On the Relationship between Reachability
Problems in Timed and Counter Automata

Christoph Haase, Joél Ouaknine, and James Worrell

Department of Computer Science, University of Oxford, UK

Abstract. This paper establishes a relationship between reachability
problems in timed automata and space-bounded counter automata. We
show that reachability in timed automata with three or more clocks
is naturally logarithmic-space interreducible with reachability in space-
bounded counter automata with two counters. We moreover show the
logarithmic-space equivalence of reachability in two-clock timed automata
and space-bounded one-counter automata. This last reduction provides
new insight into two problems whose precise computational complexity
have independently been identified as open.

1 Introduction

Timed automata [1] and counter automata [9] are prominent infinite-state for-
malisms for modelling and reasoning about quantitative behaviour of systems.
Timed automata comprise a finite-state controller with a finite number of clocks
that can be compared to constants and reset along a transition between two
control locations. Counter automata on the other hand extend finite-state ma-
chines with a finite number of counters ranging over the naturals that can be
incremented, decremented or tested for zero along a transition. Reachability
asks for two given configurations of a timed automaton, respectively a counter
automaton, whether there is a path connecting the two configurations in the
corresponding induced transition system.

From a theoretical and practical perspective, the computational complexity
of deciding reachability is of great interest. Reachability in timed automata was
shown to be decidable and PSPACE-complete in the seminal paper [1|. This re-
sult was later refined in [4], where PSPACE-hardness was established for timed
automata with three clocks. The cases with fewer than three clocks were con-
sidered in [7], where reachability for one-clock timed automata was shown to be
NL-complete, and NP-hard in the presence of two clocks. However, no match-
ing upper bound for the latter problem was given in [7], and this gap is still
open. Aspects of this problem have been studied in [10] without leading to an
improvement of the PSPACE upper bound. For counter automata, the earliest
result is that reachability is undecidable in the presence of at least two coun-
ters [9]. For that reason, restrictions on the resources of counter automata that
lead to decidable reachability problems have been widely studied in the liter-
ature. Examples include the restriction to one counter, disallowing zero-tests,

reversal-boundedness or flatness, all of which lead to a decidable reachability
problem. In this paper, we introduce bounded counter automata in which the
counters range over values from bounded intervals. Due to the finite state space,
reachability is trivially decidable and in PSPACE. Bounded counter automata
can be viewed as a class of strongly-bounded vector addition systems with states
(VASS) [8]. A main difference from general VASS is that they allow for testing
whether a counter is smaller than a given constant. The complexity of reacha-
bility for bounded counter automata with only one counter was investigated in
[3] in the context of weighted timed automata, where the problem was shown to
be NP-hard and in PSPACE.

Our contribution. We exhibit a novel natural connection between reachability
problems in timed automata and bounded counter automata which shows that,
in terms of resources available, both classes behave very similarly with respect
to the complexity of reachability. We show that reachability for timed automata
with at least three clocks can be reduced in logarithmic space to reachabil-
ity in bounded two-counter automata. The most interesting insight comes from
showing the inter-reducibility between reachability in two-clock timed automata
and bounded one-counter automata, since both problems have independently
been studied in the literature [7,10,3] without observing that they are essen-
tially equivalent with respect to the complexity of reachability.

Related work. Apart from the literature referenced above, work related to ours
has been conducted by Figueira et al., which relates decision problems for timed
automata to register automata [5]. Though the latter class of automata is incom-
parable to ours, their work also shows a relationship between resources in both
systems and the complexity of standard decision problems. Furthermore, in [2]
a relationship between reachability in parametric two-clock timed automata and
a rather non-standard class of parametric one-counter automata is shown. Fur-
ther related work is our work [6] on the complexity of reachability in unbounded
one-counter automata, which shows that this problem is NP-complete, though
the techniques developed therein do not promise to improve the PSPACE upper
bounded for reachability in bounded one-counter automata.

2 Preliminaries

In this section, we give some of the definitions that we use in the remainder of
this paper.

General Notation. Given M C R and r € R, we denote by rM the set {rm :
m € M}, and M + r is the set {m +r: m € M}. For i,j € Z, [i,j] denotes the
interval {z € Z : i < z < j}, and [i] is an abbreviation for [1,4]. Given n € N,
we define lgn as min{i € N : 2¢ > n}. Throughout this paper, we assume binary
encoding of integers, i.e., the size of an integer z is lg|z|.

Transition Systems. A transition system is a tuple T' = (S, —), where S is the
set of states and — C S x S is the transition relation. Given s,s’ € S, we write
s — s’ whenever (s,s’) € S and denote by —* the reflexive transitive closure of

—. Given s,s’ € S, reachability is to decide the existence of an s-s’ path in T,
i.e., whether s —* 5.

Timed Automata. Let X be a finite set of clock variables. A clock valuation is
amapping ¥ : X — R, and we denote by CV (X)) the set of all clock valuations.

