Expressiveness of Deterministic Single-Clock Timed Automata

Susanna Donatelli¹, Serge Haddad²

(1) University of Torino

(2) LMF, ENS Paris-Saclay, CNRS & INRIA

29/11/2022, INRIA Rennes-Atlantique, 68NQRT Seminar From FORMATS 20 and LATA 20

Definitions and Motivation

Definitions and Motivation

2 Expressiveness

Single-Clock Timed Automata

- A set of *locations* L with an initial location ℓ_0 and a final location ℓ_f
- \bullet A set of propositions AP and a set of actions Act
- A set of synchronized transitions $\{\ell \xrightarrow{\varphi^-, \gamma, B, r, \varphi^+} \ell'\}$ with:
 - φ^- and φ^+ the pre and post conditions, boolean formulas over AP;
 - the guard $\gamma \in \{ \alpha \bowtie x \bowtie' \beta \}$ with $\bowtie, \bowtie' \in \{<, \leq, \}, \alpha \in \mathbb{N} \text{ and } \beta \in \mathbb{N} \cup \{\infty\};$
 - $B \subseteq Act$ the subset of possible actions;
 - $r \in \{\emptyset, \downarrow\}$, the resetting action on clock x.
- A set of autonomous transitions $\{\ell \xrightarrow{\varphi^-, \gamma, \sharp, r} \ell'\}$ (or $\{\ell \xrightarrow{\varphi^-, \gamma, \{\sharp\}, r, \varphi^-} \ell'\}$) with:
 - φ^- the pre condition;
 - the guard $\gamma \in \{x = \alpha\}$;
 - $r \in \{\emptyset, \downarrow\}$, the resetting action on clock x.

Deterministic Single-Clock Timed Automata (DTA)

Determinism on synchronized transitions.

For all
$$\ell \xrightarrow{\varphi^-, \gamma, B, r, \varphi^+} \ell'$$
 and $\ell \xrightarrow{\varphi'^-, \gamma', B', r', \varphi'^+} \ell''$,

- either $\varphi^- \wedge \varphi'^- \Leftrightarrow \texttt{false};$
- or $\gamma \wedge \gamma' \Leftrightarrow \texttt{false};$
- or $B \cap B' = \emptyset$;
- or $\varphi^+ \wedge \varphi'^+ \Leftrightarrow \texttt{false}.$

Determinism on autonomous transitions.

For all
$$\ell \xrightarrow{\varphi^-, x = \alpha, \sharp, r} \ell'$$
 and $\ell \xrightarrow{\varphi'^-, x = \alpha', \sharp, r'} \ell''$, $\varphi^- \land \varphi'^- \Leftrightarrow \texttt{false} \text{ or } \alpha \neq \alpha'$.

Condition on the final location.

There is a single transition outgoing from the final location:

$$\ell_f \xrightarrow{\text{true,true}, Act, \emptyset, \text{true}} \ell_f$$

A First Motivation with Illustration

A DTA is a way to express a linear timed temporal formula on infinite timed paths.

 $p\mathbf{U}^{]\alpha,\beta[}q$ with $\alpha>0$

Timed Paths

A timed path is a sequence $(v_0, \delta_0) \xrightarrow{a_0} (v_1, \delta_1) \xrightarrow{a_1} \cdots (v_i, \delta_i) \xrightarrow{a_i} \cdots$ such that for all $i \in \mathbb{N} : v_i \in \{\texttt{true}, \texttt{false}\}^{AP}, a_i \in Act \text{ and } \delta_i \in \mathbb{R}_{\geq 0}.$

 δ_0 is the time of the occurrence of the first transition.

For i > 0, δ_i is the duration between the occurrence of the i^{th} transition and the occurrence of the $i + 1^{th}$ transition.

