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What is computation?
First example: addition

537
+ 71

How does one add two numbers?
One follows a certain procedure giving a succession of small
operations.
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What is computation?
Models of computation and computability

Computation
Sequence of elementary computational steps transforming an input
into an output, execution of an algorithm.

Model of computation
Class of objects implementing a certain type of algorithms.

Computability
What can be computed in a given model of computation?
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How efficient can computation be?
First example: addition vs multiplication

537
+ 71

How long does it take to add/multiply two numbers?
One does count the elementary computational steps.
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How efficient can computation be?
Second example: finding a treasure vs checking cycle-freeness

How many stones does it take to find a treasure/test
cycle-freeness?
One does count the maximum number of stones used
simultaneously.
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How efficient can computation be?
Computational cost and complexity

Computational cost
Some quantity associated to each algorithm, measuring the level of
some kind of resource consumption.

Complexity
How efficiently (in terms of some computational cost for some
model of computation) can something be computed?
→ Complexity measure.
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This Ph.D. thesis

For several models of computation and associated complexity
measures, look for lower bounds.
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On the relationship between time and space

Important complexity classes
I L: languages decidable in logarithmic space on a Turing

machine.

I P: languages decidable in polynomial time on a Turing
machine.

Result
L ⊆ P.

Conjecture (widely believed)
P * L.
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On the relationship between time and space

Problem
Turing machine: combinatorially hard to handle.

Possible approach
Branching programs (BPs): combinatorially simpler.
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The branching program approach
x1

x2 x2

x3 x4 x5

t0 t1

a b

a b a b

a

b a b a

b

I xi: letter at position i.
I Computes function f : {a, b}5 → {0, 1}.
I Size of P : number of vertices.

Non-uniform model: language decided by sequence
P0, P1, P2, . . . , Pn, . . . of BPs, where Pn is for inputs of length n.
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The branching program approach

Result (Masek, 1976)
Any language in L is decided by a sequence of polynomial size BPs.

“Simpler” task?
Separate L from P.

 
Show a super-logarithmic lower bound on space for Turing

machines deciding a language of P.
 

Show a super-polynomial lower bound on the size of BPs deciding
a language of P.
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The branching program approach

Goal
Show a super-polynomial lower bound on the size of BPs deciding
a language of P.

Problem
I It’s difficult!
I Best lower bound: Θ(n2/ log2 n) (Nečiporuk, 1966).

Restricted variants
I Various restrictions studied, for example:

I bounded-width BPs;
I oblivious BPs;
I read-once BPs.

I With significant lower bounds (reported by Razborov, 1991).
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First contribution: the limits of Nečiporuk’s method

The contribution
I First formulation of Nečiporuk’s method for any complexity

measure and Boolean function.

I For several complexity measures: upper bound on the best
lower bound obtainable by Nečiporuk’s method.

Complexity measure Best lower bound obtainable
(and obtained)

Non-det. BP size Θ
(

n3/2

log n

)
BP size Θ

(
n2

log2 n

)
Formulæ size Θ

(
n2

log n

)
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Second contribution: programs over monoids

x3 ∈ {b}

x1 ∈ {a} x2 ∈ {a}

∧

∧

¬ ¬

∧ x5 ∈ {b}

∧

∨

∧ ∧

∨ x4 ∈ {b}

∧

∨

The class NC1

I Such circuits of poly. size, log. depth and fan-in 2.
I Probably weaker than poly. size BPs.
I It’s still not excluded that P ⊆ NC1. . .

Programs over monoids: a restricted variant of BPs capturing NC1.
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Programs over monoids
From BPs to programs over monoids
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Programs over monoids
From BPs to programs over monoids
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(1, id, g1) (2, id, g1) (3, g3, g2) (1, g1, id) (2, g1, id) (5, g3, g2) (1, id, g1) (2, g1, id) (4, g3, g2) (1, g1, id) (2, id, g1) (4, g3, g2)

Where we consider these functions [3] → [3]:

id =
(

1 2 3
1 2 3

)
, g1 =

(
1 2 3
1 1 3

)
,

g2 =
(

1 2 3
2 3 3

)
, g3 =

(
1 2 3
2 2 3

)
.
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Programs over monoids
Monoids

Definition
Pair (M,?) where M set and ? : M ×M → M such that:
I ? is associative;
I ? has an identity.

Remark
Each monoid (M,?) has a unique identity, denoted by 1(M,?).

Examples
I (N,+) with identity 0.
I (Z/2Z,+) with identity 0.
I (Z/3Z,×) with identity 1.
I (Σ∗, ·) with identity ε (Σ finite alphabet).
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Programs over monoids
Recognition by programs

Program over (M,?) (finite) on Σn: finite sequence of instructions

P = (i1, f1)(i2, f2) · · · (il, fl)

such that ij ∈ [n] and fj : Σ → M . We set

P (w) = f1(wi1) ? f2(wi2) ? · · · ? fl(wil
) .