Given r € R>(, we denote by 9 +r the clock valuation ¢ +r ©f o 2+ for all
x € X. An atomic clock constraint is a term of the form z ~ n, where x € X,
~e{<,<,=,#,>,>}and n € N. A clock constraint ¢ is a finite conjunction
of atomic clock constraints ¢ = x1 ~ ni A ... A T, ~ Ny, The set of all clock
constraints over clocks X is denoted by CC(X). A clock valuation maps 2 ~ n
to a Boolean value ¥(x) ~ n and hence a clock constraint ¢ to a Boolean value.
We write ¥ = ¢ whenever ¢ evaluates ¢ to true.

In this paper, a k-clock timed automaton is a tuple A = (Q, X, A,), where Q
is a finite set of control locations, X is a set of k clock variables, A C @ x @ is the
transition relation and £ : A — CC(X) x 2% is the transition labelling function.
Given z € X, the set of x-constants C, comprises 0 and those n € N such that
an atomic clock constraint x ~ n occurs as a conjunct in a clock constraint of

some transition of A. The set C(A) of configurations of Ais @ x CV(X). The

size of a timed automaton is |.A] &f |Q| + 4] + max{lgn:n € Cp,xz € X}.
A timed automaton induces a transition system T(A) = (S4,—.4) where
S4=C(A) and (q,9) —4 (¢',?) if one of the following conditions holds:

(i) ¢ = ¢ and there exists € R>(such that ¢ = 9 + r (delay transitions);
(i) (¢,¢") € A,€(q,¢") = (¢, X"), 0 = ¢ and ¥’ is such that ¢'(z") = 0 for every
z' € X" and ¢¥'(z) = ¥(x) for every x € X \ X' (discrete transitions).

Reachability for a k-clock timed automaton A is to decide C' —% C’ for given
configurations C,C’ € C(A) N Q x N,

Bounded Counter Automata. Let £ € N and Op f {add;(z) : i € [k],z €
Z}. A bounded k-counter automaton is a tuple A = (Q, A, b,§), where Q is
a finite set of control locations, A C Q x @ is the transition relation, b =
(b1, ..., b) € N¥is a vector of bounds and ¢ : A — Op is the transition labelling
function, where the absolute value of each add; is at most the maximum value
of the components of b. The set C(A) of configurations of A is Q x [0,b1] X
... x [0,bg]. We call b; the bound of counter i. The size of a bounded k-counter
automaton is |A| def |Q| + | 4| + max{lgb; : i € [k]}.

A bounded k-counter automaton A induces a transition system T(A) =
(Sa,—a4), where Sy = C(A) and (¢,n1,...,n,) — (¢',nf,...,n}) if (¢,¢") € A,
£(q,q') = addi(2), nj = ni+z and n; = n; for all j # i. Reachability for bounded
k-counter automata is to decide C' —% C" for given configurations C,C" € C(A).

For technical convenience, we may assume that counters range over bounded
intervals from (1/n)Z,n € N, and that there are additional operations counter; ~
q,~ € {<,<,=,>,>},q € (1/n)Z labelling transitions that allow for comparing
a counter with a certain number. It is easy to see that reachability in this enriched

formalism is logspace-reducible to reachability for bounded counter automata as
defined above.

3 The General Case

In this section, we show the logspace inter-reducibility between reachability prob-
lems in timed automata with at least three clocks and bounded counter automata
with at least two counters. We show that (i) reachability in bounded k-counter
automata with & > 2 can be reduced to reachability in bounded two-counter au-
tomata. Next, we show that (ii) reachability in bounded two-counter automata
can be reduced to reachability in three-clock timed automata. Finally, we show
that (iii) reachability in k-clock timed automata with k& > 3 can be reduced to
reachability in bounded (2k + 2)-counter, which by (i) implies that this problem
is reducible to reachability in bounded two-counter automata.

Reduction (i). Let A = (Q, A, b, &) be a bounded k-counter automaton with
k> 2and b = (by,...,bg). It is easily seen that we may assume all bounds of
b to be uniform, i.e., for any b > max{b; : i € [k]}, reachability in A can be
reduced in logarithmic space to reachability in a bounded k-counter automaton

A = (Q',A,b,¢), where b= (b,...,b).

Lemma 1. Let A be a bounded k-counter automaton with k > 2. One can com-
pute in logarithmic space a bounded two-counter automaton A’ such that for all
(g,m),(¢',n’) € C(A) there exist logspace-computable m, m’ € N? such that

(¢;m) =% (¢',n) iff (¢ m) =% (¢',m).

Proof. Let b =29 —1 be the uniform bound of A, hence r def g — 1 bits are suffi-
cient to represent a counter value. The idea behind our reduction is to simulate
counters three up to k of A in the most significant bits of the second counter of
A’, and to use the most significant bits of the first counter of A’ as temporary
storage.

