'espèces évoluent aléatoirement ;
- on remplace leur nombre par leur proportion et on définit des équations (différentielles ou de récurrence) appropriées;
- dont la solution constitue le comportement asymptotique du système discret.

Quelques applications

Diagnostic de systèmes manufacturiers

Régulation de réseaux biologiques

Système de distribution d'eau

Trafic urbain

Plan

Réseaux de Petri continus

- 2 Caractérisation des propriétés
- 3 Complexité des problèmes
- 4 Couverture des réseaux de Petri
- 5 Retour aux réseaux continus

Plan

1 Réseaux de Petri continus

- 2 Caractérisation des propriétés
- Complexité des problèmes
- ④ Couverture des réseaux de Petri
- 5 Retour aux réseaux continus

Réseaux de Petri continus : syntaxe et sémantique (1)

Un réseau de Petri continu est un réseau de Petri $\mathcal{N} = \langle P, T, \mathbf{Pre}, \mathbf{Post} \rangle$ dont les marquages sont des vecteurs positifs et *réels* sur les places.

La règle de franchissement permet un franchissement pondéré $m \stackrel{lpha t}{\longrightarrow} m'$.

Le degré de franchissement de t pour m, enab(t, m) ∈ ℝ_{≥0} ∪ ∞ est défini par :

$$enab(t, \boldsymbol{m}) \stackrel{\mathsf{def}}{=} \min\{ \frac{\boldsymbol{m}[p]}{\mathbf{Pre}[p, t]} \mid \mathbf{Pre}[p, t] > 0 \}$$

• t est franchissable pour m si enab(t, m) > 0.

Réseaux de Petri continus : syntaxe et sémantique (2)

La transition t peut être franchie pour un $\alpha \in \mathbb{R}$ tel que $0 \le \alpha \le enab(t, m)$ et son franchisssement conduit au marquage m' défini par :

pour tout
$$p \in P$$
 $\boldsymbol{m}'[p] \stackrel{\mathsf{def}}{=} \boldsymbol{m}[p] + lpha \mathbf{C}[p,t]$

avec $\mathbf{C} \stackrel{\text{def}}{=} \mathbf{Post} - \mathbf{Pre}$, la matrice d'incidence.

Réseaux de Petri continus temporisés

En associant une « vitesse » de franchissement aux transitions :

- le comportement devient déterministe
- défini par un système d'équations différentielles.

Problème : les propriétés pertinentes sont indécidables.

Contrôle des vitesses :

- Les trajectoires du réseau continu
- sont les traces des trajectoires du réseau temporisé sous un contrôle arbitraire.

L'étude d'un réseau continu s'applique au réseau temporisé contrôlé.

Une séquence de franchissement

Ensemble d'accessibilité

- L'ensemble d'accessibilité du réseau continu contient celui du réseau discret.
- L'ensemble d'accessibilité du réseau continu est l'intérieur d'un polyèdre complété par certaines faces.

Propriétés d'état

Soit un réseau $\langle \mathcal{N}, \boldsymbol{m}_0 \rangle$ et un marquage \boldsymbol{m} , Accessibilité. \boldsymbol{m} est accessible dans $\langle \mathcal{N}, \boldsymbol{m}_0 \rangle$ si $\boldsymbol{m} \in \operatorname{RS}(\mathcal{N}, \boldsymbol{m}_0)$. Couverture. \boldsymbol{m} est couvrable dans $\langle \mathcal{N}, \boldsymbol{m}_0 \rangle$ si $\exists \boldsymbol{m}' \geq \boldsymbol{m} \ \boldsymbol{m}' \in \operatorname{RS}(\mathcal{N}, \boldsymbol{m}_0)$. Caractère borné. $\langle \mathcal{N}, \boldsymbol{m}_0 \rangle$ est borné si $\exists b \ \forall \boldsymbol{m} \in \operatorname{RS}(\mathcal{N}, \boldsymbol{m}_0) \ \forall p \in P \ \boldsymbol{m}[p] \leq b$. Inclusion. Soit $\langle \mathcal{N}', \boldsymbol{m}'_0 \rangle$ avec P = P', $\langle \mathcal{N}, \boldsymbol{m}_0 \rangle$ est inclus dans $\langle \mathcal{N}', \boldsymbol{m}'_0 \rangle$ si $\operatorname{RS}(\mathcal{N}, \boldsymbol{m}_0) \subseteq \operatorname{RS}(\mathcal{N}', \boldsymbol{m}'_0)$.

