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A Production System
Two products can be combined to form a third one: P1 + 2P2 → P3

A possible Petri net modelling with 17000 P1 and 1200 P2 is:

17000p1 t1

1200p2

p3

17000p1 + 1200p2
t1−→ 16999p1 + 1198p2 + p3

2

Allowing fractional firings (here 0.01) another possible modelling is:

170p1 t1

12p2
p3

170p1 + 12p2
0.01t1−−−−→ 169.99p1 + 11.98p2 + 0.01p3

2

The state space is no more discrete.
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Fluidification

Fluidification “approximates” a discrete space system by a continuous one.

• Optimisation.

when the constraints and utility are linear;

one considers the integer variables (NP-complete problem) as real ones;

and one computes in polynomial time a bound of the optimal value.

• Mean Field Analysis.

when populations of species randomly evolve;

one substitutes their number by their proportion
and introduces appropriate differential or recurrence equations;

whose behaviour is the asymptotic behaviour of the discrete system.
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Continuous Petri Nets: Syntax and Semantics (1)

A continuous Petri net is a Petri net N = 〈P, T,Pre,Post〉
whose markings are real vectors over places.

The firing rule allows a fractional firing of transitions m αt−→ m′.

The enabling degree of t w.r.t. m, enab(t,m) ∈ R≥0 ∪∞, is defined by:

enab(t,m)
def
= min{ m[p]

Pre[p, t]
| Pre[p, t] > 0}

t is enabled in m if enab(t,m) > 0.

170p1 t1

12p2
p3 enab(t1,m) = 6

2
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Continuous Petri Nets: Syntax and Semantics (2)

Transition t can be fired by any amount α ∈ R such that 0 ≤ α ≤ enab(t,m)

and its firing leads to marking m′ defined by:

for all p ∈ P m′[p]
def
= m[p] + αC[p, t]

where C
def
= Post−Pre

170p1 t1

12p2
p3

2

5.3t1
164.7p1 t1

1.4p2

5.3 p3

2
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A Finite Firing Sequence

2p1 p2

p3

p4

t1 t2 t3
2p1 p2

p3

p4

t1 t2 t3

0.5

2p1 p2

p3

p4

t1 t2 t3

0.5

2p1 p2

p3

p4

t1 t2 t3

0.25

2p1 p2

p3

p4

t1 t2 t3

0.25

2p1 p2

p3

p4

t1 t2 t3

t1

0.5t2

0.5t3

0.25t2

0.25t3
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Infinite Firing Sequences

2p1 p2

p3

p4

t1 t2 t3
2p1 p2

p3

p4

t1 t2 t3
∞

σ

with Parikh image σ = t1 + t2 + t3

p1

p2

t1 t2

1-log(2)p1

p2

t1 t2
∞

σ=(1t1)(1/2t2)(1/3t1)...

with Parikh image σ = ∞t1 + ∞t2

log(2)
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Reachability Set

The reachability set RS(N ,m0) is defined by:

RS(N ,m0)
def
= {m | there exists a finite sequence m0

σ−→ m}.

•
p1 t1 p2 t2
•

p3 •

p4

t32

m(p2)

m(p3)

m(p4)

©

©

•

©

m0

1

1

0.5
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Lim-Reachability Set

The lim-reachability set, lim−RS(N ,m0), is defined by:

lim−RS(N ,m0)
def
= {m | there exists an infinite sequence m0

σ−→∞ m}.

•
p1 t1 p2 t2
•

p3 •

p4

t32

m(p2)

m(p3)

m(p4)

©

©

•
m0

1

1

0.5

The lim-reachability set is not necessarily closed.

p1+p3
εt1−−→ (1−ε)p1+εp2+p3 →∞ (1−ε)p1+εp2 . . . but p1 /∈ lim−RS(N ,m0)
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State Problems for Petri Nets

Reachability and coverability. Given a system 〈N ,m0〉 and a marking m,
m is reachable (resp. coverable) in 〈N ,m0〉
if m ∈ RS(N ,m0) (resp. ∃m′ ≥m m′ ∈ RS(N ,m0)).

Boundedness. A system 〈N ,m0〉 is bounded if there exists b ∈ R≥0
such that for all m ∈ RS(N ,m0) and all p ∈ P , m[p] ≤ b.

Reachability set inclusion. Given systems 〈N ,m0〉 and 〈N ′,m′0〉 with P = P ′,
〈N ,m0〉 is included in 〈N ′,m′0〉 if RS(N ,m0) ⊆ RS(N ′,m′0).