P recognises L ⊆ Σn iff there exists F ⊆ M such that

L = P−1(F ) .

L ⊆ Σ∗ is recognised by (Pn)n∈N iff Pn (poly. length) recognises
L ∩ Σn. (Non-uniform model.)
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Programs over monoids
Example

Let fa : {a, b} → Z/2Z such that fa(a) = 1 and fa(b) = 0.
Let fb : {a, b} → Z/2Z such that fb(a) = 0 and fb(b) = 1.

A (Z/2Z, ×)-program P on {a, b}8

P = (1, fa)(2, fa)(3, fa)(4, fa)(5, fb)(6, fb)(7, fb)(8, fb)

0

1

0

1

8

0

1

7

0

1

6

0

1

5

0

1

4
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2

0

1

1

Recognises a4b4 = P−1({1}).
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Programs over monoids
Probable non-example

L =
{
w ∈ {a, b}∗ ∣∣ w contains as many a’s as b’s

}
.

Can we recognise this language with programs over monoids?

I Let f : {a, b} → Z such that f(a) = 1 and f(b) = −1.
The (Z,+)-program P on Σn

P = (1, f)(2, f) · · · (n, f)

recognises L ∩ Σn = P−1({0}).

I Exponential length: can do it with finite monoid.

I What if the monoid is finite and the length polynomial?
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Morphisms and recognition

Definition
I ϕ : M → N is a morphism from (M,?) to (N,⊥) iff

I for all m1,m2 ∈ M , ϕ(m1)⊥ϕ(m2) = ϕ(m1 ? m2);
I ϕ(1(M,?)) = 1(N,⊥).

I Morphism ϕ : Σ∗ → M from (Σ∗, ·) to (M,?) recognises
L ⊆ Σ∗ iff there exists F ⊆ M such that L = ϕ−1(F ).
(M,?) recognises L.

Example
b∗(ab∗ab∗)∗ = ϕ−1({0}) where ϕ from ({a, b}∗, ·) to (Z/2Z,+)
with

ϕ : {a, b}∗ → Z/2Z
a 7→ 1
b 7→ 0 .
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Morphisms and recognition
Fundamental theorem

Theorem
A language is recognised by a finite monoid iff it is regular.

Importance
I Basis of algebraic automata theory.
I Eilenberg’s theorem: bijective correspondence between

varieties of regular languages (closed under natural operations
on regular languages) and varieties of finite monoids (closed
under natural operations on finite monoids).

I Lots of explicit algebraic classifications of subclasses of regular
languages obtained in last 50 years.
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p-recognition

Definition
(M,?) p-recognises L ⊆ Σ∗ iff there exists (Pn)n∈N sequence of
poly. length (M,?)-programs recognising L.

Examples
I (M,?) recognises L ⊆ Σ∗ ⇒ (M,?) p-recognises L.
I {anbn | n ∈ N} is p-recognised by (Z/2Z,×).
I
{
w ∈ {a, b}∗ ∣∣ w contains as many a’s as b’s

}
is probably not

p-recognised by any finite monoid.

Definition
For any variety of finite monoids V, P(V) is the class of languages
p-recognised by monoids of V.
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p-recognition
Fundamental theorem

Theorem (Barrington)
A language belongs to NC1 iff it is p-recognised by a finite monoid.

Importance
I Shows unexpected power of programs over monoids.
I Gives a semigroup-theoretic point of view on “small”

complexity classes.
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p-recognition
Algebraic characterisations of subclasses of NC1

Some subclasses of NC1

I AC0: polynomial size, constant depth circuits with ¬ and
unbounded fan-in ∧ and ∨ gates.

I ACC0: polynomial size, constant depth circuits with ¬ and
unbounded fan-in ∧, ∨ and ≡ gates.

AC0 ⊂ ACC0 ⊆ NC1

Theorem (Barrington-Thérien)

AC0 = P(A) A: finite aperiodic monoids
ACC0 = P(Msol) Msol: finite solvable monoids
NC1 = P(M) M: finite monoids
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Hopes and contribution of this thesis
Hopes since late 1980s
I Prove new circuit lower bounds using techniques from

algebraic automata theory.
I Give new semigroup-theoretic proofs of things like

MODm /∈ AC0 = P(A) for all m ∈ N,m ≥ 2.
I None of this materialised yet.

General goal
Better understand P(V) for V ⊆ A, knowing that understanding
P(V) ∩ Reg “suffices” for lower bounds.