The control locations of A’ contain those of A as a subset, however the
transitions of A will be replaced with gadgets in A’. We set the bound on the
counters of A’ to be 27*=D+1 _ 1 1In order to make our intuition about the
relationship between configurations of A and A’ formal, we define a mapping h
as h: C(A) = C(A) E (g, (01, .., nk)) = (¢, (11, Yo 20 ?7ny)). Our aim
is to construct A’ such that (¢,m) =% (¢',n’) iff h(q,n) =%, h(¢’,n’). To this
end, any transition (q,q’) of A that adds a positive integer to the first counter,
i.e., is of the form addi(n),n € [0,b], gets replaced in A’ by two consecutive
transitions that first add n to the first counter of A’ and then check that the
value of this counter is less than or equal to b. Any transition of A adding a
negative number to the first counter is duplicated in A’. Simulating the addition
of integers to a counter different from the first counter requires some more effort.
Informally speaking, we have to make sure that we do not underflow or overflow.
Formally, any transition (g¢,q’) labeled with add;(2),i > 2,z € Z in A gets
replaced in A’ with a gadget that performs the following sequence of actions on
the first and second counter of A’ in this order:

(i) move the bits (i—1)r+1 up to (k—1)r from the second to the first counter;
(ii) add 20~z to the second counter;

(iii) test that the value of the second counter is less than 20— D7+
(iv) move the bits (¢ — 1)r up to (k — 1)r from the first to the second counter;

i
(v) and switch to control location ¢'.

A sketch showing how to construct a gadget moving bits between counters
is given in the appendix. It is not difficult to verify that (¢,m) —4 (¢',n’) iff
there is a path in T(A’) traversing locations of the gadget starting in h(q,n)
and ending in h(q¢’,n’), which concludes the proof of the lemma. O

Reduction (ii). We now show that reachability in bounded two-counter au-
tomata can be reduced to reachability in three-clock timed automata. By the
observation made in Reduction (i), we may assume that A has a uniform bound
b. We encode counter values as follows: for any clock valuation ¥, whenever
J(z) = b the value of the first counter of A is encoded in ¥(z) — J(y) and
J(z) — 9(z) encodes the second counter of A. A similar encoding has also been
used in [2] in order to show undecidability of reachability in parametric three-
clock timed automata, and due to space constraints we defer the proof of the
next lemma to the appendix.

Lemma 2. Let A be a bounded two-counter automaton and (q,n),(¢',n') €
C(A). One can compute in logarithmic space a three-clock timed automaton A’
and clock valuations 9,9 such that (q,m) —% (¢',n') iff (¢,9) =% (¢, 7).

Reduction (iii). The only reduction that remains to be shown is the reduc-
tion from reachability in k-clock timed automata to reachability in bounded
(2k + 2)-counter automata. Let A = (Q, X, A,&) be a timed automaton with
clocks X = {x1,...,2;}. Recall that a configuration of a timed automaton is
a tuple consisting of a control state and clock valuation. In order to abstract
away from the a priori infinite state space, we employ the region abstraction
as a reachability-preserving equivalence relation on the set of configurations of
a timed automaton. As defined in [1], recall that the region abstraction makes
two configurations equivalent if (a) their control locations are the same; (b) the
integral parts of the value of each clock with a value below the maximum con-
stant appearing in A are the same; (c¢) the relative orders of the fractional parts
of the values of the clocks are the same; and (d) the clocks with fractional part
0 are the same.

Given a k-clock timed automaton A, we sketch how to construct a bounded
(2k 4 2)-counter automaton A’ such that any reachability problem for A trans-
lates into an instance of a reachability problem in A’. We aim for encoding (a)-(d)
into configurations of A’. The main difficulty is that any of (b)-(d) allows for
an exponential number of possibilities in |4| and is therefore unsuitable to be
encoded into control locations of A’. Instead, we use the 2k + 2 counters for
their encoding. Let m € N be chosen such that m bits are sufficient to represent
one plus the maximum integer constant appearing in A. A’ has bounded coun-
ters fi,..., fe+1, 1,-..,0x and t, where the maximum value for the counters
fis-oos fep1 and ¢ is 2871 — 1 and 2™+! — 1 for the counters i1,...,i,. The bit
representation of the counters is illustrated in the figure below, where the least

significant bit of each counter is at the bottom and the most significant bit on
top:
relative order of fractional part of clocks