A marking m is a home state if RS(N ,m0) ⊆ RS(N−1,m).

•
p1 t1 p2 t2
•

p3 •

p4

t32

Marking p2 is not reachable.

This system is bounded and does not admit a home state.
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Transition Problems for Petri Nets

Deadlock-freeness. A system 〈N ,m0〉 is deadlock-free if for all m ∈ RS(N ,m0),
there exists t ∈ T such that t is enabled at m.

Liveness. A system 〈N ,m0〉 is live if for all transition t and for all marking
m ∈ RS(N ,m0) there exists m′ ∈ RS(N ,m) such that t is enabled at m′.

•
p1 t1 p2 t2
•

p3 •

p4

t32

This net is deadlock-free but not live.

All properties can be considered at the limit with lim−RS instead of RS.

This net is not lim-deadlock-free and the dead marking p2 is a lim-home state.
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Necessary Conditions for Reachability

Let m0
σ−→m with σ = α1t1 . . . αktk

1. State equation

m−m0 = C~σ

2. Firing set

J−→σ K ∈ FS(N ,m0)

J−→σ K ∈ FS(N−1,m)

where the firing set FS(N ,m0) ⊆ 2T is defined by:

FS(N ,m0) = {J−→σ K |m0
σ−→ }
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Siphons and Firing Set

Some definitions

Let X a subset of transitions or places,
•X (resp. X•, •X•) is the set of predecessors (resp. successors, neighbours) of X.

NU is the net restricted to set of transitions U and set of places •U•.

A non empty subset of places Q is a siphon if •Q ⊆ Q•

A siphon is empty in a marking if the marking of all its places is null.

Observation

By construction, if NU has an empty siphon in m0 then U /∈ FS(N ,m0).

•
p1 t1 p2 t2
•

p3 •

p4

t32

p2 is an empty siphon of N{t2,t3}
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Characterisation of the Firing Set

Let 〈N ,m0〉 be a CPN system and U be a subset of transitions. Then:
U ∈ FS(N ,m0) iff NU has no empty siphon in m0.

Furthermore if U ∈ FS(N ,m0) then there exists σ = α1t1 . . . αktk with
U = {t1, . . . , tk}, αi > 0 for all i and a marking m such that:

m0
σ−→ m;

for all place p, m(p) > 0 iff m0(p) > 0 or p ∈ •U•.

p1

0.5

t1 p2

0.5

t2

p3 0.4

p4 0.2

t32

p1 + p3
0.5t10.4t20.2t3−−−−−−−−−→ 0.5p1 + 0.5p2 + 0.4p3 + 0.2p2
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Proof of the Characterisation (1)

Suppose that NU has no empty siphon in m0.

We inductively prove for increasing values of i that there exists a partition of U
(with T ′′ possibly empty):

U T"T
0

T
1

T
i-1

...

m0
σ0−→ m1 . . .mi−1

σi−1−→ mi with J−→σjK = Tj

mi[p] > 0 iff m0[p] > 0 or p ∈ •(
⋃
j<i

Tj)
•

There is nothing to prove for the basis case i = 0.

Suppose that the assertion holds until i. If T ′′ = ∅ then we are done.
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Proof of the Characterisation (2)

• Let Ti = {t enabled in mi | t ∈ T ′′}.

We claim that Ti is not empty.

Otherwise for all t ∈ T ′′, there exists an empty place pt in mi.

Due to the inductive hypothesis, m0(pt) = 0 and •pt ∩ (
⋃
j<i Tj) = ∅.

So the union of places pt is an empty siphon of 〈NT ′ ,m0〉

which contradicts our hypothesis.

• Let us denote Ti = {ti,1, . . . , ti,ki}.

Choose α enough small.

The sequence σi = αti,1 . . . αti,ki is fireable from mi

and leads to a marking mi+1 fulfilling the inductive hypothesis.
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A Sufficient Condition for Reachability

Let 〈N ,m0〉 be a system, m be a marking and v ∈ RT≥0 that fulfill:

m = m0 + Cv;

∀p ∈ •JvK m0[p] > 0;

∀p ∈ JvK• m[p] > 0.

Then there exists a finite sequence σ such that m0
σ−→ m and −→σ = v.

Sketch of proof.

Let σ be an arbitrary sequence such that −→σ = v.

Let mi = n−i
n m0 + i

nm.

Then for large n, m0

1
nσ−→ m1 and mn−1

1
nσ−→ m.

By convexity, m0
( 1
nσ)

n

−→ m.
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Illustration

m
0

m
...

