



# The limits of Nečiporuk's method and the power of programs over monoids taken from small varieties of finite monoids Ph.D. thesis defence

**GROSSHANS** Nathan

ENS Paris-Saclay & Université de Montréal

September 25, 2018

First example: addition

 $\begin{array}{rr} 537 \\ + & 71 \end{array}$ 

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q O 1/29

First example: addition

 $+ \frac{537}{8}$ 

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q O 1/29

First example: addition

 $\begin{array}{r}1\\537\\+71\\\hline
08\end{array}$ 

<ロ > < 母 > < 臣 > < 臣 > < 臣 > 臣 の < つ 1/29

First example: addition

 $\begin{array}{r}
 1 \\
 537 \\
 + 71 \\
 \overline{608}
\end{array}$ 

<ロ > < 母 > < 臣 > < 臣 > < 臣 > 臣 の < つ 1/29

First example: addition

$$\begin{array}{r}1\\537\\+&71\\\hline608\end{array}$$

#### How does one add two numbers?

One follows a certain procedure giving a succession of small operations.

<□ ▶ < □ ▶ < 壹 ▶ < 壹 ▶ < 壹 ▶ ○ ♀ ∩ 1/29

Second example: finding a treasure



<□ ▶ < □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q @ 2/29



Second example: finding a treasure



<□ ▶ < □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q @ 2/29

Second example: finding a treasure



<□ ▶ < □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q @ 2/29



Second example: finding a treasure



<□ ▶ < □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q @ 2/29















Second example: finding a treasure



Second example: finding a treasure









Second example: finding a treasure





Second example: finding a treasure





Second example: finding a treasure



Second example: finding a treasure



Second example: finding a treasure



Second example: finding a treasure



Second example: finding a treasure







Models of computation and computability

#### Computation

Sequence of elementary computational steps transforming an input into an output, execution of an algorithm.

#### Model of computation

Class of objects implementing a certain type of algorithms.

#### Computability

What can be computed in a given model of computation?
First example: addition vs multiplication

537 + 71

First example: addition vs multiplication

$$\begin{array}{r} \stackrel{1}{537}\\ + \quad 71\\ \hline 608\end{array}$$

< □ ▶ < **□ ▶ < 三 ▶ < 三 ▶** 三 の < ⊙ 4/29

First example: addition vs multiplication

$$\begin{array}{r}1\\537\\+71\\\hline608\end{array}$$

$$\begin{array}{r} 537 \\ \times \quad 71 \end{array}$$

< □ ▶ < **□ ▶ < 三 ▶ < 三 ▶** 三 の < ⊙ 4/29

First example: addition vs multiplication



<□ ▶ < □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q ♀ 4/29

First example: addition vs multiplication



How long does it take to add/multiply two numbers? One does count the elementary computational steps.

Second example: finding a treasure vs checking cycle-freeness



Second example: finding a treasure vs checking cycle-freeness



Second example: finding a treasure vs checking cycle-freeness





< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Second example: finding a treasure vs checking cycle-freeness





< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Second example: finding a treasure vs checking cycle-freeness





Second example: finding a treasure vs checking cycle-freeness





< □ > < @ > < ≧ > < ≧ > ○ € ○ 5/29

Second example: finding a treasure vs checking cycle-freeness





< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Second example: finding a treasure vs checking cycle-freeness





< □ > < @ > < ≧ > < ≧ > ○ € ○ 5/29

Second example: finding a treasure vs checking cycle-freeness





< □ > < @ > < ≧ > < ≧ > ○ € ○ 5/29

Second example: finding a treasure vs checking cycle-freeness





< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Second example: finding a treasure vs checking cycle-freeness





< □ > < @ > < ≧ > < ≧ > ○ € ○ 5/29

Second example: finding a treasure vs checking cycle-freeness





Second example: finding a treasure vs checking cycle-freeness





< □ > < @ > < ≧ > < ≧ > ○ € ○ 5/29

Second example: finding a treasure vs checking cycle-freeness





< □ > < @ > < ≧ > < ≧ > ○ € ○ 5/29

Second example: finding a treasure vs checking cycle-freeness



How many stones does it take to find a treasure/test cycle-freeness? One does count the maximum number of stones used simultaneously.

Computational cost and complexity

## Computational cost

Some quantity associated to each algorithm, measuring the level of some kind of resource consumption.

## Complexity

How efficiently (in terms of some computational cost for some model of computation) can something be computed?

 $\rightarrow$  Complexity measure.

For several models of computation and associated complexity measures, look for lower bounds.

On the relationship between time and space

## Important complexity classes

- L: languages decidable in logarithmic space on a Turing machine.
- P: languages decidable in polynomial time on a Turing machine.

<ロ> < 母> < 目> < 目> < 目> < 目 > のへで 8/29

Result  $L \subseteq P$ . Conjecture (widely believed)

P ⊈ L.

On the relationship between time and space

#### Problem

Turing machine: combinatorially hard to handle.

Possible approach Branching programs (BPs): combinatorially simpler.