Etat d'accueil. m est un *état d'accueil* si $RS(\mathcal{N}, m_0) \subseteq RS(\mathcal{N}^{-1}, m)$.

Le marquage p_2 n'est pas accessible.

Le réseau est borné et n'admet pas d'état d'accueil.

Propriétés de transition

Pseudo-vivacité. $\langle \mathcal{N}, \boldsymbol{m}_0 \rangle$ est *pseudo-vivant* si $\forall \boldsymbol{m} \in \operatorname{RS}(\mathcal{N}, \boldsymbol{m}_0) \exists t \in T \ \boldsymbol{m} \xrightarrow{t}$.

Vivacité. $\langle \mathcal{N}, \boldsymbol{m}_0
angle$ est *vivant* si

$$\forall t \in T \ \forall \boldsymbol{m} \in \mathrm{RS}(\mathcal{N}, \boldsymbol{m}_0) \ \exists \boldsymbol{m}' \in \mathrm{RS}(\mathcal{N}, \boldsymbol{m}) \ \boldsymbol{m}' \xrightarrow{t}$$

Ce réseau est pseudo-vivant mais pas vivant.

Plan

Réseaux de Petri continus

2 Caractérisation des propriétés

3 Complexité des problèmes

4 Couverture des réseaux de Petri

5 Retour aux réseaux continus

Des conditions nécessaires d'accessibilité Soit $m_0 \xrightarrow{\sigma} m$ avec $\sigma = \alpha_1 t_1 \dots \alpha_k t_k$

- Son image de Parikh, $\vec{\sigma}$ est le vecteur $\sum_{i < k} \alpha_i \vec{t_i}$
- Son support, $[\![\overrightarrow{\sigma}]\!]$ est l'ensemble $\{t_1, \ldots, t_k\}$.
- 1. L'équation d'état

$$m - m_0 = \mathbf{C}\vec{\sigma}$$

- 2. Les ensembles de franchissement
 - $\llbracket \overrightarrow{\sigma} \rrbracket \in FS(\mathcal{N}, \boldsymbol{m}_0)$
 - $\bullet \ [\![\overrightarrow{\sigma}]\!] \in FS(\mathcal{N}^{-1}, \boldsymbol{m})$

où l'ensemble des ensembles de franchissement $FS(\mathcal{N}, \boldsymbol{m}_0) \subseteq 2^T$ est défini par :

$$FS(\mathcal{N}, \boldsymbol{m}_0) = \{ \llbracket \overrightarrow{\sigma} \rrbracket \mid \boldsymbol{m}_0 \stackrel{\sigma}{\longrightarrow} \}$$

Une condition suffisante d'accessibilité Pour $S \subseteq P \cup T$, on note :

- •S, l'ensemble des prédécesseurs de S ;
- S^{\bullet} , l'ensemble des successeurs de S.

Soit $\langle \mathcal{N}, \boldsymbol{m}_0 \rangle$ un réseau, \boldsymbol{m} un marquage et $\mathbf{v} \in \mathbb{R}_{\geq 0}^T$ qui satisfont : • $\boldsymbol{m} = \boldsymbol{m}_0 + \mathbf{C}\mathbf{v}$; • $\forall p \in \mathbf{\bullet}[\![\mathbf{v}]\!] \ \boldsymbol{m}_0[p] > 0$; • $\forall p \in [\![\mathbf{v}]\!]^{\mathbf{\bullet}} \ \boldsymbol{m}[p] > 0$. Il existe une séquence finie σ telle que $\boldsymbol{m}_0 \stackrel{\sigma}{\longrightarrow} \boldsymbol{m}$ and $\overrightarrow{\sigma} = \mathbf{v}$.

Sketch de preuve.

Soit σ une séquence arbitraire telle que $\overrightarrow{\sigma} = \mathbf{v}$.

Soit $\mathbf{m}_i = \frac{n-i}{n}\mathbf{m}_0 + \frac{i}{n}\mathbf{m}$.