mtegral part of clocks

kJrl m m
ﬁ i li] m+1
0] [0] [O]
0] [1] [O]
[0 [m m I
t fi fe fk+1

The counter ¢t will serve as temporary storage space. In order to represent a
configuration (g,9) of A, f1,..., fre1 will be used to encode the order of the
clocks with respect to their fractional parts, induced by 4. The counter f; ad-
ditionally encodes those clocks that have fractional part 0. Finally, the counters
i1,...,1 are used to store the integral part of the clocks induced by 1. For ex-
ample,consider a clock valuation ¢ with ¥(x1) = 4.1, d(a2) = 2.0, d(x3) = 0.8,
Hzp—1) = 0.0 and Fd(xy) = 3.8. Let | < I’ € [k], whenever the j-th bit of the
counter f; is set and the j'-th bit of the counter f; is set, this indicates that
clock j has a value whose fractional part is strictly smaller than the fractional
part of the value of clock j'. Combining the example with the figure above, we
see that the second bit of f; is set and the first bit of f5 as expected. In addition,
f1 indicates which clocks have fractional part 0, which is why the second and
the (k — 1)-th bit of f; are set. Moreover, clock x3 and xj, “reside” on the same
counter fr41 as their fractional part is equivalent in our example. The counters
i1,...,i, are used to store the integral part of the clocks up to 2™+t — 1. In
our example, this means that the value of i, is 4, the value of i is 2, etc. Delay
transitions can be simulated as follows: first, the value of the counter fjy is
moved to the counter ¢ and the value of fi11 is set to zero. Then, the value of
the counter f is moved to the counter fr1 until eventually we move the value
of f1 to fo. We can then copy the value of ¢ to fi. All clocks that “resided” in
fr+1 have now a fractional part zero and their integral part needs to be incre-
mented by one. This can be simulated by incrementing the respective counter
ij, provided that it has not yet reached its maximum value. If the maximum
value has already been reached, no action is performed. In order to simulate A,
any control location of A is present in A’ and has a loop which elapses time as
described above. It remains to describe how to discrete transitions of A. To this
end, checking the truth value of the guard of the transition against the currently
abstracted clock valuation and resetting of clocks needs to be simulated. Again,
we illustrate the reduction with the help of an example. Suppose the guard is
(x1 < 6 Axg = 4,{z1}). The constraint z; < 6 can be checked in A’ with an
edge that is labeled with counter;, < 6, checking xo = 4 can also be simulated
with an edge counter;, = 4, but we additionally need to check that the second
bit of f7 is set. Simulating a reset of x; is also relatively straightforward: we non-
deterministically choose the fractional class j of xi, i.e., the counter f; whose

first bit is set. We then set this bit to zero, i.e., remove 2° from f;, add 2° to
the counter f; and set i; to zero.

In summary, in order to check (q,9) —% (¢’,?¢), we construct A’ in logarith-
mic space, compute counter values n,n’ € N?**2 that represent the abstraction
of the clock valuations 9,9 and check (¢,n) —%, (¢’,n’). The converse direction
follows straight-forwardly by defining a bijection between configurations (g, n)
and the region abstraction of A, we omit further details. We have thus proven
the following lemma.

Lemma 3. Let A be a k-clock timed automaton and (q,7), (¢',9") € C(A). One
can compute in logarithmic space a bounded (2k + 2)-counter automaton A’ and
n,n’ € N?**2 gych that (g,9) —% (¢',9") iff (g,n) =% (¢, n’).

The following theorem summarises the results of this section. It also yields as a
byproduct that reachability in k-counter automata is PSPACE-complete.

Theorem 1. Reachability in k-clock timed automata with k > 3 is logarithmic-
space inter-reducible with reachability in bounded two-counter automata.

4 The Case of Two Clocks and One Bounded Counter

We now consider the special case of two-clock timed automata and show that
reachability for this class of timed automata is logspace inter-reducible with
reachability in bounded one-counter automata. The reduction from reachability
in bounded one-counter automata to reachability in two-clock timed automata
is a rather trivial adaption of the two-counter case presented in the previous
section and will be left out for brevity.

For our reduction, we require a gadget that allows for adding numbers in an
interval to the counter. The proof of the next lemma is deferred to the appendix.

Lemma 4. Let a < b € N. One can compute in logarithmic space a one-counter
automaton A with control locations q,q" such that for all n,n' € N, (¢,n) —%
(¢ ,n) iff n —n € [a,b].

Let A= (Q, X, A,¢) be a fixed two-clock timed automaton such that X =
{z,y}. In the following, we construct in logarithmic space a bounded one-counter
automaton A" = (Q', A’, by, by, £') corresponding to A. For technical convenience,
A’ has a lower and an upper bound b;, b, € 0.5Z, c.f. Section[2. The set of control
locations @’ of A’ contains the control locations of () paired with abstractions
of clock valuations. We first define these abstractions. Let Cp, = {z1,..., 2.} be
the ordered set of z-constants in A, i.e., z; < ;41 for ¢ € [a — 1], and let C,, =

{y1,...,yp} the ordered set of y-constants, where x; = y; = 0. We define the

augmented sets Cp° and Cp° as Cg° Lo u {00} respectively C° def CyU{oo},

where z,4+1 and yp41 identify oo in C2° and C°, respectively. The set of regions
R of A is defined as

def
R :e{(xiaijxi-‘rbzayj-l-by) X € Oxay] S Cy7bwaby S {05 1}}a

Fig. 1. Example of the regions and the clock difference zones of a two-clock timed
automaton with C, = {0,1,5} and C, = {0, 1, 3}.

which is a subset of C; x Gy x C2° x Cg°. Note that |R| = O(|.A]?) and that R
is computable in logarithmic space. Subsequently, we will write r to identify a
region from R. With each region r € R, we associate a set of clock valuations

¥(r) in the obvious way, e.g., (i, y;, i, y;) def {9 : d(z) = z;,9(y) = y;}
and H(x;, ¥, Tit1,Y;) &f {02, <V(x) < zi41,9(y) = y;}, etc., and hence R
partitions the set of all clock valuations. Moreover, any two clock valuations of
a region r cannot be distinguished by A. Figure [1] presents an example of the
regions of a two-clock timed automaton A The stroked lines in the first quadrant
indicate the regions of A, e.g., (1,1,5,3) and (5,3, 00, 00) are regions of A.