Illustration.

$$\sigma = (\{p\}, 0.4) \xrightarrow{a} (\{p, q\}, 5.6) \xrightarrow{b} (\{p\}, 2.4) \xrightarrow{c} (\emptyset, 0.7) \cdots$$

Observation.

$$\sigma \models p\mathbf{U}^{]1,2[}q$$

Runs

A run of a DTA is a sequence: $(\ell_0, v'_0, \bar{x}_0, \delta'_0) \xrightarrow{\varphi_0^-, \gamma_0, B_0, r_0, \varphi_0^+} (\ell_1, v'_1, \bar{x}_1, \delta'_1) \cdots (\ell_i, v'_i, \bar{x}_i, \delta'_i) \xrightarrow{\varphi_i^-, \gamma_i, B_i, r_i, \varphi_i^+} \cdots \text{ such that}$

- $\ell_i \xrightarrow{\varphi_i^-, \gamma_i, B_i, r_i, \varphi_i^+} \ell_{i+1}$ is a synchronized or autonomous transition.
- v'_0 satisfies the precondition of the first transition. For i > 0, v'_i satisfies the postcondition of the i^{th} transition and the precondition of the $i + 1^{th}$ transition.
- δ'_0 is the time of the occurrence of the first transition. For i > 0, δ'_i is the duration between the occurrence of the i^{th} transition and the occurrence of the $i + 1^{th}$ transition.
- $\bar{x}_0 = 0$ and for i > 0, $\bar{x}_i = \mathbf{1}_{r_{i-1} = \emptyset}(\bar{x}_{i-1} + \delta_{i-1})$ is the the clock value after the i^{th} transition. For all i, $\bar{x}_i + \delta'_i$ satisfies the guard of the $i + 1^{th}$ transition.
- If the first transition is synchronized, no autonomous transition could take place before it.

If the $i+1^{th}$ transition is synchronized, no autonomous transition could take place between the i^{th} and the $i+1^{th}$ transition.

Paths Recognized by Runs

Let σ be the path $(v_0, \delta_0) \xrightarrow{a_0} (v_1, \delta_1) \xrightarrow{a_1} \cdots (v_i, \delta_i) \xrightarrow{a_i} \cdots$ Let ρ be the run

$$(\ell_0, v'_0, \bar{x}_0, \delta'_0) \xrightarrow{\varphi_0^-, \gamma_0, B_0, r_0, \varphi_0^+} (\ell_1, v'_1, \bar{x}_1, \delta'_1) \cdots (\ell_i, v'_i, \bar{x}_i, \delta'_i) \xrightarrow{\varphi_i^-, \gamma_i, B_i, r_i, \varphi_i^+} \cdots$$

 σ is *recognized* by ρ if there exists an increasing $\kappa : \mathbb{N} \to \mathbb{N}$ such that for all *i*:

•
$$a_i \in B_{\kappa(i)}$$
, $\delta_i = \sum_{\kappa(i-1) < h \le \kappa(i)} \delta'_h$ and $v_i = v'_{\kappa(i)}$;

• for all $h \notin \kappa(\mathbb{N})$, $B_h = \{ \sharp \}$.

 σ is accepted by ρ if ρ visits ℓ_f .

Illustration $(p\mathbf{U}^{]1,2[}q)$

Then σ is accepted by ρ with $\kappa(0) = 0$ and for all i > 0, $\kappa(i) = i + 1$.

Continuous Time Markov Chains (CTMC)

A continuous time Markov chain \mathcal{M} is defined by:

- S, a finite set of *states* with s_0 the initial state;
- $lab: S \rightarrow {\texttt{true}, \texttt{false}}^{AP}$, a valuation over S;
- $R: S \times Act \times S \rightarrow \mathbb{R}_{\geq 0}$, the rate function ;
- Let $R_s = \sum R(s, a, s')$. Then for all $s, R_s > 0$.

 \mathcal{M} generates a path $\sigma_{\mathcal{M}} = (v_0, \delta_0) \xrightarrow{a_0} (v_1, \delta_1) \xrightarrow{a_1} \cdots (v_i, \delta_i) \xrightarrow{a_i} \cdots$ as follows:

- the initial state is s_0 ;
- $v_i = lab(s_i)$ and δ_i is sampled w.r.t. distribution $F_{s_i}(\tau) = 1 e^{-R_{s_i}\tau}$;
- (a_i, s_{i+1}) is selected with probability $\frac{R(s_i, a_i, s_{i+1})}{R_{s_i}}$.