Pour *n* suffisamment grand, $\mathbf{m}_0 \xrightarrow{\frac{1}{n}\sigma} \mathbf{m}_1$ et $\mathbf{m}_{n-1} \xrightarrow{\frac{1}{n}\sigma} \mathbf{m}$.

Par convexité, $\mathbf{m}_0 \stackrel{(\frac{1}{n}\sigma)^n}{\longrightarrow} \mathbf{m}$.

S. Haddad

Illustration

Caractérisation de l'accessibilité

Soit $\langle \mathcal{N}, \boldsymbol{m}_0
angle$ un réseau et \boldsymbol{m} un marquage.

Alors $m{m} \in \mathrm{RS}(\mathcal{N},m{m}_0)$ ssi il existe $\mathbf{v} \in \mathbb{R}_{>0}^{|T|}$ tel que :

$$\mathbf{0} \ \mathbf{m} = \mathbf{m}_0 + \mathbf{C} \mathbf{v}$$

- $\ \, [\![\mathbf{v}]\!] \in FS(\mathcal{N}, \boldsymbol{m}_0)$
- $\textbf{3} \quad [\![\mathbf{v}]\!] \in FS(\mathcal{N}^{-1}, \boldsymbol{m})$

Sketch de preuve.

A l'aide de la condition 2, on construit $\boldsymbol{m}_0 \xrightarrow{\sigma_1} \boldsymbol{m}_1$ avec $\boldsymbol{m}_1(p) > 0$ for $p \in \bullet [\![\mathbf{v}]\!]^{\bullet}$. A l'aide de la condition 3, on construit $\boldsymbol{m}_2 \xrightarrow{\sigma_3} \boldsymbol{m}$ avec $\boldsymbol{m}_2(p) > 0$ for $p \in \bullet [\![\mathbf{v}]\!]^{\bullet}$. En redimensionnant si nécessaire, $\mathbf{v} - \overrightarrow{\sigma}_1 - \overrightarrow{\sigma}_3 \ge 0$ et $[\![\mathbf{v} - \overrightarrow{\sigma}_1 - \overrightarrow{\sigma}_3]\!] = [\![\mathbf{v}]\!]$. On applique alors la condition suffisante d'accessibilité pour obtenir $\boldsymbol{m}_1 \xrightarrow{\sigma_2} \boldsymbol{m}_2$.

Caractérisation de la pseudo-vivacité

Soit $\langle \mathcal{N}, \boldsymbol{m}_0
angle$ un réseau et \boldsymbol{m} un marquage.

Alors $\operatorname{RS}(\mathcal{N}, \boldsymbol{m}_0)$ n'est pas pseudo-vivant ssi il existe $\mathbf{v} \in \mathbb{R}_{\geq 0}^{|T|}$ et $P' \subseteq P$ tel que :

$${f 0}$$
 ${m m}={m m}_0+{f C}{f v}$ et ${m m}(p)=0$ pour tout $p\in P'$

$$[\![\mathbf{v}]\!] \in FS(\mathcal{N}, \boldsymbol{m}_0)$$

$$[\![\mathbf{v}]\!] \in FS(\mathcal{N}^{-1}, \boldsymbol{m})$$

• Pour tout
$$t \in T$$
, $t \cap P' \neq \emptyset$

Plan

Réseaux de Petri continus

2 Caractérisation des propriétés

3 Complexité des problèmes

4 Couverture des réseaux de Petri

5 Retour aux réseaux continus

Caractérisation d'un ensemble de franchissement

$$T' \in FS(\mathcal{N}, \boldsymbol{m}_0)$$
?

- On supprime les transitions de $T \setminus T'$.
- On applique un algorithme de saturation.

```
P^* \leftarrow \llbracket \mathbf{m}_0 \rrbracket;
Tant que \exists t \in T' telle que {}^{\bullet}t \subseteq P^* faire
P^* \leftarrow P^* \cup t^{\bullet};
T' \leftarrow T' \setminus \{t\};
Renvoyer (T' = \emptyset);
```

Cet algorithme peut être implémenté en temps linéaire.

Cet algorithme calcule l'unique support maximal d'une séquence de franchissement.

Application aux caractérisations

L'accessibilité est dans NP.

- On devine un support U;
- On vérifie que $U\in FS(\mathcal{N}, \boldsymbol{m}_0)\cap FS(\mathcal{N}^{-1}, \boldsymbol{m})$;
- On cherche v de support U tel que $m = m_0 + Cv$.