A further abstraction that we are going to use builds upon the set of clock
differences D of A, which is defined as D def {ea — ¢y iz € Cp,cy € Cy}. We
write D as the ordered set D = {dy,...,d.}. Our abstraction is the set of clock
difference zones Z of A, which is a set of symbolic intervals on Z defined as

Z%d,d):d € DYU{(ds,diy1) 1 di € D,i € [c — 1]} U {[~00,d1), (de, 00]}.

Here, we also have |Z| = O(|.AJ?). We subsequently write z to identify a clock

difference zone from Z. With each z, we associate a set of clock valuations ¥(z) def

{¥ : 9(x) —I(y) € =z}, which gives us an abstraction. The set of clock difference
zones Z also partitions the set of all clock valuations. Figure [1 illustrates the
partitioning of the clock valuations by clock difference regions where each dashed
line and the space between them in the first quadrant is a partition.

We can now define a subset of the control locations of A’. Our overall
goal is to represent the set of configurations of A as a finite quotient encoded
as configurations of A’ and then discretely simulate transitions in T(A) as
transitions in T'(A’). In order to obtain the control locations @’ of A’, we
pair each ¢ € @ with a region and a clock difference zone and thus have
Q x{(r,z) € Rx Z :9(r)Nd(z) # 0} C Q. Each tuple (g, (r,z)) represents a
set {(g,9) : ¥ € ¥(r) N¥(z)} of configurations of A, and we can associate with
each configuration (¢,9) a control location (gq,9)" of ¢’ as (g,9)T def (q,(r,2)),
where r, z are uniquely chosen such that ¢ € 9(r) N 9(z).

Given r € R and z € Z such that 9(r) N 9(z) # 0, in order to discretely
simulate delay transitions of A, we define the successor succ(r, z) of r with respect

to z. Informally speaking, elapsing of time can be simulated by moving from
region to region along the dashed lines in Figure[1]l Let us first consider the case
z = [d,d] and suppose in the following that z;11 # oo and y;4+1 # 0o, we e.g.
define

def
_ o o I 1€
— caser = ($i7yj,$i,yj)a and T; = Ty OrY; = Yj: SUCC(T’, Z) - (xiayj7$i+17yj+1)

3 . def
— caser = (T4, Yj, Tiy1,Yj+1), Tit1—Yjr1 < d: succ(r, 2) = (Tiy1, Y5, Tit1, Yjr1)

The definition of succ can straightforwardly be extended for the remaining cases.
Now if z = (dg, dk+1), we only sketch the definition of succ(r, z). Again, suppose
in the following that z;11 # oo and y;41 # 0o, we e.g. define

def
— caser = (Tj, Yj, Tit1, Yj+1) o1 < Tig1—Yj41: suce(r, 2) = (T4, Yj41, i1, Yj+1)
def
— caser = ($i7yj75€i+1ayj+1)7dk > Tip1—Yjr1: succ(r, z) = ($i+17yj,37i+1;yj+1)

Again, the remaining cases are defined analogously and it is not difficult to
check that succ(r, z) can be computed in logarithmic space. In order to simulate
time delay steps, A’ contains transitions from each (g, (r, z)) to (g, (succ(r, z), z))
and to itself, which perform no action on the counter. Note that we can only
simulate delay steps between regions but not within regions. Elapse of time
inside regions only needs to be considered when resetting clocks and is going
to be handled there. In order to handle clock resets, we are going to define a
further abstraction that establishes a correspondence between clock valuations
and counter values of A’. For our construction, we allow the counter to take
values from a bounded interval in Z U 0.5Z and define the set of counter values
as V&L {d1 —0.5,dy,...,dc,d. + 0.5}. We use the counter to partition the set
of clock valuations. For n € V', we define

{9 :9(x) —I(y) =n} ifneVnz
9(n) 4 {9:9x) —I9y) € (m—0.5,n4+0.5)}if ne V\(ZU{ds —0.5,dx +0.5})
(n) {9:9(x) — O(y) < dv} ifn=d —0.5
{9 : Hz) —Iy) > di} if n =d +0.5.