< □ ▶ < 圖 ▶ < ≣ ▶ < ≣ ▶ ■ ● ○ Q @ 8/29

# The branching program approach $x_2$ $x_2$ $x_5$ $x_3$ $x_4$

 $\triangleright$   $x_i$ : letter at position *i*.

- Computes function  $f: \{a, b\}^5 \rightarrow \{0, 1\}$ .
- Size of P: number of vertices.

Non-uniform model: language decided by sequence  $P_0, P_1, P_2, \ldots, P_n, \ldots$  of BPs, where  $P_n$  is for inputs of length n.



 $\triangleright$   $x_i$ : letter at position *i*.

- Computes function  $f: \{a, b\}^5 \rightarrow \{0, 1\}$ .
- Size of P: number of vertices.

Non-uniform model: language decided by sequence  $P_0, P_1, P_2, \ldots, P_n, \ldots$  of BPs, where  $P_n$  is for inputs of length n.

```
Result (Masek, 1976)
```

Any language in L is decided by a sequence of polynomial size BPs.

"Simpler" task?

#### Separate L from P.

#### Ş

Show a super-logarithmic lower bound on space for Turing machines deciding a language of P.

#### Ş

Show a super-polynomial lower bound on the size of BPs deciding a language of P.

## Goal

Show a super-polynomial lower bound on the size of BPs deciding a language of P.

## Problem

- It's difficult!
- ▶ Best lower bound:  $\Theta(n^2/\log^2 n)$  (Nečiporuk, 1966).

## Goal

Show a super-polynomial lower bound on the size of BPs deciding a language of P.

## Problem

- It's difficult!
- ▶ Best lower bound:  $\Theta(n^2/\log^2 n)$  (Nečiporuk, 1966).

## Restricted variants

- Various restrictions studied, for example:
  - bounded-width BPs;
  - oblivious BPs;
  - read-once BPs.

With significant lower bounds (reported by Razborov, 1991).

First contribution: the limits of Nečiporuk's method

## The contribution

- First formulation of Nečiporuk's method for any complexity measure and Boolean function.
- For several complexity measures: upper bound on the best lower bound obtainable by Nečiporuk's method.

| Complexity measure | Best lower bound obtainable               |
|--------------------|-------------------------------------------|
|                    | (and obtained)                            |
| Non-det. BP size   | $\Theta\left(rac{n^{3/2}}{\log n} ight)$ |
| BP size            | $\Theta\!\left(rac{n^2}{\log^2 n} ight)$ |
| Formulæ size       | $\Theta(rac{n^2}{\log n})$               |

## Second contribution: programs over monoids



## The class NC<sup>1</sup>

- Such circuits of poly. size, log. depth and fan-in 2.
- Probably weaker than poly. size BPs.
- It's still not excluded that  $P \subseteq NC^1...$

Programs over monoids: a restricted variant of BPs capturing  $NC^1$ .

## Programs over monoids

From BPs to programs over monoids



## Programs over monoids

From BPs to programs over monoids

x = abbab



#### 

## Programs over monoids

From BPs to programs over monoids

x = abbab



Where we consider these functions  $[3] \rightarrow [3]$ :

$$id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, g_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 3 \end{pmatrix}, g_2 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 3 \end{pmatrix}, g_3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 3 \end{pmatrix}.$$
Monoids

#### Definition

Pair  $(M, \star)$  where M set and  $\star \colon M \times M \to M$  such that:

- \* is associative;
- \* has an identity.

#### Remark Each monoid $(M, \star)$ has a unique identity, denoted by $1_{(M,\star)}$ .

#### Examples

- $(\mathbb{N}, +)$  with identity 0.
- $(\mathbb{Z}/2\mathbb{Z},+)$  with identity 0.
- $(\mathbb{Z}/3\mathbb{Z}, \times)$  with identity 1.
- $(\Sigma^*, \cdot)$  with identity  $\varepsilon$  ( $\Sigma$  finite alphabet).

Recognition by programs

Program over  $(M, \star)$  (finite) on  $\Sigma^n$ : finite sequence of instructions

 $P = (i_1, f_1)(i_2, f_2) \cdots (i_l, f_l)$ 

such that  $i_j \in [n]$  and  $f_j \colon \Sigma \to M$ . We set

 $P(w) = f_1(w_{i_1}) \star f_2(w_{i_2}) \star \cdots \star f_l(w_{i_l}) .$ 

*P* recognises  $L \subseteq \Sigma^n$  iff there exists  $F \subseteq M$  such that

$$L = P^{-1}(F)$$

 $L \subseteq \Sigma^*$  is recognised by  $(P_n)_{n \in \mathbb{N}}$  iff  $P_n$  (poly. length) recognises  $L \cap \Sigma^n$ . (Non-uniform model.)

Example

Let  $f_a: \{a, b\} \to \mathbb{Z}/2\mathbb{Z}$  such that  $f_a(a) = 1$  and  $f_a(b) = 0$ . Let  $f_b: \{a, b\} \to \mathbb{Z}/2\mathbb{Z}$  such that  $f_b(a) = 0$  and  $f_b(b) = 1$ .

