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Reachability and Covering in Petri Net

e Reachability
Reach(N,mgy) = {m | Jo € T* my -Zs m}

e Covering
Cover(N,mg) = | Reach(N,my) = {m | 3o € T* my -2 m' > m}

¢ Finite representation of the covering

e N, =NU{w}and Z, =ZU {w}
with forallneZ, w>nandallneZ,, w+n=w

e An w-marking is an item of NZ.

o Let m be an w-marking. Then:

[m] = {m' ¢ N" | m’ <m}
There exists a finite (minimal) set of w-markings Clover (N, mg) such that:

Cover(N,mg) = U [m]

meClover(N,mg)
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Reachability Tree of a Petri Net
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Building the Reachability Tree

e A semi-algorithm to build (V, E, )\, §)

u < CreateV (); Mu) + myg; Front < 0; Insert(Front,u)
Ve {u}p; E<0
While Front # 0 do
u + FairlyExtract(Front)
For all A(u) & m do
v CreateV(); AM(v) < m; Insert(Front,v)
V+« VU{vh E+ EU{(u,v)}; 6(u,v) =t

e Consistency \(r) = myg and for all edge u %5 v, one has Au) EN A(v).
e Completeness For all m € Reach(N, myg), there exists u € V such that:
o either u € Front and A(u) = m;

o or u € Front and there exists o € T* such that: A\(u) % m.

Then one applies fairness.
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Covering Tree of a Petri Net
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Building the Covering Tree

u < CreateV (); Mu) « myg; Front < 0; Insert(Front,u)
Ve {u}); E<0
While Front # () do

u < Extract(Front)

(1) w is covered by an ancestor
If 3v ancestor of u with A(v) > A(u) then V « V\{u}; E + E\V x{u}
(2) A(u) is “accelerated”
Else if Jv ancestor of u with A(v) < A(u)
and 3p A(v)(p) < A(u)(p) < w then
For all p such that A(v)(p) < AMu)(p) < w do A(u)(p) + w
Insert(Front,u)
(3) one explores starting from u
Else
For all A(u) 5 m do
v < CreateV(); A(v) + m; Insert(Front,v)
V+—Vu{vh E(—EU{uiH}}

Consistency? For some edges u - v, one does not have A(v) 4 Aw).
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w-transitions
e Syntax
An w-transition a is defined by:

e its backward incidence Pre(a) € NZ;
e its incidence C(a) € ZL with Pre(a) + C(a) > 0
and for all p, Pre(p,a) =w = C(p,a) = w.

e Semantic
Let m € NE. Then a is fireable if Pre(a) <m
and its firing leads to m + C(a).
out 01
¢ Concatenation (using an example)
e Pre(a) = out and C(a) = wbo
e Pre(a’) = 0i + bo and C(a’) = wbi — bo g— bo g— bi
e Pre(a-a’) = out + oi and C(a - a’) = wbo + wbi v Q—> v Q
a a

’ ’
m 225 m/ if and only if m 225 m/.
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Covering Abstraction

e An w-transition a is an abstraction if for all n, there exists o,, € T* with:
e Pre(o,) < Pre(a);
e For all p, C(p,a) #w = C(p,o,) > C(p,a);
e For all p, Pre(p,a) # w A C(p,a) =w = C(p,0,) > n.

o lllustration
e Pre(a) = out and C(a) = 0i — out + wbo + wbi

e o, = pick®™ up mv"
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Properties of Abstractions

‘The covering set is closed by abstraction firing.

Let a be an abstraction and m € NI If:
o [m] C Cover(N,my)
o and m & m/

Then [m/] C Cover(N, my).

‘ The set of abstractions is closed by concatenation.
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Acceleration

’a is an acceleration if a is an abstraction with C(a) € {0,w}¥. ‘

e How to transform an abstraction into an acceleration?
Let a be an abstraction and a defined by:
e If C(p,a) < 0 then Pre(p,a) = C(p,a) =w
e If C(p,a) = 0 then Pre(p,a) = Pre(p,a) and C(p,a) =0
e If C(p,a) > 0 then Pre(p,a) = Pre(p,a) and C(p,a) = w

Then a is an acceleration.

out  up ot

o lllustration

@ mu is a transition hence an abstraction.

e Pre(mv) = 0i + wbo and C(mv) = wbo + whi.
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A New Labelling of Edges

Acc (a ghost variable) is a set of w-transitions.

oo Acc+ 0
While Front # () do
u + Extract(Front)

(1) w is covered by an ancestor

(2) A(u) is "accelerated”
Else if Jv ancestor of u with A(v) < A(u)
and 3p A(v)(p) < A(u)(p) < w then

Let o labelling the path from v to v and w the parent of u
Acc + AccU{a} ; d(w,u) < o(w,u)o

(3) one explores starting from
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Enriched Covering Tree
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Correction of the Algorithm
Termination (by contradiction)

@ An infinite finitely branching tree implying an infinite branch;

@ Strictly increasing subsequence of w-markings on this branch ...
but all w-marking has at least a new w.

Consistency
6(uv)
—

o For all edge (u,v), A\(u) A(v);

@ Acc is a set of accelerations.

Completeness
m 5 m/ is an exploring sequence if:

@ there exists u € F'ront such that A(u) = m;

o for all m” visited by o and all v € V'\ Front, m"” £ A\(v).
For all m € Cover(N,my),

o either there exists u € V' \ Front such that A(u) > m;

. . g
@ or there exists an exploring sequence m; — mq > m.
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Conclusion and Perspectives

Contributions

@ Introduction of abstractions, accelerations and exploring sequences;
@ Application to the proof of Karp and Miller algorithm;

@ Definition of a well order on accelerations
and bound on the size of minimal accelerations;

@ Acceleration of Karp and Miller algorithm ...
based on accelerations.

Perspectives

@ Application of accelerations for improving the constructions
aiming at minimizing the peak number of w-markings
(see the demonstration of tool MinCov)

@ What about accelerations in the more general framework
of well structured transitions systems?
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