Exercise 1: SLR grammars

1. We define the following grammar :

\[S \rightarrow E \] \hspace{1cm} (1)
\[E \rightarrow E + E \] \hspace{1cm} (2)
\[E \rightarrow \text{int} \] \hspace{1cm} (3)

where \(S \) is the axiom.

(a) Give two distinct derivations of \(\text{int} + \text{int} + \text{int} \).

(b) Compute \(\text{Follow}_1(E) \) and \(\text{Follow}_1(S) \).

(c) Show that this grammar is not SLR, i.e. give an accessible state \(q \) and a lookup \(u \) such that \(|\text{action}(q, u)| > 1 \).

2. We define the following grammar :

\[S \rightarrow PT \] \hspace{1cm} (4)
\[T \rightarrow \varepsilon \] \hspace{1cm} (5)
\[T \rightarrow +PT \] \hspace{1cm} (6)
\[P \rightarrow (S) \] \hspace{1cm} (7)
\[P \rightarrow \text{int} \] \hspace{1cm} (8)

where \(S \) is the axiom.

(a) Give a derivation of \((\text{int} + \text{int}) + \text{int} \).

(b) Compute \(\text{Follow}_1(S) \), \(\text{Follow}_1(T) \), and \(\text{Follow}_1(P) \).

(c) Show that this grammar is SLR, i.e. give a table for \textit{action} and \textit{goto}.