A  $(\mathbb{Z}/2\mathbb{Z}, \times)$ -program P on  $\{a, b\}^8$ 

 $P = (1, f_a)(2, f_a)(3, f_a)(4, f_a)(5, f_b)(6, f_b)(7, f_b)(8, f_b)$ 



Example

Let  $f_a: \{a, b\} \to \mathbb{Z}/2\mathbb{Z}$  such that  $f_a(a) = 1$  and  $f_a(b) = 0$ . Let  $f_b: \{a, b\} \to \mathbb{Z}/2\mathbb{Z}$  such that  $f_b(a) = 0$  and  $f_b(b) = 1$ .

A  $(\mathbb{Z}/2\mathbb{Z}, \times)$ -program P on  $\{a, b\}^8$ 

 $P = (1, f_a)(2, f_a)(3, f_a)(4, f_a)(5, f_b)(6, f_b)(7, f_b)(8, f_b)$ 



Recognises  $a^4b^4 = P^{-1}(\{1\}).$ 

Probable non-example

$$L = \{ w \in \{a, b\}^* \mid w \text{ contains as many } a' \text{s as } b' \text{s} \}.$$

Can we recognise this language with programs over monoids?

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q ○ 16/29

Probable non-example

$$L = \{ w \in \{a, b\}^* \mid w \text{ contains as many } a' \text{s as } b' \text{s} \}.$$

Can we recognise this language with programs over monoids?

• Let  $f: \{a, b\} \to \mathbb{Z}$  such that f(a) = 1 and f(b) = -1. The  $(\mathbb{Z}, +)$ -program P on  $\Sigma^n$ 

$$P = (1, f)(2, f) \cdots (n, f)$$

▲□▶▲□▶▲□▶▲□▶ □ のへで 16/29

recognises  $L \cap \Sigma^n = P^{-1}(\{0\}).$ 

Probable non-example

$$L = \{ w \in \{a, b\}^* \mid w \text{ contains as many } a' \text{s as } b' \text{s} \}.$$

Can we recognise this language with programs over monoids?

► Let 
$$f: \{a, b\} \to \mathbb{Z}$$
 such that  $f(a) = 1$  and  $f(b) = -1$ .  
The  $(\mathbb{Z}, +)$ -program  $P$  on  $\Sigma^n$ 

$$P = (1, f)(2, f) \cdots (n, f)$$

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q ○ 16/29

recognises  $L \cap \Sigma^n = P^{-1}(\{0\}).$ 



Exponential length: can do it with finite monoid.

Probable non-example

$$L = \{ w \in \{a, b\}^* \mid w \text{ contains as many } a' \text{s as } b' \text{s} \}.$$

Can we recognise this language with programs over monoids?

• Let  $f: \{a, b\} \to \mathbb{Z}$  such that f(a) = 1 and f(b) = -1. The  $(\mathbb{Z}, +)$ -program P on  $\Sigma^n$ 

$$P = (1, f)(2, f) \cdots (n, f)$$

recognises  $L \cap \Sigma^n = P^{-1}(\{0\}).$ 

- Exponential length: can do it with finite monoid.
- What if the monoid is finite and the length polynomial?

## Morphisms and recognition

#### Definition

 $\blacktriangleright \ \varphi \colon M \to N$  is a morphism from  $(M,\star)$  to  $(N,\bot)$  iff

• Morphism  $\varphi \colon \Sigma^* \to M$  from  $(\Sigma^*, \cdot)$  to  $(M, \star)$  recognises  $L \subseteq \Sigma^*$  iff there exists  $F \subseteq M$  such that  $L = \varphi^{-1}(F)$ .  $(M, \star)$  recognises L.

#### Example

 $b^*(ab^*ab^*)^*=\varphi^{-1}(\{0\})$  where  $\varphi$  from  $(\{a,b\}^*,\cdot)$  to  $(\mathbb{Z}/2\,\mathbb{Z},+)$  with

$$\varphi \colon \{a, b\}^* \to \mathbb{Z}/2\mathbb{Z}$$
$$a \mapsto 1$$
$$b \mapsto 0 .$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで 17/29

# Morphisms and recognition

Fundamental theorem

#### Theorem

A language is recognised by a finite monoid iff it is regular.

#### Importance

- Basis of algebraic automata theory.
- Eilenberg's theorem: bijective correspondence between varieties of regular languages (closed under natural operations on regular languages) and varieties of finite monoids (closed under natural operations on finite monoids).
- Lots of explicit algebraic classifications of subclasses of regular languages obtained in last 50 years.

## *p*-recognition

Definition  $(M, \star)$  *p*-recognises  $L \subseteq \Sigma^*$  iff there exists  $(P_n)_{n \in \mathbb{N}}$  sequence of poly. length  $(M, \star)$ -programs recognising L.

#### Examples

- $(M, \star)$  recognises  $L \subseteq \Sigma^* \Rightarrow (M, \star)$  *p*-recognises L.
- $\{a^nb^n \mid n \in \mathbb{N}\}$  is *p*-recognised by  $(\mathbb{Z}/2\mathbb{Z}, \times)$ .
- ► {w ∈ {a, b}\* | w contains as many a's as b's} is probably not p-recognised by any finite monoid.