σ

(1/n)σ
m
1

m
n-1

[v]

[v]

S. Haddad From CPN to PN and Back 21 / 46



Characterisation of Reachability

Let 〈N ,m0〉 be a CPN system and m be a marking.

Then m ∈ RS(N ,m0) iff there exists v ∈ R|T |≥0 such that:

1 m = m0 + Cv

2 JvK ∈ FS(N ,m0)

3 JvK ∈ FS(N−1,m)
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Proof

Since JvK ∈ FS(N ,m0), there exists a sequence σ1 such that JvK = J−→σ1K
and for all 0 < α1 ≤ 1, m0

α1σ1−→ m1 with m1(p) > 0 for p ∈ •JvK•.

Since JvK ∈ FS(N−1,m), there exists a sequence σ2 such that JvK = J−→σ2K
and for all 0 < α2 ≤ 1, m α2σ2−→ m2 in N−1 with m2(p) > 0 for p ∈ •JvK•.

Choose α1 and α2 enough small such that v′ = v − α1
−→σ1 − α2

−→σ2 is non negative
and Jv′K = JvK. This is possible since JvK = J−→σ1K = J−→σ2K.

Since m1 and m2 = m1 + Cv′ fulfill the sufficient condition for reachability, there
exists a sequence σ3 such that v′ = −→σ3 and m1

σ3−→ m2.

Let σ
def
= (α1σ1)σ3(α2σ2)−1 then m0

σ−→ m.
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Maximal Firing Set

Let m0
σ1−→ and m0

σ2−→

Then 0.5m0
0.5σ1−−−→ and 0.5m0

0.5σ2−−−→

Entailing m0
0.5σ10.5σ2−−−−−−−→

So FS(N ,m0) is closed by union.

Its maximal item is denoted maxFS(N ,m0).
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Characterisation of Boundedness

Let 〈N ,m0〉 be a system. Then 〈N ,m0〉 is unbounded iff:

There exists v ∈ RT≥0 such that Cv  0 and JvK ⊆ maxFS(N ,m0).

Proof of sufficiency.

Assume there exists v ∈ RT≥0 such that Cv  0 and JvK ⊆ maxFS(N ,m0).

Denote U
def
= maxFS(N ,m0). Using the characterisation of the firing set,

there exists m1 ∈ RS(N ,m0) such that for all p ∈ •U•, m1(p) > 0.

Define m2
def
= m1 + Cv, thus m2  m1.

Since JvK ⊆ U , m1 and m2 fulfill the sufficient condition for reachability.

Applying it, yields a firing sequence m1
σ−→ m2.

Iterating this sequence establishes the unboundedness of 〈N ,m0〉.
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Proof of Necessity

• Assume there exists p ∈ P and a family of firing sequences {σn}n∈N

such that m0
σn−→ mn and mn[p] > max(n,mn−1[p]).

W.l.o.g. we can assume that all these sequences have the same support U .

• Let vn
def
= C−→σ n and wn

def
= vn

‖vn‖1 .

For all p′ ∈ P , wn[p′] = mn[p
′]−m0[p

′]
‖vn‖1 ≥ −m0[p

′]
‖vn‖1 .

‖vn‖1 ≥ vn[p] = mn(p)−m0[p] ≥ n−m0[p].

So for n >m0[p], wn[p′] ≥ −m0[p
′]

n−m0[p]
.

• There exists a subsequence {wα(n)}n∈N converging to some w 6= 0.

Applying the inequality to α(n) and letting n go to infinity yields w ≥ 0.

• Due to polyhedra theory, {CP×Uu | u ∈ RU≥0} is closed.

So there exists u ∈ RU≥0 such that w = CP×Uu.

Adding null components for T \ U yields the required vector.

S. Haddad From CPN to PN and Back 26 / 46



Plan

1 Continuous Petri Nets

2 Characterisation of Properties

3 Complexity of the Problems

4 Coverability in Petri Nets

5 Back to Continuous Petri Nets

S. Haddad From CPN to PN and Back 27 / 46



Using the Characterisations
Preliminary observation. One can compute maxFS(N ,m0) and decide whether
U ∈ FS(N ,m0) in polynomial time.

Boundedness in PTIME. Compute maxFS(N ,m0) and solve a linear program.

Reachability in NP.

Guessing a support U , one looks for v with support U

such that m = m0 + Cv and U ∈ FS(N ,m0) ∩ FS(N−1,m).

Coverability in NP. Just add “loosing” transitions.

Deadlock freeness in coNP.

Guessing a support U and a subset of places P ′ such that for all t, •t∩P ′ 6= ∅
one looks for v with support U and marking m null over P ′

such that m = m0 + Cv and U ∈ FS(N ,m0) ∩ FS(N−1,m).