We will use this definition to map configurations of A to configurations of A’. For
any clock valuation 9, let 9" denote the unique n € V such that ¥ € 9(n). We

define (g,9)™ def ((g,9)T,9%). The partitioning of the clock valuations through
the counter value is less coarse than through clock difference zones. It classifies
clock valuations according to whether the difference between the clocks is a fixed
integer, lies strictly in a unit interval between two consecutive fixed integers, or
lies outside the “interesting” integers. While simulating A through A’, we are
going to ensure as an invariant that if we are in a configuration ((g, (1, 2)),n) of
A’ then n is consistent with z, i.e., n € z. In fact, it is easy to construct a gadget
that, informally speaking, non-deterministically guesses the clock difference zone
the counter is currently in without destroying the counter value.

We now give some the technical details on how to simulate discrete transitions
and clock resets. Throughout the remainder of this section, whenever we consider

a configuration ((g, (r, z)),n) of A’ that corresponds to some configuration (g,)
of A, it is helpful to think of ¥ to lie, if possible, at or, otherwise, infinitesimally
close to the bottom left corner of 9(r)NY(n). In addition to the control locations
mentioned above, ¢’ contains control locations that we are going to use to initiate
the simulation of clock resets:

Q x{(r,z) e Rx Z :9(r)NI(z) # 0} x {resety, reset,, reset, ,} C Q'

If (¢,q) € A, £(¢,q¢') = (¢, X') and ¥ = &(q,¢) for all 9 € ¥(r) NI(z) then,
depending on which clocks are required to be reset by X', A’ contains a transition
from (g, (1, 2)) to (¢, (r, 2), resety), (¢, (r, 2), resety) or (¢, (r, z), reset, ,), which
perform no action on the counter. If no clock is required to be reset, i.e., ¥ = 0,
then (g, (r, 2)) directly connects to (¢’, (1, z)). Note that checking Whether dE O
for all ¥ € 9(r) N ¥(z) can be performed in logarithmic space.

The simplest case is when we want to simulate a reset of both clocks z, y. This
can be done by setting the counter to 0, changing r to (0,0,0,0) and z to [0, 0].
If we only want to reset one clock, things become slightly more complicated. In
the following, we are going to consider three representative cases that show how
to simulate clock resets. The remaining cases follow a similar pattern.

First, suppose © = (2, ¥, Ti+1,Yj+1), 2 = |d,d] and that we wish to reset
the clock y of a clock valuation 4 € ¥(r) N Y¥(z). Let us illustrate this case
with the help of Figure[I] for example with z = [0,0] and r» = (1, 1,5, 3). In this
example, if we consider a clock valuation ¥ infinitesimally close to (1, 1), if we let
time elapse while staying inside r and then reset clock y, we obtain a new clock
valuation ¥’ such that ¥'(z) € (1,3) and hence (¢,9")" = ((¢, (1, 2')),n’), where

=(1,0,5,0), 2/ € {(1,2),[2,2],(2,3)} and n’ € [1.5,2.5] such that z’ and n’ are
consistent. Thus simulating a reset of clock y boils down to setting the counter to
some value in the interval [1.5,2.5]. This observation generalises to the following
procedure: we pre-compute the left and right boundaries z;, x,- on the z-axis of
Y(r) NY(z), in our example 1 and 3 respectively, and connect (g, (, z), reset,)
to a gadget that non-deterministically repeatedly adds 0.5 to the counter, then
performs a check that the counter value is strictly between z; and x, and finally
non-deterministically performs a transition to the correct (g, ((z;,0, z;11,0), 2"))
for the new clock difference zone 2z’ = [dy, d] or 2’ = (di, dg41) (recall that we
can verify that we are in the correct clock difference zone). The case of resetting
clock x can be handled analogously.

Next, we consider the case r = (z;,y;, Ti+1,Yj+1) and z = (di, di+1) where
we wish to reset clock y. Again, we use Figure 1 to illustrate this case with the
help of the region r = (1,1,5,3). Our first observation is that this case yields
four different sub-cases. First, if d = (—1,0) then the boundaries of ¥(r)NY(z) lie
at the left and the top boundary of r. Second, if d = (0,1) then the boundaries
of ¥(r) N Y¥(z) lie at the bottom and the top boundary of r. Third, if d = (2,4)
then the boundaries of ¥(r) NYJ(z) lie at the bottom and the right boundary of r.
The fourth sub-case cannot be found in region (1,1, 5, 3) but in region (0,1, 1, 3),
it is the case when the boundaries of ¥(r) N ¥(z) lie at the left and the right
boundary of r. Subsequently, we are going to consider the first and the second
sub-case. The other sub-cases follow along similar lines.