#### Definition

For any variety of finite monoids  $\mathbf{V}$ ,  $\mathcal{P}(\mathbf{V})$  is the class of languages *p*-recognised by monoids of  $\mathbf{V}$ .

# *p*-recognition

Fundamental theorem

#### Theorem (Barrington)

A language belongs to  $NC^1$  iff it is p-recognised by a finite monoid.

<□ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q C 20/29

#### Importance

- Shows unexpected power of programs over monoids.
- Gives a semigroup-theoretic point of view on "small" complexity classes.

## *p*-recognition

Algebraic characterisations of subclasses of NC<sup>1</sup>

#### Some subclasses of NC<sup>1</sup>

- AC<sup>0</sup>: polynomial size, constant depth circuits with ¬ and unbounded fan-in ∧ and ∨ gates.
- ACC<sup>0</sup>: polynomial size, constant depth circuits with ¬ and unbounded fan-in ∧, ∨ and ≡ gates.

$$\mathsf{AC}^0 \subset \mathsf{ACC}^0 \subseteq \mathsf{NC}^1$$

#### Theorem (Barrington-Thérien)

$$\begin{aligned} \mathsf{AC}^0 &= \mathcal{P}(\mathbf{A}) \\ \mathsf{ACC}^0 &= \mathcal{P}(\mathbf{M}_{\textit{sol}}) \\ \mathsf{NC}^1 &= \mathcal{P}(\mathbf{M}) \end{aligned}$$

A: finite aperiodic monoids
M<sub>sol</sub>: finite solvable monoids
M: finite monoids

#### Hopes and contribution of this thesis

#### Hopes since late 1980s

Prove new circuit lower bounds using techniques from algebraic automata theory.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで 22/29

- Give new semigroup-theoretic proofs of things like  $MOD_m \notin AC^0 = \mathcal{P}(\mathbf{A})$  for all  $m \in \mathbb{N}, m \ge 2$ .
- None of this materialised yet.

## Hopes and contribution of this thesis

#### Hopes since late 1980s

- Prove new circuit lower bounds using techniques from algebraic automata theory.
- ▶ Give new semigroup-theoretic proofs of things like  $MOD_m \notin AC^0 = \mathcal{P}(\mathbf{A})$  for all  $m \in \mathbb{N}, m \geq 2$ .
- None of this materialised yet.

#### General goal

Better understand  $\mathcal{P}(\mathbf{V})$  for  $\mathbf{V} \subseteq \mathbf{A}$ , knowing that understanding  $\mathcal{P}(\mathbf{V}) \cap \mathcal{R}eg$  "suffices" for lower bounds.

#### Contribution of this thesis

• Investigate general property of  $\mathcal{P}(\mathbf{V}) \cap \mathcal{R}eg$  for any  $\mathbf{V}$ .

Study the cases of DA and J.

#### Observation

- ▶  $\mathcal{P}(\mathbf{V}) = \mathcal{P}(\mathbf{W})$  iff  $\mathcal{P}(\mathbf{V}) \cap \mathcal{R}eg = \mathcal{P}(\mathbf{W}) \cap \mathcal{R}eg$ (McKenzie-Péladeau-Thérien).
- Characterising the regular languages in P(V) is fundamental: would resolve much of the structure of NC<sup>1</sup>.

<□▶ < □▶ < □▶ < 三▶ < 三▶ Ξ の < C 23/29

#### Observation

- *P*(V) = *P*(W) iff *P*(V) ∩ *R*eg = *P*(W) ∩ *R*eg (McKenzie-Péladeau-Thérien).
- Characterising the regular languages in P(V) is fundamental: would resolve much of the structure of NC<sup>1</sup>.

Subcontribution 1 New tameness condition for V to "behave well" with respect to p-recognition of regular languages (does not give much more power than classical recognition over V).

- Strengthens Péladeau's *p*-varieties.
- Inspired by similar results for semigroups (Péladeau-Straubing-Thérien).

Consequences of tameness

 $\begin{array}{l} \mbox{Proposition}\\ \mbox{Let } \mathbf{V} \mbox{ be a tame variety of finite monoids. Then} \end{array}$ 

 $\mathcal{P}(\mathbf{V})\cap\mathcal{R}\mathsf{eg}\subseteq\mathcal{L}(\mathbf{QV})$  .

<□ ▶ < □ ▶ < 三 ▶ < 三 ▶ < 三 ♪ ○ Q <sup>Q</sup> 24/29

When  $\mathbf{V}$  is local, equality holds.

Consequences of tameness

 $\begin{array}{l} \mbox{Proposition}\\ \mbox{Let } \mathbf{V} \mbox{ be a tame variety of finite monoids. Then} \end{array}$ 

 $\mathcal{P}(\mathbf{V})\cap\mathcal{R}\mathsf{eg}\subseteq\mathcal{L}(\mathbf{QV})$  .

When  ${\bf V}$  is local, equality holds.