Reachability set inclusion in EXPTIME. Build (and solve) an exponential
number of exponentially sized linear programs representing the difference set.

Can we do better?
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A PTIME Fixed Point Computation for Reachability
01 If m = m0 then return(true,0)

02 T ′ ← T % T ′ contains the support of all reachability sequences

03 While T ′ 6= ∅ do

% Compute a maximal support solution in T ′ of the state equation

04 nbsol← 0; sol← 0

05 For t ∈ T ′ do

06 solve ∃?v v ≥ 0 ∧ v[t] > 0 ∧CP×T ′v = m−m0

07 If ∃v then nbsol← nbsol + 1; sol← sol + v

08 If nbsol = 0 then return(false) else sol← 1
nbsolsol ; T ′ ← JsolK

% Potentially restrict the support solution to fulfill the firing set conditions

10 T ′ ← T ′ ∩ maxFS(NT ′ ,m0[•T ′
•
])

11 T ′ ← T ′ ∩ maxFS(N−1T ′ ,m[•T ′
•
])

% If the support is unchanged return the solution

12 If T ′ = JsolK then return(true,sol)

% 0 is not a solution

13 Return(false)
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Proof of Correctness

Soundness. Assume that the algorithm returns true at line 12.

By construction, sol fulfills the first statement of the characterisation.

Since T ′ = JsolK at line 12,

1 JsolK = maxFS(NT ′ ,m0[•T ′
•
]) ∈ FS(N ,m0) (line 10)

2 JsolK = maxFS(N−1T ′ ,m[•T ′
•
]) ∈ FS(N−1,m) (line 11)

Thus m is reachable in 〈N ,m0〉.

Completeness.

Follows from the following loop invariant: for any m0
σ−→ m, J−→σ K ⊆ T ′
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Reachability is PTIME-complete.

Reduction from the boolean circuit value problem.

Two places ptrue and pfalse.

One place per gate and one subnet per gate.

a

b
c

pa pb

pc

tc

→ a

b
c

pa pb

pc

tc1 tc2

→
An additional subnet (one transition cleanp per place p).

p

cleanp pout

grow

2

Is 1pout reachable from 1ptrue?
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Deadlock freeness is coNP-complete.
Reduction from 3SAT.

ϕ = (¬x1 ∨ ¬x3) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ ¬x3)

•b1 •b2 •b3

t1 f1 t2 f2 t3 f3

l11 l12

l21 l22 l23

l31 l32

nc1 nc2 nc3

suc

back
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Proof of Correctness.

ϕ is satisfiable.

Fire one unit of the choice transitions according to the appropriate interpretation.

Then for all clause transition there is an empty place.

So the net is dead.

ϕ is unsatisfiable.

As long as it remains initial tokens the net is not dead.

Once the there are no more initial tokens, one can define an arbitrary
interpretation according to the firing of choice transitions.

Since the interpretation does not satisfy ϕ, one clause transition is fireable.

Once suc is marked, there can be no more deadlock.
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Backward Algorithm: Ingredients.
Upward closed sets.

A set of markings M is upward closed if m′ ≥m ∈M⇒m′ ∈M.

Given M a set of markings,
↑M = {m′ | ∃m ∈M m′ ≥m} is the upward closure of M.

Given an upward closed set M, base(M) the basis of M
is the minimal (finite) subset of M such that M =

⋃
m∈base(M) ↑{m}.

Let {Mn}n∈N be a family of upward closed sets such that for all n, Mn ⊆Mn+1

then there exists n0 such that for all n ≥ n0, Mn = Mn0 .

Petri nets.

Let pred(M) be the set of markings that reach M after a transition firing.

If M is upward closed then pred(M) is upward closed.

Let B be the basis of M then one can compute pb(B) the basis of pred(M).

Let m be a marking. Define M0 =↑{m} and Mn+1 = Mn ∪ pred(Mn).

Then
⋃
n∈N Mn is the set of markings from which one covers m.
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Backward Algorithm

B← {m}

While m0 /∈ ↑B do

newB← pb(B)\ ↑B

If newB = ∅ then return false

B← minbase(B ∪ newB)

return true

Correctness and termination follow from properties of upward closed sets.
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Improved Backward Algorithm

If not ContCover(m0,m) then return false

B← {m}

While m0 /∈ ↑B do

newB← pb(B)\ ↑B

newB← {m′ ∈ newB | ContCover(m0,m
′)}

If newB = ∅ then return false

B← minbase(B ∪ newB)

return true
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Related Work

Another necessary condition for reachability in Petri nets.