La pseudo-vivacité est dans coNP.

- On devine un support U;
- On vérifie que $U \in FS(\mathcal{N}, \boldsymbol{m}_0) \cap FS(\mathcal{N}^{-1}, \boldsymbol{m})$;
- On devine un sous-ensemble P';
- On vérifie que pour tout $t,\,{}^{\bullet}\!t\cap P'\neq \emptyset$;
- On cherche v de support U et m nul sur P' tel que $m = m_0 + \mathbf{Cv}$.

Peut-on faire mieux?

Un calcul de point fixe pour l'accessibilité

(On suppose $oldsymbol{m}
eq oldsymbol{m}_0)$

L'algorithme maintient T^\prime , un ensemble de transitions initialisé à T.

Une itération de l'algorithme :

 $\bullet\,$ Calcule ${\bf v}$ une solution de support maximal de

 $\boldsymbol{m} = \boldsymbol{C}_{P \times T'} \mathbf{v} + \boldsymbol{m}_0$

- Si le programme linéaire n'a pas de solution renvoie faux sinon met à jour T' avec [[v]];
- Restreint T' par les supports maximaux des réseaux $\langle \mathcal{N}_{T'}, \boldsymbol{m}_0[{}^{\bullet}T'{}^{\bullet}] \rangle$ et $\langle \mathcal{N}_{T'}^{-1}, \boldsymbol{m}[{}^{\bullet}T'{}^{\bullet}] \rangle$;
- Si T' est inchangé par ces restrictions renvoie vrai.

Si T' devient vide, l'algorithme renvoie faux.

Preuve de correction

Cas positif.

Lorsque l'algorithme renvoie vrai.

Par construction, \mathbf{v} satisfait la première condition d'accessibilité.

Puisque le support de v est inchangé par les restrictions, il vérifie les deux autres conditions.

Donc \boldsymbol{m} est accessible dans $\langle \mathcal{N}, \boldsymbol{m}_0 \rangle$.

Cas négatif.

Découle de l'invariant de boucle : pour tout $m_0 \stackrel{\sigma}{\longrightarrow} m$, $\llbracket \overrightarrow{\sigma} \rrbracket \subseteq T'$.

L'accessibilité est PTIME-complète.

Réduction du problème de la valeur d'un circuit booléen.

Deux places p_{true} and p_{false} .

Une place par porte et un sous-réseau par porte.

Un sous-réseau additionnel (une transition $clean_p$ par place p).

 p_{out} est-il accessible depuis $p_{\mathbf{true}}$?

La pseudo-vivacité est coNP-complète.

Réduction du problème 3SAT.

$$\varphi = (\neg x_1 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (x_2 \lor \neg x_3)$$

Plan

- Réseaux de Petri continus
- 2 Caractérisation des propriétés
- Complexité des problèmes
- 4 Couverture des réseaux de Petri
 - 5 Retour aux réseaux continus

Couverture : intérêt et méthodes

Intérêt

- Violation d'une section critique : deux jetons dans une place ;
- Terminaison d'un algorithme : un jeton dans une place.

Méthodes

- Construction d'un arbre de couverture (non primitif récursif);
- Exploration du graphe d'accessibilité limitée par la borne de Rackoff;
- Exploration arrière et maintien d'un ensemble (potentiellement infini) de marquages initiaux couvrants.

Ensembles clos supérieurement

Définitions.

- Un ensemble de marquages ${f M}$ est clos supérieurement si ${m m}'\geq {m m}\in {f M}\Rightarrow {m m}'\in {f M}.$
- Soit M un ensemble de marquages, $\uparrow \mathbf{M} = \{ \boldsymbol{m}' \mid \exists \boldsymbol{m} \in \mathbf{M} \ \boldsymbol{m}' \geq \boldsymbol{m} \} \text{ est la cloture supérieure de } \mathbf{M}.$

Propriétés.