Examples of tame varieties of finite monoids

- A, follows from MOD<sub>m</sub> ∉ AC<sup>0</sup> for all m ∈ N, m ≥ 2 (Furst-Saxe-Sipser, Ajtai).
- **DA**, subcontribution 2.

Example of a non-tame variety of finite monoids J, subcontribution 3.

Consequences of tameness

#### Proving tameness is a way to prove lower bounds

 $\blacktriangleright \mathbf{M}_{\mathsf{sol}} \mathsf{ tame} \Rightarrow \mathsf{ACC}^0 \subsetneq \mathsf{NC}^1.$ 

• A tame 
$$\Rightarrow AC^0 \subsetneq ACC^0$$
.

▶ **DA** tame 
$$\Rightarrow \mathcal{P}(\mathbf{DA}) \subsetneq \mathsf{AC}^0$$
.

#### Consequence

Proving tameness is hard!

#### The proof

- (a + b)\*ac(a + c)\* can be p-recognised by the syntactic monoid (M, ★) of (b + c)\*c(b + c)\*b(b + c)\*.
- $\blacktriangleright (a + b)^* ac(a + c)^* \notin \mathcal{L}(\mathbf{QJ}).$
- ▶ So J isn't tame (otherwise  $\mathcal{P}(J) \cap \mathcal{R}eg \subseteq \mathcal{L}(QJ)$ ).

#### The proof

- (a + b)\*ac(a + c)\* can be p-recognised by the syntactic monoid (M, ★) of (b + c)\*c(b + c)\*b(b + c)\*.
- $\blacktriangleright (a + \mathbf{b})^* ac(a + c)^* \notin \mathcal{L}(\mathbf{QJ}).$
- ▶ So J isn't tame (otherwise  $\mathcal{P}(J) \cap \mathcal{R}eg \subseteq \mathcal{L}(QJ)$ ).

# The trick $\psi \colon \{a, b, c\}^* \to M$ recognising $(b+c)^* c(b+c)^* b(b+c)^*$ .

 $P = (1, f)(2, \psi)(1, \psi)(3, \psi)(2, \psi)(4, \psi)(3, \psi) \cdots (n, \psi)(n - 1, \psi)$ 

<□▶ < @▶ < E▶ < E▶ E のQ C 25/29</p>

#### The proof

- (a + b)\*ac(a + c)\* can be p-recognised by the syntactic monoid (M, ★) of (b + c)\*c(b + c)\*b(b + c)\*.
- $\blacktriangleright (a + \mathbf{b})^* ac(a + c)^* \notin \mathcal{L}(\mathbf{QJ}).$
- ▶ So J isn't tame (otherwise  $\mathcal{P}(J) \cap \mathcal{R}eg \subseteq \mathcal{L}(QJ)$ ).

## The trick $\psi: \{a, b, c\}^* \to M$ recognising $(b + c)^* c(b + c)^* b(b + c)^*$ . $P = (1, f)(2, \psi)(1, \psi)(3, \psi)(2, \psi)(4, \psi)(3, \psi) \cdots (n, \psi)(n - 1, \psi)$

$$P = (1, f)(2, \psi)(1, \psi)(3, \psi)(2, \psi)(4, \psi)(3, \psi) \cdots (n, \psi)(n - 1, \psi)$$

<□▶ < @▶ < E▶ < E▶ E のQ C 25/29</p>

$$P(abca\cdots ac) =$$

#### The proof

- (a + b)\*ac(a + c)\* can be p-recognised by the syntactic monoid (M, ★) of (b + c)\*c(b + c)\*b(b + c)\*.
- $\blacktriangleright (a + \mathbf{b})^* ac(a + c)^* \notin \mathcal{L}(\mathbf{QJ}).$
- ▶ So J isn't tame (otherwise  $\mathcal{P}(J) \cap \mathcal{R}eg \subseteq \mathcal{L}(QJ)$ ).

# The trick $\psi \colon \{a, b, c\}^* \to M$ recognising $(\mathbf{b} + c)^* c(\mathbf{b} + c)^* \mathbf{b}(\mathbf{b} + c)^*$ .

 $P = (1, f)(2, \psi)(1, \psi)(3, \psi)(2, \psi)(4, \psi)(3, \psi) \cdots (n, \psi)(n - 1, \psi)$ 

$$P(abca\cdots ac) = \psi(b)$$

#### The proof

- (a + b)\*ac(a + c)\* can be p-recognised by the syntactic monoid (M, ★) of (b + c)\*c(b + c)\*b(b + c)\*.
- $\blacktriangleright (a + \mathbf{b})^* ac(a + c)^* \notin \mathcal{L}(\mathbf{QJ}).$
- ▶ So J isn't tame (otherwise  $\mathcal{P}(J) \cap \mathcal{R}eg \subseteq \mathcal{L}(QJ)$ ).