Suppose r = (z;,Yj, Tit1,Yj+1), 2 = (dk,dry1) and the boundaries of the
intersection of ¥(z) and I(r) lie at (z;,y;, zi, yj+1) and (T4, Yj+1, Tit1,Yj+1);
e.g., z = (—1,0) in our example. Suppose n € V is the current counter value,
since ¥(y) < yjy1 for any ¥ € 9(r) N ¥(n), we have ¥(z) < n + y;41. This
implies that when simulating a clock reset, the updated counter must not exceed
n + y;+1. On the other hand, the updated counter value must be above z;.
Thus, in this scenario, resetting clock y boils down to connecting (g, (r, 2), reset,)
to a gadget that adds y;11 to the counter, non-deterministically subtracts 0.5
from the counter, checks whether the counter is strictly above x; and then non-
deterministically chooses the new z’ that is consistent with the new counter value
and switches to (g, ((z;,0,2;11,0),2")). If we were to reset clock x, we proceed
analogously.

The last case we consider is r = (x;, yj, Tit1,Yj+1), 2 = (di, dp+1) and ()
intersects with 9(r) at (z;,y;, Ti+1,¥;) and (24, Yj+1, Tit1, Yj+1), €-9-, 2 = (0,2)
in our example. Let us first consider resetting clock y. Similar to the previous
case, we observe that for any n € z and ¥ € ¥(r) NI (n), dz) < n + y;11.
Moreover, the lower bound for ¥(z) is determined by y;: ¥(z) > n + y;. Thus,
simulating a clock reset on clock y boils down to adding some number from
the interval [y; + 0.5,y;_1 — 0.5] to the counter, which can be realised with the
gadget from Lemma [4. In summary, in this case a clock reset on the clock y
starting a control location (g, (r, z), reset,) can be simulated by connecting this
control location to a gadget that adds a number from [y; 4+0.5,y,_1 —0.5] to the
counter, then non-deterministically chooses the correct new clock difference zone
z" and performs a transition to (g, ((x;, 0, z;+1,0),2")). If we were to reset clock
x, we observe that the value of clock y always lies in the interval (y;, y;+1). Thus,
starting in (g, (r,), reset,), the reset can be simulated by connecting to a gadget
that non-deterministically subtracts 0.5 from the counter and then verifies that
the counter is strictly between —y; 1 and —y;.

All remaining cases have a symmetric counterpart that we discussed before.
It is not difficult to check that all constructions can be performed in logarith-
mic space. The following lemma provides a summary of the properties of the
reduction we described in this section and allows us to reduce reachability in
two-clock timed automata to reachability in bounded one-counter automata.

Lemma 5. Let A be a two-clock timed automaton, let A’ be its corresponding
bounded one-counter automaton and let C = ((¢, (r, 2)),n),C" = (¢, (+',2")),n’) €
C(A"). There exist 9,9 such that (¢,9)" = C, (¢,9)" = C" and (¢,9) —%
(¢,0") iff C =%, C'.

In order to reduce an arbitrary instance (q,9), (¢’,9") of a reachability problem
in a two-clock timed automaton A to a reachability problem in a bounded one-
counter automaton, we construct A’ as described above, but use the sets C, U
{9(z),? (x)} and Cy U {I(y),9’(y)} in order to construct the regions and clock
difference zones of A’. Applying the previous lemma, we obtain the main result
of this section.

Theorem 2. Reachability in two-clock timed automata logarithmic-space inter-
reducible with reachability in bounded one-counter automata.

5 Discussion

We have shown a relationship between reachability problems in timed automata
and bounded counter automata with respect to the resources available. This
relationship also extends to the case of one-clock timed automata, since [7] shows
that reachability in this class reduces to reachability in finite-state machines,
which can be viewed as bounded counter automata with no counter.

Besides these meta-level result, with regards to settling the complexity of
reachability in two-clock timed automata, we believe that our reduction greatly
simplifies this problem, since bounded one-counter automata are on a mathe-
matical level cleaner and easier to define and to handle than two-clock timed
automata.

References

1. R. Alur and D.L. Dill. A theory of timed automata. Theor. Comp. Sci., 126:183—
235, 1994.

2. R. Alur, Th.A. Henzinger, and M.Y. Vardi. Parametric real-time reasoning. In
Proc. STOC, pages 592-601. ACM Press, 1993.

3. P. Bouyer, U. Fahrenberg, K.G. Larsen, N. Markey, and J. Srba. Infinite runs in
weighted timed automata with energy constraints. In Proc. FORMATS, volume
5215 of LNCS, pages 33-47. Springer, 2008.

4. C. Courcoubetis and M. Yannakakis. Minimum and maximum delay problems in
real-time systems. Form. Method. Syst. Des., 1(4):385-415, 1992.

5. D. Figueira, P. Hofman, and S. Lasota. Relating timed and register automata. In
Proc. EXPRESS, volume 41 of EPTCS, pages 61-75, 2010.

6. C. Haase, S. Kreutzer, J. Ouaknine, and J. Worrell. Reachability in succinct and
parametric one-counter automata. In Proc. CONCUR, volume 5710 of LNCS,
pages 369-383. Springer, 2009.

7. F. Laroussinie, N. Markey, and Ph. Schnoebelen. Model checking timed automata
with one or two clocks. In Proc. CONCUR, volume 3170 of LNCS, pages 387-401.
Springer, 2004.