A trap is a non empty set of places Q such that •Q ⊆ Q•.

∃v m = m0 + Cv;

For all trap Q marked in m0, Q is marked in m.

(An SMT-Based Approach to Coverability Analysis. Esparza & al. CAV 2014)

Q-reachability strictly implies this condition.

p
s

2
t

q

Marking m = 1q is not reachable in this CPN.

However m = m0 + C1t and the single trap q is unmarked in m0.
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A Logical Approach to Reachability in Continuous PN

Observation

While reachability is checkable in PTIME in continuous Petri nets,

an efficient alternative consists to express the characterisation in a logical way

and provide an existential formula to a SMT solver ...

... since repeated calls to a solver are optimised.

The state equation can be directly provided as an input to the solver.

How to express the firing set constraints to a solver?
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A Logical Formula for a Firing Set

Input variables

For all p ∈ P , x(p) is the initial marking;

For all t ∈ T , y(t) is the t-component of the Parikh image of the sequence.

Auxiliary variables

For all p ∈ P , z(p), when non null, is the first instant p is marked;

For all t ∈ T , z(t), when non null, is the firing instant of t.

Auxiliary formulas

ϕN ,1 =
∧
t∈T

(
y(t) > 0⇒

∧
p∈•t 0 < z(p) ≤ z(t)

)
ϕN ,2 =

∧
p∈P

(
z(p) > 0⇒

(
x(p) > 0 ∨

∨
t∈•p y(t) > 0 ∧ 0 < z(t) < z(p)

))
ϕN = ∃z ϕN ,1∧ϕN ,2 ϕN ,m0 [w,y] = w−m0 = Cy∧ϕN [m0/x]∧ϕN−1 [w/x]

The size of ψN ,m0
[w] = ∃y ϕN ,m0

is linear w.r.t. the size of 〈N ,m0〉.
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Reachability Set Inclusion belongs to ΠP
2

Let 〈N ,m0〉 and 〈N ′,m′0〉 be two continuous Petri nets.

The formula below expresses the reachability set inclusion:

∀w ¬ψN ,m0 ∨ ψN ′,m′0

This formula can be written as ∀ . . . ∃ . . . θ
where θ is a quantifier-free formula of FO(Q,+, <).

So the complexity of the reachability set inclusion belongs to ΠP
2 .

(Eduardo D. Sontag. Real Addition and the Polynomial Hierarchy. 1985.)

Can we do better?
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Reachability Set Inclusion belongs to coNP
Polyhedra theory.

• Let ϕ[x] = ∃yθ[x,y] where θ is a quantifier-free formula of FO(Q,+, <).

Then there exists a quantifier free-formula ψ[x]

whose size is polynomial w.r.t. size of ϕ such that ∀x ϕ⇔ ψ.

• Assume ∃x ψ is true.

Then there exists a witness v whose size is polynomial w.r.t. size of ψ

such that ψ[v/x] is true.

Application to reachability set inclusion.

∀w ∀y ∃y′ ¬ϕN ,m0
∨ ϕN ′,m′0 [y′/y]

express the reachability set inclusion.

This formula is equivalent to some ∀w ∀y θ where θ is quantifier-free,

and when false admits a polynomially sized witness.

So one guesses a polynomially sized marking m

and checks whether m is reachable in 〈N ,m0〉 and unreachable in 〈N ′,m′0〉.
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Reachability Set Inclusion is coNP-complete
A net is reversible if the initial marking is a home state.

Reduction from 3SAT to reversibility.

ϕ = (¬x1 ∨ ¬x2) ∧ x2

•
b1

•
b2

tb1 t1 f1 fb1 tb2 t2 f2 fb2

p1 n1 p2 n2

nc1 nc2

suc

nd

S. Haddad From CPN to PN and Back 44 / 46



Summary of the Results

A full characterisation for problems complexity.

Problems Complexity

(lim-)reachability PTIME-complete
(lim-)boundedness PTIME-complete
(lim-)deadlock-freeness and (lim-)liveness coNP-complete
(lim-)reachability set inclusion coNP-complete

A relevant improvement for Petri nets coverability.
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Perspectives

Temporal logic

In Petri nets, model checking is at the border of decidability/undecidability
depending on: branching versus linear, propositional versus evenemential;

Goal: in CPNs, investigation of decidability and complexity issues.

Hybrid Petri nets

Combination of Petri nets and continuous Petri nets

Goal: establishing the border decidability/undecidability of standard problems
for this formalism.
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