- Soit un ensemble clos supérieurement \mathbf{M} , il existe sous-ensemble fini et minimal $base(\mathbf{M})$ telle que $\mathbf{M} = \bigcup_{\boldsymbol{m} \in base(\mathbf{M})} \uparrow \{\boldsymbol{m}\}.$
- Soit $\{\mathbf{M}_n\}_{n\in\mathbb{N}}$ une famille d'ensembles clos supérieurement telle que $\forall n$, $\mathbf{M}_n \subseteq \mathbf{M}_{n+1}$. Il existe n_0 tel que $\forall n \ge n_0$, $\mathbf{M}_n = \mathbf{M}_{n_0}$.

Franchissement arrière.

Soit $pred(\mathbf{M})$ l'ensemble des marquages qui atteignent \mathbf{M} après un franchissement. Si \mathbf{M} est clos supérieurement alors $pred(\mathbf{M})$ est clos supérieurement. Soit \mathbf{B} la base de \mathbf{M} , on peut calculer $pb(\mathbf{B})$ la base de $pred(\mathbf{M})$.

Exploration arrière.

Définissons par induction $\mathbf{M}_0 = \uparrow \{ \boldsymbol{m} \}$ et $\mathbf{M}_{n+1} = \mathbf{M}_n \cup pred(\mathbf{M}_n)$.

Alors $\bigcup_{n\in\mathbb{N}}\mathbf{M}_n$ est l'ensemble des marquages d'où on couvre m.

L'algorithme

 $\mathbf{B} \leftarrow \{m\}$ While $m_0 \notin \uparrow \mathbf{B}$ do $\mathbf{newB} \leftarrow pb(\mathbf{B}) \setminus \uparrow \mathbf{B}$ If $\mathbf{newB} = \emptyset$ then return false $\mathbf{B} \leftarrow minbase(\mathbf{B} \cup \mathbf{newB})$ return true

La correction et la terminaison découle des propriétés précédentes.

L'algorithme amélioré

Comparaison

Une autre condition nécessaire d'accessibilité dans les réseaux de Petri. Une *trappe* est un ensemble non vide de places Q tel que ${}^{\bullet}Q \subseteq Q^{\bullet}$.

•
$$\exists \mathbf{v} \ \boldsymbol{m} = \boldsymbol{m}_0 + \mathbf{C} \mathbf{v};$$

• Toute trappe marquée dans m_0 est marquée dans m.

(An SMT-Based Approach to Coverability Analysis. Esparza & al. CAV 2014)

L'accessibilité des réseaux continus implique strictement cette condition.

Le marquage m = q n'est pas accessible dans le réseau continu. Cependant $m = m_0 + C\mathbf{1}_t$ et l'unique trappe q vérifie $m_0(q) = 0$.

Une approche logique à l'accessibilité des réseaux continus

Observation.

- bien que l'accessibilité soit décidable en PTIME dans les réseaux continus,
- une alternative efficace consiste à exprimer la caractérisation en logique
- et fournir une formule existentielle à un SMT solveur
- puisque les appels répétés au solveur sont optimisés.

L'équation d'état peut être fournie directement au solveur.

Comment exprimer les contraintes d'ensembles de franchissement au solveur?

Une formule pour l'accessibilité

Variables d'entrée

- Pour tout $p \in P$, x(p) est le marquage initial de p;
- Pour tout $t \in T$, y(t) est le *t*-composant de la solution de l'équation d'état.

Variables auxiliaires

- Pour tout $p \in P$, z(p), si non nul, est le premier instant où p est marquée;
- Pour tout $t \in T$, z(t), si non nul, est l'instant de franchissement de t.

Formules auxiliaires

•
$$\varphi_{\mathcal{N},1} = \bigwedge_{t \in T} \left(0 < y(t) \Rightarrow \bigwedge_{p \in \bullet t} 0 < z(p) \le z(t) \right)$$

• $\varphi_{\mathcal{N},2} = \bigwedge_{p \in P} \left(0 < z(p) \Rightarrow \left(0 < x(p) \lor \bigvee_{t \in \bullet_p} 0 < y(t) \land 0 < z(t) < z(p) \right) \right)$
 $\varphi_{\mathcal{N}} = \exists \mathbf{z} \ \varphi_{\mathcal{N},1} \land \varphi_{\mathcal{N},2} \qquad \varphi_{\mathcal{N},m_0} = \mathbf{w} - m_0 = \mathbf{C} \mathbf{y} \land \varphi_{\mathcal{N}}[m_0/\mathbf{x}] \land \varphi_{\mathcal{N}^{-1}}[\mathbf{w}/\mathbf{x}]$
La taille de $\psi_{\mathcal{N},m_0,m} = \exists \mathbf{y} \ \varphi_{\mathcal{N},m_0}[m/\mathbf{w}]$ est linéaire vis à vis de celle de $\langle \mathcal{N}, m_0 \rangle$
et de m_0

Plan

- Réseaux de Petri continus
- 2 Caractérisation des propriétés
- Complexité des problèmes
- 4 Couverture des réseaux de Petri
- 5 Retour aux réseaux continus

Une première réduction de complexité

Inclusion de réseaux : approche classique.

