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Reachability and Covering in Petri Net
• Reachability

Reach(N ,m0) = {m | ∃σ ∈ T ∗ m0
σ−→ m}

• Covering
Cover(N ,m0) = ↓Reach(N ,m0) = {m | ∃σ ∈ T ∗ m0

σ−→ m′ ≥m}

• Finite representation of the covering

Nω = N ∪ {ω} and Zω = Z ∪ {ω}
with for all n ∈ Z, ω > n and all n ∈ Zω, ω + n = ω

An ω-marking is an item of NPω .

Let m be an ω-marking. Then:

JmK = {m′ ∈ NP |m′ ≤m}

There exists a finite (minimal) set of ω-markings Clover(N ,m0) such that:

Cover(N ,m0) =
⋃

m∈Clover(N ,m0)

JmK
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Reachability Tree of a Petri Net
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Building the Reachability Tree

• A semi-algorithm to build (V,E, λ, δ)

u← CreateV (); λ(u)←m0; Front← ∅; Insert(Front, u)
V ← {u}; E ← ∅
While Front 6= ∅ do
u← FairlyExtract(Front)

For all λ(u)
t−→m do

v ← CreateV (); λ(v)←m; Insert(Front, v)
V ← V ∪ {v}; E ← E ∪ {(u, v)}; δ(u, v) = t

• Consistency λ(r) = m0 and for all edge u
t−→ v, one has λ(u)

t−→ λ(v).

• Completeness For all m ∈ Reach(N ,m0), there exists u ∈ V such that:

◦ either u 6∈ Front and λ(u) = m;

◦ or u ∈ Front and there exists σ ∈ T ∗ such that: λ(u)
σ−→m.

Then one applies fairness.
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Covering Tree of a Petri Net

•
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Building the Covering Tree

u← CreateV (); λ(u)←m0; Front← ∅; Insert(Front, u)
V ← {u}; E ← ∅
While Front 6= ∅ do
u← Extract(Front)

(1) u is covered by an ancestor
If ∃v ancestor of u with λ(v) ≥ λ(u) then V ← V \{u}; E ← E\V ×{u}
(2) λ(u) is “accelerated”
Else if ∃v ancestor of u with λ(v) < λ(u)

and ∃p λ(v)(p) < λ(u)(p) < ω then
For all p such that λ(v)(p) < λ(u)(p) < ω do λ(u)(p)← ω
Insert(Front, u)

(3) one explores starting from u
Else
For all λ(u)

t−→m do
v ← CreateV (); λ(v)←m; Insert(Front, v)

V ← V ∪ {v}; E ← E ∪ {u t−→ v}
Consistency? For some edges u

t−→ v, one does not have λ(v)
t−→ λ(w).
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ω-transitions

• Syntax
An ω-transition a is defined by:

its backward incidence Pre(a) ∈ NPω ;

its incidence C(a) ∈ ZPω with Pre(a) +C(a) ≥ 0
and for all p, Pre(p,a) = ω ⇒ C(p,a) = ω.

• Semantic

Let m ∈ NPω . Then a is fireable if Pre(a) ≤m

and its firing leads to m+C(a).

• Concatenation (using an example)

Pre(a) = out and C(a) = ωbo

Pre(a′) = oi+ bo and C(a′) = ωbi− bo
Pre(a · a′) = out+ oi and C(a · a′) = ωbo+ ωbi

out oi

a a′

bo bi
ω ω

m
aa′

−−→m′ if and only if m
a·a′

−−→m′.
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Covering Abstraction

• An ω-transition a is an abstraction if for all n, there exists σn ∈ T ∗ with:

Pre(σn) ≤ Pre(a);

For all p, C(p,a) 6= ω ⇒ C(p, σn) ≥ C(p,a);

For all p, Pre(p,a) 6= ω ∧C(p,a) = ω ⇒ C(p, σn) ≥ n.

• Illustration

Pre(a) = out and C(a) = oi− out+ ωbo+ ωbi

σn = pick2n up mvn

out oiup

pick mv

bo bi
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Properties of Abstractions

The covering set is closed by abstraction firing.

Let a be an abstraction and m ∈ NPω . If:

JmK ⊆ Cover(N ,m0)

and m
a−→m′

Then Jm′K ⊆ Cover(N ,m0).

The set of abstractions is closed by concatenation.
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Acceleration

a is an acceleration if a is an abstraction with C(a) ∈ {0, ω}P .

• How to transform an abstraction into an acceleration?

Let a be an abstraction and â defined by:

If C(p,a) < 0 then Pre(p, â) = C(p, â) = ω

If C(p,a) = 0 then Pre(p, â) = Pre(p,a) and C(p, â) = 0

If C(p,a) > 0 then Pre(p, â) = Pre(p,a) and C(p, â) = ω

Then â is an acceleration.

• Illustration

mv is a transition hence an abstraction.

Pre(m̂v) = oi+ ωbo and C(m̂v) = ωbo+ ωbi.

out oiup

pick mv

bo bi
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A New Labelling of Edges

Acc (a ghost variable) is a set of ω-transitions.

. . . Acc← ∅
While Front 6= ∅ do
u← Extract(Front)

(1) u is covered by an ancestor
. . .

(2) λ(u) is “accelerated”
Else if ∃v ancestor of u with λ(v) < λ(u)

and ∃p λ(v)(p) < λ(u)(p) < ω then
. . .
Let σ labelling the path from v to u and w the parent of u
Acc← Acc ∪ {σ̂} ; δ(w, u)← δ(w, u)σ̂

(3) one explores starting from u
. . .
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Enriched Covering Tree
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Correction of the Algorithm
Termination (by contradiction)

An infinite finitely branching tree implying an infinite branch;

Strictly increasing subsequence of ω-markings on this branch ...
but all ω-marking has at least a new ω.

Consistency

For all edge (u,v), λ(u)
δ(u,v)−−−−→ λ(v);

Acc is a set of accelerations.

Completeness

m
σ−→m′ is an exploring sequence if:

there exists u ∈ Front such that λ(u) = m;

for all m′′ visited by σ and all v ∈ V \ Front, m′′ 6≤ λ(v).

For all m ∈ Cover(N ,m0),

either there exists u ∈ V \ Front such that λ(u) ≥m;

or there exists an exploring sequence m1
σ−→m2 ≥m.
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Conclusion and Perspectives
Contributions

Introduction of abstractions, accelerations and exploring sequences;

Application to the proof of Karp and Miller algorithm;

Definition of a well order on accelerations
and bound on the size of minimal accelerations;

Acceleration of Karp and Miller algorithm ...
based on accelerations.

Perspectives

Application of accelerations for improving the constructions
aiming at minimizing the peak number of ω-markings
(see the demonstration of tool MinCov)

What about accelerations in the more general framework
of well structured transitions systems?
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