Let \mathcal{A} be a DTA. Then $\mathbf{Pr}_{\mathcal{M}}(\mathcal{A}) \stackrel{\text{def}}{=} \mathbf{Pr}(\sigma_{\mathcal{M}} \models \mathcal{A}).$

Why Deterministic Single-Clock Timed Automata?

There is an efficient way to evaluate $\mathbf{Pr}_{\mathcal{M}}(\mathcal{A})$.

Principles of the evaluation.

- The synchronized product of $\mathcal M$ and $\mathcal A, \ \mathcal M \otimes \mathcal A,$ is a semi-Markovian process.
- $\mathbf{Pr}_{\mathcal{M}}(\mathcal{A})$ is the probability to reach ℓ_f in $\mathcal{M} \otimes \mathcal{A}$.
- \mathcal{M}_d is computed via a transient analysis of *subordinated* CTMCs.

As soon as ${\mathcal A}$ has two clocks,

there could be no more regeneration points in $\mathcal{M}\otimes\mathcal{A}.$

Definitions and Motivation

Relating Families of DTA

Let \mathbb{A}_1 and \mathbb{A}_2 be families of DTA. Then:

- \mathbb{A}_2 is at least as expressive as \mathbb{A}_1 w.r.t. timed language, denoted $\mathbb{A}_1 \prec_{\mathcal{L}} \mathbb{A}_2$, if for all $\mathcal{A}_1 \in \mathbb{A}_1$ there exists $\mathcal{A}_2 \in \mathbb{A}_2$ such that $\mathcal{L}(\mathcal{A}_2) = \mathcal{L}(\mathcal{A}_1)$;
- A₂ is at least as expressive as A₁ w.r.t. CTMCs, denoted A₁ ≺_M A₂, if for all A₁ ∈ A₁ there exists A₂ ∈ A₂ s.t. for all M, Pr_M(A₂) = Pr_M(A₁).

 $\prec_{\mathcal{L}}$ is more discriminative than $\prec_{\mathcal{M}}$.

- Let \mathbb{A} be the general family of DTA;
- Let \mathbb{A}^{na} be the family of DTA without autonomous transitions;
- Let A^{na}_{ne} be the family of DTA without autonomous transitions and without equality constraints on synchronized transitions.

Then $\mathbb{A}_{ne}^{na} \sim_{\mathcal{M}} \mathbb{A}^{na}$ but $\mathbb{A}_{ne}^{na} \precsim_{\mathcal{L}} \mathbb{A}^{na}$.

Are autonomous transitions necessary w.r.t. CTMC: $\mathbb{A} \prec_{\mathcal{M}} \mathbb{A}^{na}$?

Necessity of Autonomous Transitions w.r.t. $\prec_{\mathcal{L}}$

$$\mathcal{A}^{\star} : \longrightarrow \underbrace{\ell_0}^{2\downarrow} x < 1 \xrightarrow{\ell_1} AP = \emptyset$$
$$Act = \{a\}$$

 $\mathcal{L}(\mathcal{A}^*) = \{ (\delta_0) \xrightarrow{a} (\delta_1) \xrightarrow{a} \cdots \mid \exists n \in \mathbb{N} \ 2n \le \delta_0 < 2n+1 \}$

Assume there exists $\mathcal{A}' \in \mathbb{A}^{na}$ such that $\mathcal{L}(\mathcal{A}') = \mathcal{L}(\mathcal{A}^*)$.

Let C be the maximal constant occurring in \mathcal{A}' that we assume w.l.o.g. to be odd. The timed path $(C+1) \xrightarrow{a} (0) \xrightarrow{a} (0) \cdots \xrightarrow{a} (0) \cdots$ belongs to $\mathcal{L}(\mathcal{A}^*) = \mathcal{L}(\mathcal{A}')$. Let $\rho = (\ell_0, 0, C+1) \xrightarrow{\gamma_0, \{a\}, r_0} (\ell_1, \bar{x}_1, 0) \cdots$ be the corresponding accepting run in \mathcal{A}' .