# The trick $\psi \colon \{a, b, c\}^* \to M$ recognising $(b + c)^* c(b + c)^* b(b + c)^*$ .

 $P = (1, f)(2, \psi)(1, \psi)(3, \psi)(2, \psi)(4, \psi)(3, \psi) \cdots (n, \psi)(n - 1, \psi)$ 

<□▶ < @▶ < E▶ < E▶ E のQ C 25/29</p>

$$P(abca\cdots ac) = \psi(ba$$

#### The proof

- (a + b)\*ac(a + c)\* can be p-recognised by the syntactic monoid (M, ★) of (b + c)\*c(b + c)\*b(b + c)\*.
- $\blacktriangleright (a + \mathbf{b})^* ac(a + c)^* \notin \mathcal{L}(\mathbf{QJ}).$
- ▶ So J isn't tame (otherwise  $\mathcal{P}(J) \cap \mathcal{R}eg \subseteq \mathcal{L}(QJ)$ ).

# The trick $\psi \colon \{a, b, c\}^* \to M$ recognising $(b + c)^* c(b + c)^* b(b + c)^*$ .

 $P = (1, f)(2, \psi)(1, \psi)(3, \psi)(2, \psi)(4, \psi)(3, \psi) \cdots (n, \psi)(n - 1, \psi)$ 

$$P(abca\cdots ac) = \psi(bac$$

#### The proof

- (a + b)\*ac(a + c)\* can be p-recognised by the syntactic monoid (M, ★) of (b + c)\*c(b + c)\*b(b + c)\*.
- $\blacktriangleright (a + \mathbf{b})^* ac(a + c)^* \notin \mathcal{L}(\mathbf{QJ}).$
- ▶ So J isn't tame (otherwise  $\mathcal{P}(J) \cap \mathcal{R}eg \subseteq \mathcal{L}(QJ)$ ).

# The trick $\psi \colon \{a, b, c\}^* \to M$ recognising $(b + c)^* c(b + c)^* b(b + c)^*$ .

 $P = (1, f)(2, \psi)(1, \psi)(3, \psi)(2, \psi)(4, \psi)(3, \psi) \cdots (n, \psi)(n - 1, \psi)$ 

<□▶ < @▶ < E▶ < E▶ E のQ C 25/29</p>

$$P(abca\cdots ac) = \psi(bacb$$

#### The proof

- (a + b)\*ac(a + c)\* can be p-recognised by the syntactic monoid (M, ★) of (b + c)\*c(b + c)\*b(b + c)\*.
- $\blacktriangleright (a + \mathbf{b})^* ac(a + c)^* \notin \mathcal{L}(\mathbf{QJ}).$
- ▶ So J isn't tame (otherwise  $\mathcal{P}(J) \cap \mathcal{R}eg \subseteq \mathcal{L}(QJ)$ ).

# The trick $\psi \colon \{a, b, c\}^* \to M$ recognising $(b + c)^* c(b + c)^* b(b + c)^*$ .

 $P = (1, f)(2, \psi)(1, \psi)(3, \psi)(2, \psi)(4, \psi)(3, \psi) \cdots (n, \psi)(n - 1, \psi)$ 

<□▶ < @▶ < E▶ < E▶ E のQ C 25/29</p>

$$P(abca\cdots ac) = \psi(bacba$$

#### The proof

- (a + b)\*ac(a + c)\* can be p-recognised by the syntactic monoid (M, ★) of (b + c)\*c(b + c)\*b(b + c)\*.
- $\blacktriangleright (a + \mathbf{b})^* ac(a + c)^* \notin \mathcal{L}(\mathbf{QJ}).$
- ▶ So J isn't tame (otherwise  $\mathcal{P}(J) \cap \mathcal{R}eg \subseteq \mathcal{L}(QJ)$ ).

# The trick $\psi \colon \{a, b, c\}^* \to M$ recognising $(b+c)^* c(b+c)^* b(b+c)^*$ .

 $P = (1, f)(2, \psi)(1, \psi)(3, \psi)(2, \psi)(4, \psi)(3, \psi) \cdots (n, \psi)(n - 1, \psi)$ 

$$P(abca\cdots ac) = \psi(bacbac$$

#### The proof

- (a + b)\*ac(a + c)\* can be p-recognised by the syntactic monoid (M, ★) of (b + c)\*c(b + c)\*b(b + c)\*.
- $\blacktriangleright (a + \mathbf{b})^* ac(a + c)^* \notin \mathcal{L}(\mathbf{QJ}).$
- ▶ So J isn't tame (otherwise  $\mathcal{P}(J) \cap \mathcal{R}eg \subseteq \mathcal{L}(QJ)$ ).

# The trick $\psi: \{a, b, c\}^* \to M$ recognising $(b + c)^* c(b + c)^* b(b + c)^*$ .

 $P = (1, f)(2, \psi)(1, \psi)(3, \psi)(2, \psi)(4, \psi)(3, \psi) \cdots (n, \psi)(n - 1, \psi)$ 

$$P(abca\cdots ac) = \psi(bacbac\cdots ca)$$

#### The proof

- (a + b)\*ac(a + c)\* can be p-recognised by the syntactic monoid (M, ★) of (b + c)\*c(b + c)\*b(b + c)\*.
- $\blacktriangleright (a + \mathbf{b})^* ac(a + c)^* \notin \mathcal{L}(\mathbf{QJ}).$
- ▶ So J isn't tame (otherwise  $\mathcal{P}(J) \cap \mathcal{R}eg \subseteq \mathcal{L}(QJ)$ ).