8. G. Memmi and G. Roucairol. Linear algebra in net theory. In Net Theory and
Applications, volume 84 of LNCS, pages 213-223. Springer, 1980.

9. M.L. Minsky. Recursive unsolvability of post’s problem of "tag” and other topics
in theory of turing machines. Ann. Math., 74(3):437-455, 1961.

10. G. Naves. Accessibilité dans les automates temporisés & deux horloges. Rapport
de Master, MPRI, Paris, France, 2006.

addz(=27) & _add;(27) addz(=2") ® _addy(2')

/ \ 7 T / \ counter2<2iO

O o> e @ > @

Fig. 2. Generic gadget Amoo (%, j) used for moving the bits ¢ up to j of the second to
the first counter.

A Missing Proofs from Section [3

Gadget for moving values between counters left out in the proof of
Lemma 1l A gadget A0, ((i—1)7, (k—1)r) as sketched in Figure2 can be used
to move values between counters. The gadget non-deterministically subtracts
relevant powers of two from the second counter and immediately adds them to
the first counter. A test that the counter is less than 2(:=17) at the end ensures
that all bits have been moved. The same gadget can be modified to move the
same bits back from the first to the second counter, as required in (iv).

Proof of Lemma (2. Let A be a bounded two-counter automaton and (g, n), (¢',n') €

C(A). One can compute in logarithmic space a three-clock timed automaton A’
and clock valuations 9,9 such that (q,m) —% (¢',n') iff (¢,9) =% (¢, 7).

Proof. Let b be the uniform bound of A. The clock Valuationb 19 9" required in

the lemma are defined as ¥(z) = ¥/ (x)d—efb Iy)d—Efb ny,9(z) L) - na, ¥ (y)def

b—nj and ¥ (z)d—Cfb—

We are now going to sketch how A’ can be obtained from A. The timed
automaton A’ contains all control locations of A. However, the transitions from
A are going to be replaced by gadgets that manipulate the clocks in a way that
simulates the action of the replaced transition. As an invariant, we are going
to ensure that at any time A’ reaches a control location that exists in A, the
value of the clock z is b. Suppose (¢,¢') € A is a transition from A such that
£(q,q") = addy(n) for some n € N. In A’, we are going to replace this transition
by the following gadget:

/ r.i‘. 3::78 [} Zzi% O\

_x=b z=5b y=n r=>b ’
1= =0" z:=0 \ > =0"" y:—()/v. "~
2= y=2>o y=n
z=0 ° Y= - y::O'.

Since we want to simulate that the first counter of A increases, we need to
increase the difference between the value of the clock x and the value of the clock

y. To this end, the gadget first resets the clock x. It then non-deterministically
guesses the order of the simulated counter values: it branches upwards if the first
counter is less or equal to the second counter and downwards otherwise. We only
discuss the first case here. The gadget waits until clock y has value b. It then
aims at waiting for n time units. However, clock z could reach value b in the
meantime. Thus, again, a non-deterministic choice is performed to handle the
two cases. If z reaches b before y reaches n, the downward branch can be taken,
which first resets z as it reaches clock value b and then y when it reaches clock
value n. The converse case can be shown analogously. Finally, the gadget waits
until clock x reaches clock value b in order to establish our agreed invariant
when it reaches ¢’. A similar gadget can be constructed for the simulation of
incrementing the second counter and for decrementing the counters. ad

B Missing Proofs from Section

Proof of Lemma 4. Let a < b € N. One can compute in logarithmic space a
one-counter automaton A with control locations q,q such that for all n,n’ € N,

(g;n) =% (¢, n') iff n’ —n € [a,b].
Proof. We first consider the case ¢ = 0 from which we are then going to derive

the general case. For any m € N, let k(m) def max{i : m > (2° — 1)}. We define

def def v
a sequence mj > mg > ... as follows m; = b and mi 1 = m; — (2’“(’”1) -1)

for i > 0. Let (k;);~0 be the sequence of the k(m;), we have b = ZDO(Q’” —1).
Since m;41 < m;/2 for all ¢ > 0, we have k;y1 = 0 for some j < lgb and hence
b= el (2% —1). The one-counter automaton A consists of gadgets Ay, ,i € [7]
as shown here:

o add; (2°) Jaddi(2'71)

N SN

O—»Qi%. .4>qz—>®

Each Ay, connects to Ay, , for i € [j — 1]. For each i € N, on a run from O to
0, A; can non-deterministically add a number from the interval [0,2" — 1] to
the counter where we assume that 4y does not affect the counter at all. Let ¢
be the incoming location) of A, and ¢’ the terminal location) of A%j, it is
easily verified that (¢,n) —% (¢/,n’) iff 0’ —n € [0,b].

In the general case where a and b take arbitrary values from N, we construct
a one-counter automaton A as above that allows for representing any number in
the interval [0,b — a] and add a new initial location that has a transition to the
initial control location of A that adds a to the counter. O

	On the Relationship between Reachability Problems in Timed and Counter Automata