Let
$$\rho' = (\ell_0, 0, C+2) \xrightarrow{\gamma_0, \{a\}, r_0} (\ell_1, \bar{x}'_1, 0) \cdots$$

where $\bar{x}'_i = C+2 = \bar{x}_i + 1$ up to the first reset and $\bar{x}'_i = \bar{x}_i$ after it.
Then ρ' is accepting.

Thus
$$(C+2) \xrightarrow{a} (0) \xrightarrow{a} (0) \cdots \xrightarrow{a} (0) \cdots$$
 belongs to $\mathcal{L}(\mathcal{A}')$
which contradicts $\mathcal{L}(\mathcal{A}') = \mathcal{L}(\mathcal{A})$.

Laplace Transform

From time domain to complex domain.

Let f(t) be a real function defined for $t \ge 0$.

When its exists F(s) with $s \in \mathbb{C}$, its Laplace transform, is defined by:

$$F(s) = \int_0^\infty e^{-st} f(t) dt$$

Some properties.

- For all region $Re(s) > \alpha$ included in the region of convergence, F is analytical.
- Two functions have the same Laplace transform only if they differ on a set of null Lebesgue measure.

A property of analytical functions.

Let U be a connected open set of $\mathbb C$ and f, g be analytical over U.

If f and g coincide over $A \subseteq U$ such that A has an accumulation point in U then f and g coincide over U.

A 0-1 Law for DTA (1)

Let $\mathcal{A} \in \mathbb{A}^{na}$ and $z \in [0,1]$ such that for all \mathcal{M} , $\mathbf{Pr}_{\mathcal{M}}(\mathcal{A}) = z$ then $z \in \{0,1\}$.

Sketch of proof.

We establish by induction on the transition relation of the region graph G_A that:

For all configuration (ℓ, t) in some region of $G_{\mathcal{A}}$ reachable from $(\ell_0, 0)$ and all \mathcal{M} and state s of \mathcal{M} , the probability that \mathcal{M} starting in ssatisfies \mathcal{A} with initial state ℓ and initial clock value t is equal to z.

The base case of the induction follows from the hypothesis.

The induction step consists in showing that:

- the Laplace transform of this probablity, is the Laplace transform of z,
- using appropriate Markov chains and the properties of Laplace transforms.

The conclusion follows since either a region with ℓ_f is reachable and z = 1 or no region with ℓ_f is reachable and z = 0.

Necessity of Autonomous Transitions w.r.t. $\prec_{\mathcal{M}}$

Assume there exists $\mathcal{A}' \in \mathbb{A}^{na}$ such that for all \mathcal{M} , $\mathbf{Pr}_{\mathcal{M}}(\mathcal{A}') = \mathbf{Pr}_{\mathcal{M}}(\mathcal{A}^*)$. Pick an arbitrary \mathcal{M} .

Let $\mathcal{M}_{\lambda,s_0}$ be the Markov chain starting in s_0 and entering \mathcal{M} at rate λ . $\mathbf{Pr}_{\mathcal{M}_{\lambda,s_0}}(\mathcal{A}^*) = \frac{1-e^{-\lambda}}{1-e^{-2\lambda}}$ and so $\lim_{\lambda\to 0} \mathbf{Pr}_{\mathcal{M}_{\lambda,s_0}}(\mathcal{A}) = \frac{1}{2}$.

$$\mathbf{Pr}_{\mathcal{M}_{\lambda,s_0}}(\mathcal{A}') = p_{1,\lambda} + p_{2,\lambda}$$
 where:

- p_{1,λ} is the probability to accept the random timed path and that the first action takes place at most at time C;
- p_{2,λ} is the probability to accept the random timed path and that the first action takes place after C.

Since $\lim_{\lambda\to 0} p_{1,\lambda} = 0$, $\lim_{\lambda\to 0} p_{2,\lambda} = \frac{1}{2}$ which can be shown to contradict the 0-1 law (since \mathcal{M} is arbitrary).