# The trick $\psi \colon \{a, b, c\}^* \to M$ recognising $(b+c)^* c(b+c)^* b(b+c)^*$ .

 $P = (1, f)(2, \psi)(1, \psi)(3, \psi)(2, \psi)(4, \psi)(3, \psi) \cdots (n, \psi)(n - 1, \psi)$ 

$$P(abca\cdots ac) = \psi(bacbac\cdots ca)$$
$$P(baca\cdots ac) =$$

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q @ 25/29

#### The proof

- (a + b)\*ac(a + c)\* can be p-recognised by the syntactic monoid (M, ★) of (b + c)\*c(b + c)\*b(b + c)\*.
- $\blacktriangleright (a + \mathbf{b})^* ac(a + c)^* \notin \mathcal{L}(\mathbf{QJ}).$
- ▶ So J isn't tame (otherwise  $\mathcal{P}(J) \cap \mathcal{R}eg \subseteq \mathcal{L}(QJ)$ ).

# The trick $\psi \colon \{a, b, c\}^* \to M$ recognising $(b+c)^* c(b+c)^* b(b+c)^*$ .

 $P = (1, f)(2, \psi)(1, \psi)(3, \psi)(2, \psi)(4, \psi)(3, \psi) \cdots (n, \psi)(n - 1, \psi)$ 

$$P(abca\cdots ac) = \psi(bacbac\cdots ca)$$
$$P(baca\cdots ca) = \psi(abcaac\cdots ca)$$

# $$\label{eq:conjecture} \begin{split} & \mathcal{P}(\mathbf{J}) \cap \mathcal{R} \mathsf{eg} = \mathcal{L}(\mathbf{Q}(\mathbf{J} \ast \mathbf{D} \cap \langle \mathbf{D} \mathbf{A} \rangle_{\mathbf{S}})). \end{split}$$

#### What we know

► ⊆: proved (using tameness of DA and Maciel-Péladeau-Thérien).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで 25/29

 $\blacktriangleright$   $\supseteq$ : proved in a particular case.

## Tameness of $\mathbf{D}\mathbf{A}$

#### Overview

Proof of tameness through semigroup-theoretic "lower bound" proof for  $\mathcal{P}(\mathbf{DA})$ ; implies characterisation  $\mathcal{P}(\mathbf{DA}) \cap \mathcal{R}eg = \mathcal{L}(\mathbf{QDA}).$ 

▲□▶ ▲圖▶ ▲ 필▶ ▲ 필▶ ■ ⑦ ٩. <sup>0</sup> 26/29
#### Overview

Proof of tameness through semigroup-theoretic "lower bound" proof for  $\mathcal{P}(\mathbf{DA})$ ; implies characterisation  $\mathcal{P}(\mathbf{DA}) \cap \mathcal{R}eg = \mathcal{L}(\mathbf{QDA}).$ 

### The proof

▶ Boils down to proving that  $(c+ab)^*$ ,  $(b+ab)^*$  and  $b^*((ab^*)^k)^*$  for any  $k \in \mathbb{N}_{\geq 2}$  are not in  $\mathcal{P}(\mathbf{DA})$ .

▲□▶▲圖▶▲圖▶▲圖▶ 圖 の요@ 26/29

#### Overview

Proof of tameness through semigroup-theoretic "lower bound" proof for  $\mathcal{P}(\mathbf{DA})$ ; implies characterisation  $\mathcal{P}(\mathbf{DA}) \cap \mathcal{R}eg = \mathcal{L}(\mathbf{QDA}).$ 

#### The proof

- ▶ Boils down to proving that  $(c + ab)^*$ ,  $(b + ab)^*$  and  $b^*((ab^*)^k)^*$  for any  $k \in \mathbb{N}_{\geq 2}$  are not in  $\mathcal{P}(\mathbf{DA})$ .
- ▶ Very briefly, for  $L = (c + ab)^*$ , given P over  $(M, \star) \in \mathbf{DA}$  that should recognise  $L \cap \Sigma^n$ , fix a constant number of letters in the input
  - so that it can still be completed into words inside and outside  $L \cap \Sigma^n$ ;
  - but such that the output of P is the same for any input word.

Some proof ideas

#### Fundamental property

For all  $u, v, r \in M$ , we have:

- if  $u \mathfrak{R} v$  and  $u \mathfrak{R} ur$ , then  $v \mathfrak{R} vr$ ;
- ▶ if  $u \mathfrak{L} v$  and  $u \mathfrak{L} ru$ , then  $v \mathfrak{L} rv$ .

$$w = ***c***\cdots **a**\cdots **b*$$

$$u (\overbrace{(i_1, f_1)(i_2, f_2)\cdots(i_j, f_j)\cdots(i_l, f_l)}^{P} v$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ へ ○ 27/29

Some proof ideas

#### Fundamental property

For all  $u, v, r \in M$ , we have:

- if  $u \mathfrak{R} v$  and  $u \mathfrak{R} ur$ , then  $v \mathfrak{R} vr$ ;
- ▶ if  $u \mathfrak{L} v$  and  $u \mathfrak{L} ru$ , then  $v \mathfrak{L} rv$ .

$$w = ***c***\cdots **a**\cdots **b*$$

$$u \underbrace{\underbrace{(i_1, f_1)(i_2, f_2) \cdots}_{P'_j}}^{P} \underbrace{(i_j, f_j) \cdots (i_l, f_l)}_{P''_j} v$$

Some proof ideas

#### Fundamental property

For all  $u, v, r \in M$ , we have:

- if  $u \mathfrak{R} v$  and  $u \mathfrak{R} ur$ , then  $v \mathfrak{R} vr$ ;
- ▶ if  $u \mathfrak{L} v$  and  $u \mathfrak{L} ru$ , then  $v \mathfrak{L} rv$ .

$$w = ***c *** \cdots **ab * \cdots **b*$$

$$u \underbrace{(i_1, f_1)(i_2, f_2)\cdots}_{P'_j} f_j(b) \underbrace{\cdots (i_l, f_l)}_{P''_j} v$$

Some proof ideas

#### Fundamental property

For all  $u, v, r \in M$ , we have:

- if  $u \mathfrak{R} v$  and  $u \mathfrak{R} ur$ , then  $v \mathfrak{R} vr$ ;
- ▶ if  $u \mathfrak{L} v$  and  $u \mathfrak{L} ru$ , then  $v \mathfrak{L} rv$ .

$$w = ***c***\cdots **ab*\cdots **b*$$

$$u \underbrace{(i_1, f_1)(i_2, f_2)\cdots}_{P'_j} f_j(b) \underbrace{\cdots (i_l, f_l)}_{P''_j} v$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ へ ○ 27/29

Some proof ideas

#### Fundamental property

For all  $u, v, r \in M$ , we have:

- if  $u \mathfrak{R} v$  and  $u \mathfrak{R} ur$ , then  $v \mathfrak{R} vr$ ;
- ▶ if  $u \mathfrak{L} v$  and  $u \mathfrak{L} ru$ , then  $v \mathfrak{L} rv$ .

$$w = *\mathbf{b} * c\mathbf{c} * * \cdots * * ab * \cdots * \mathbf{a}b *$$

$$t' \qquad f_j(b) \underbrace{\cdots(i_l, f_l)}_{P_j''} v$$

Some proof ideas

#### Fundamental property

For all  $u, v, r \in M$ , we have:

- if  $u \mathfrak{R} v$  and  $u \mathfrak{R} ur$ , then  $v \mathfrak{R} vr$ ;
- ▶ if  $u \mathfrak{L} v$  and  $u \mathfrak{L} ru$ , then  $v \mathfrak{L} rv$ .

$$w = *b*cc**\cdots**ab*\cdots*ab*$$

$$t' \qquad \qquad f_j(b) \underbrace{\cdots (i_l, f_l)}_{P_j''} v$$

Some proof ideas

#### Fundamental property

For all  $u, v, r \in M$ , we have:

- if  $u \mathfrak{R} v$  and  $u \mathfrak{R} ur$ , then  $v \mathfrak{R} vr$ ;
- ▶ if  $u \mathfrak{L} v$  and  $u \mathfrak{L} ru$ , then  $v \mathfrak{L} rv$ .

 $w = ab*cc**\cdots c*ab*\cdots *ab*$ 

t''

< □ ▶ < 畳 ▶ < ≣ ▶ < ≣ ▶ Ξ ∽ Q ペ 27/29

Some proof ideas

#### Fundamental property

For all  $u, v, r \in M$ , we have:

- if  $u \mathfrak{R} v$  and  $u \mathfrak{R} ur$ , then  $v \mathfrak{R} vr$ ;
- ▶ if  $u \mathfrak{L} v$  and  $u \mathfrak{L} ru$ , then  $v \mathfrak{L} rv$ .

$$w = ab*cc**\cdots c*ab*\cdots *ab*$$

t''

# Conclusion and perspectives

#### Contributions

- Formal, measure-independent, treatment and study of Nečiporuk's method.
- 2. Better understanding of computational power of programs over monoids taken from small varieties of finite monoids.
  - ▶ New tameness notion; for V implies that  $\mathcal{P}(\mathbf{V}) \cap \mathcal{R}eg \subseteq \mathcal{L}(\mathbf{QV})$  (equality when V local).
  - Proof of tameness of DA and characterisation of P(DA) ∩ Reg.
  - ▶ Proof of non-tameness of J and conjectural characterisation of  $\mathcal{P}(J) \cap \mathcal{R}eg$ , partially shown.

# Conclusion and perspectives

#### Some future directions

- 1. In straightforward continuation
  - Fully characterise  $\mathcal{P}(\mathbf{J}) \cap \mathcal{R}eg$ .
  - Progressively study tameness for hierarchy inside A (in view of reproving its tameness).
- 2. More adventurous
  - Explore more general versions of Nečiporuk's method.
  - Study tameness for varieties of finite non-aperiodic monoids.

Understand better properties of tameness.

# Thank you for listening.