Contribution of this thesis
I Investigate general property of P(V) ∩ Reg for any V.
I Study the cases of DA and J.
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Regular languages and tameness

Observation
I P(V) = P(W) iff P(V) ∩ Reg = P(W) ∩ Reg

(McKenzie-Péladeau-Thérien).
I Characterising the regular languages in P(V) is fundamental:

would resolve much of the structure of NC1.

Subcontribution 1 New tameness condition for V to “behave well”
with respect to p-recognition of regular languages (does not give
much more power than classical recognition over V).
I Strengthens Péladeau’s p-varieties.
I Inspired by similar results for semigroups

(Péladeau-Straubing-Thérien).
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Regular languages and tameness
Consequences of tameness

Proposition
Let V be a tame variety of finite monoids. Then

P(V) ∩ Reg ⊆ L(QV) .

When V is local, equality holds.

Examples of tame varieties of finite monoids
I A, follows from MODm /∈ AC0 for all m ∈ N,m ≥ 2

(Furst-Saxe-Sipser, Ajtai).
I DA, subcontribution 2.

Example of a non-tame variety of finite monoids
J, subcontribution 3.
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Regular languages and tameness
Consequences of tameness

Proving tameness is a way to prove lower bounds
I Msol tame ⇒ ACC0 ( NC1.
I A tame ⇒ AC0 ( ACC0.
I DA tame ⇒ P(DA) ( AC0.

Consequence
Proving tameness is hard!
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Non-tameness of J

The proof
I (a+ b)∗ac(a+ c)∗ can be p-recognised by the syntactic

monoid (M,?) of (b+ c)∗c(b+ c)∗b(b+ c)∗.
I (a+ b)∗ac(a+ c)∗ /∈ L(QJ).
I So J isn’t tame (otherwise P(J) ∩ Reg ⊆ L(QJ)).

The trick
ψ : {a, b, c}∗ → M recognising (b+ c)∗c(b+ c)∗b(b+ c)∗.

P = (1, f)(2, ψ)(1, ψ)(3, ψ)(2, ψ)(4, ψ)(3, ψ) · · · (n, ψ)(n− 1, ψ)

P (abca · · · ac) = ψ(bacbac · · · ca)
P (baca · · · ac) = ψ(abcaac · · · ca)
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The trick
ψ : {a, b, c}∗ → M recognising (b+ c)∗c(b+ c)∗b(b+ c)∗.

P = (1, f)(2, ψ)(1, ψ)(3, ψ)(2, ψ)(4, ψ)(3, ψ) · · · (n, ψ)(n− 1, ψ)

P (abca · · · ac) =

ψ(bacbac · · · ca)
P (baca · · · ac) = ψ(abcaac · · · ca)
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Non-tameness of J

Conjecture
P(J) ∩ Reg = L(Q(J ∗ D ∩ 〈DA〉S)).

What we know
I ⊆: proved (using tameness of DA and

Maciel-Péladeau-Thérien).
I ⊇: proved in a particular case.
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Tameness of DA

Overview
Proof of tameness through semigroup-theoretic “lower bound”
proof for P(DA); implies characterisation
P(DA) ∩ Reg = L(QDA).

The proof
I Boils down to proving that (c+ ab)∗, (b+ ab)∗ and
b∗((ab∗)k

)∗ for any k ∈ N≥2 are not in P(DA).
I Very briefly, for L = (c+ ab)∗, given P over (M,?) ∈ DA

that should recognise L ∩ Σn, fix a constant number of letters
in the input
I so that it can still be completed into words inside and outside

L ∩ Σn;
I but such that the output of P is the same for any input word.
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Tameness of DA
Some proof ideas

Fundamental property
For all u, v, r ∈ M , we have:
I if u R v and u R ur, then v R vr;
I if u L v and u L ru, then v L rv.

w = ∗∗∗c∗∗∗ · · · ∗∗a∗∗ · · · ∗∗b∗

u

P︷ ︸︸ ︷
(i1, f1)(i2, f2) · · · (ij , fj) · · · (il, fl) v
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Conclusion and perspectives

Contributions
1. Formal, measure-independent, treatment and study of

Nečiporuk’s method.

2. Better understanding of computational power of programs
over monoids taken from small varieties of finite monoids.
I New tameness notion; for V implies that

P(V) ∩ Reg ⊆ L(QV) (equality when V local).
I Proof of tameness of DA and characterisation of

P(DA) ∩ Reg.
I Proof of non-tameness of J and conjectural characterisation of

P(J) ∩ Reg, partially shown.
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Conclusion and perspectives

Some future directions
1. In straightforward continuation

I Fully characterise P(J) ∩ Reg.
I Progressively study tameness for hierarchy inside A (in view of

reproving its tameness).

2. More adventurous
I Explore more general versions of Nečiporuk’s method.
I Study tameness for varieties of finite non-aperiodic monoids.
I Understand better properties of tameness.
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Thank you for listening.