Definitions and Motivation

2 Expressiveness

A Hierarchy of Families of DTA

Let \mathbb{A}^{rc} be the family of DTA such that every circuit that includes a resetting autonomous transition also includes a synchronized transition,

- either resetting *x*;
- or with guard x > C (the maximal constant).

Let \mathbb{A}^{nra} be the family of DTA in which no autonomous transition resets the clock.

Let \mathbb{A}^{nc} be the family of DTA in which:

- no autonomous transition resets the clock;
- and there is no cycle of autonomous transitions.

Then:

$$\mathbb{A}^{na}\sim_{\mathcal{L}}\mathbb{A}^{nc}\sim_{\mathcal{L}}\mathbb{A}^{nra}\sim_{\mathcal{L}}\mathbb{A}^{rc}\precsim_{\mathcal{M}}\mathbb{A}$$

From \mathbb{A}^{rc} to \mathbb{A}^{nra}

Consider an elementary path of $\mathcal{A} \in \mathbb{A}^{rc}$

not including synchronized transitions with reset or with guard x > C.

Its *delay* is the sum of constants occurring in its resetting autonomous transitions. Let K be the maximal delay of such paths.

The locations of $\mathcal{A}' \in \mathbb{A}^{nra}$ are: $L' = \{ \langle \ell, i \rangle \mid 0 \leq i \leq K \land \ell \in L \setminus \{\ell_f\} \} \cup \{\ell_f\}$ with its initial location $\langle \ell_0, 0 \rangle$ and final location ℓ_f .

• For all transition outgoing ℓ , there is a corresponding transition outgoing $\langle \ell, i \rangle$ except for resetting autonomous transition with guard x = c such that i + c > K.

- The guard of the transitions outgoing $\langle \ell,i \rangle$ is "incremented" by i.
- The corresponding transition of a resetting autonomous transition with guard x = c such that $i + c \leq K$ does not reset but leads to $\langle \ell, i + c \rangle$.
- The corresponding transition of a synchronized transition with reset or with guard x>C leads to $\langle\ell,0\rangle.$

The Exponential Blow-up is Unavoidable from \mathbb{A}^{rc} to \mathbb{A}^{nra}

Let $\mathcal{A}_n \in \mathbb{A}^{rc}$ be the following DTA.

Then for all $\mathcal{A}'_n \in \mathbb{A}^{nra}$ such that $\mathcal{L}(\mathcal{A}'_n) = \mathcal{L}(\mathcal{A}_n)$, $(|Aut| + 1)|Synch| \ge 2^n$.

- $\bullet \ {\rm where} \ Aut$ is the set of autonomous transitions
- and *Synch* is the set of synchronized transitions.

From \mathbb{A}^{nra} to \mathbb{A}^{nc} in quadratic time

Idea. Visiting a circuit of autonomous transitions means non acceptance.

Let $\mathcal{A} \in \mathbb{A}^{nra}$ and K be the number of autonomous transitions.

The set of locations of \mathcal{A}' is $L' = \{(\ell, i) \mid 0 \le i \le K \land \ell \in L \setminus \{\ell_f\}\} \cup \{\ell_f, \ell_{\perp}\}$ with initial location $(\ell_0, 0)$ and final location ℓ_f .

For all synchronized transition $\ell \xrightarrow{\varphi^-, \gamma, B, r, \varphi^+} \ell'$ of \mathcal{A} and $i \leq K$:

- if $\ell' = \ell_f$ then there is a synchronized transition $(\ell, i) \xrightarrow{\varphi^-, \gamma, B, r, \varphi^+} \ell_f$;
- otherwise there is a synchronized transition $(\ell, i) \xrightarrow{\varphi^-, \gamma, B, r, \varphi^+} (\ell', 0).$

For all autonomous transition $\ell \xrightarrow{\varphi^-, x=c, \sharp, \emptyset} \ell'$ of \mathcal{A} and $i \leq K$:

- if i = K then there is an autonomous transition $(\ell, i) \xrightarrow{\varphi^-, x=c, \sharp, \emptyset} \ell_{\perp}$;
- else if $\ell' = \ell_f$ then there is an autonomous transition $(\ell, i) \xrightarrow{\varphi^-, x = c, \sharp, \emptyset} \ell_f;$
- otherwise there is an autonomous transition $(\ell, i) \xrightarrow{\varphi^-, x=c, \sharp, \emptyset} (\ell', i+1).$

From \mathbb{A}^{nc} to \mathbb{A}^{na} in polynomial time (1)

First stage. Duplicating locations w.r.t. clock regions: ℓ yields $\{\langle \ell, rg \rangle\}$. For all synchronized transition $\ell \xrightarrow{\varphi^-, \gamma, B, r, \varphi^+} \ell'$ and regions rg and rg' a transition $\langle \ell, rg \rangle \xrightarrow{\varphi^-, \gamma \wedge x \in rg', B, r, \varphi^+} \langle \ell', rg' \rangle$.

For all autonomous transition $\ell \xrightarrow{\varphi, x=i, \sharp, \emptyset} \ell'$ and region rg, a transition $\langle \ell, rg \rangle \xrightarrow{\varphi, x=i, \sharp, \emptyset} \langle \ell', \{i\} \rangle$.

Second stage. Making explicit the priority of the autonomous transitions. Let $\langle \ell, rg \rangle$ be a location and $\{\langle \ell, rg \rangle \xrightarrow{\varphi_k, x = \alpha_k, \sharp, \emptyset} \langle \ell_k, \{\alpha_k\} \rangle\}_{k \leq K}$ be the autonomous transitions outgoing from $\langle \ell, rg \rangle$ with $rg \leq \alpha_1 \leq \cdots \leq \alpha_K$.

For all k, an autonomous transition $\langle \ell, rg \rangle \xrightarrow{\varphi_k \land \bigwedge_{k' < k} \neg \varphi_{k'}, x = \alpha_k, \sharp, \emptyset} \langle \ell_k, \{\alpha_k\} \rangle.$

 $\text{For all synchronized transition } \langle \ell, rg \rangle \xrightarrow{\varphi^-, \gamma, B, r, \varphi^+} \langle \ell', rg' \rangle,$

a transition $\langle \ell, rg \rangle \xrightarrow{\varphi^- \wedge \bigwedge_{\alpha_k \leq rg'} \neg \varphi_k, \gamma, B, r, \varphi^+} \langle \ell', rg' \rangle.$

From \mathbb{A}^{nc} to \mathbb{A}^{na} in polynomial time (2)

Third stage. Eliminating autonomous transitions using decision diagrams (DD):

For all $\langle \ell, rg \rangle$ and $\langle \ell', \{i\} \rangle$ such that there is a path of autonomous transitions from $\langle \ell, rg \rangle$ to $\langle \ell', \{i\} \rangle$. Let the formula $\varphi_{\ell, rg}^{\ell', i}$ be the DD:

- whose vertices are locations both reachable from $\langle \ell, rg \rangle$ and can reach $\langle \ell', \{i\} \rangle$ (both by autonomous transitions);
- whose edges of the DD are the autonomous transitions between such vertices labelled by their formula.

For all synchronized transition $\langle \ell', \{i\} \rangle \xrightarrow{\varphi^-, \gamma, B, r, \varphi^+} \langle \ell'', rg'' \rangle$,

 $\text{a transition } \langle \ell, rg \rangle \xrightarrow{\varphi_{\ell,rg}^{\ell',i} \land \varphi^-, x \geq i \land \gamma, B, r, \varphi^+} \langle \ell'', rg'' \rangle.$

Illustration (1)

Illustration (2)

Conclusion and Perspectives

Contributions

- Analysis of the interest of autonomous transitions in single-clock DTA w.r.t. expressiveness and conciseness;
- Analysis of the relation between state formulas and transition formulas w.r.t. conciseness (*not presented here*).

Perspectives

- From a practical point of view, efficiency increasing of tools using logics like CSL or extensions;
- From a theoretical point of view, decision problems like "given a DTA, does there exist an equivalent DTA without autonomous transitions?"