- En énumérant les éventuels ensembles de franchissement
- et en appliquant la caractérisation
- on obtient un algorithme en EXPTIME.

Inclusion de réseaux : approche logique.

Soit $\langle \mathcal{N}, \boldsymbol{m}_0 \rangle$ et $\langle \mathcal{N}', \boldsymbol{m}'_0 \rangle$ des réseaux continus. La formule suivante exprime l'inclusion de réseaux : $\forall \mathbf{m} \neg \psi_{\mathcal{N}, \boldsymbol{m}_0, \boldsymbol{m}} \lor \psi_{\mathcal{N}', \boldsymbol{m}'_0, \boldsymbol{m}}$

Cette formule peut s'écrire $\forall \ldots \exists \ldots \theta$

où θ est une formule sans quantificateur de FO($\mathbb{Q}, +, <$).

Donc la complexité de l'inclusion de réseaux appartient à Π_2^{P} .

(Eduardo D. Sontag. Real Addition and the Polynomial Hierarchy. 1985.)

Peut-on encore réduire la complexité?

L'inclusion de réseaux est dans coNP

Théorie polyédrique.

• Projection

Soit $\varphi[\mathbf{x}] = \exists \mathbf{y} \theta[\mathbf{x}, \mathbf{y}]$ où θ est une formule sans quantificateur de $\mathsf{FO}(\mathbb{Q}, +, <)$.

Alors il existe un ensemble fini de formules sans quantificateur $\psi_i[\mathbf{x}]$ dont leur taille est polynomiale vis à vis de celle de φ telle que $\forall \mathbf{x} \varphi \Leftrightarrow \bigvee_i \psi_i$.

• Témoin

Si $\exists \mathbf{x} \ \psi$ est vraie alors il existe un témoin \mathbf{v} de taille polynomiale vis à vis de celle de ψ telle que $\psi[\mathbf{v}/\mathbf{x}]$ est vraie.

Application à l'inclusion de réseaux.

 $\forall \mathbf{w} \ \forall \mathbf{y} \ \exists \mathbf{y}' \ \neg \varphi_{\mathcal{N}, \boldsymbol{m}_0} \lor \varphi_{\mathcal{N}', \boldsymbol{m}'_0}[\mathbf{y}' / \mathbf{y}] \text{ exprime l'inclusion de réseaux.}$

Cette formule est équivalente à une formule $\forall \mathbf{w} \ \forall \mathbf{y} \ \theta$ où θ est sans quantificateur, et si fausse admet un témoin de taille polynomiale.

On devine un marquage m de taille polynomiale. et on vérifie si m est accessible dans $\langle N, m_0 \rangle$ et inaccessible dans $\langle N', m'_0 \rangle$.

L'inclusion de réseaux est coNP-complète

Un réseau est réversible si le marquage initial est un état d'accueil.

Réduction de 3SAT à la reversibilité.

 $\varphi = (\neg x_1 \lor \neg x_2) \land x_2$

Synthèse des contributions

Une caractérisation complète de la complexité des problèmes.

Problèmes	Complexité
Accessibilité	PTIME-complète
Caractère borné	PTIME-complet
(Pseudo-)Vivacité	coNP-complète
Inclusion de réseaux	coNP-complète

Une amélioration significative des procédures de décision

de la couverture des réseaux de Petri.

Perspectives

Logique temporelle

• Dans les réseaux de Petri,

le « model checking » est à la frontière décidabilité/indécidabilité (arborescente versus linéaire, propositionelle versus événementielle)

• Quid des réseaux continus?

Réseaux de Petri hybrides

- Combinaison des réseaux de Petri et des réseaux continus
- Quid de la décidabilité des problèmes standard?