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Cryptographic protocols.

Modeling cryptographic protocols using Horn clauses.
What is a security proof?

Finding security proofs.

Deciding H1 using resolution.

Deciding other classes using resolution.

Equational theories, xor, Diffie-Hellman, etc.

Security proofs, constructively.

. Formally verifying security proofs.

0. Conclusion.
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Cryptographic protocols

Increasing need for strong security: smartcards, e-banking, e-commerce,

secure networks, etc.

Secrecy: M 1s secret if no intruder can emit M ;
Authenticity: the only process that can emit M is A;
Freshness: M was built recently;

Non-duplication: M can only be received once (invoices);
Non-repudiation: A cannot deny having emitted M (orders).
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Cryptography is not enough

Even if you use perfect (unbreakable) encryption algorithmes, it is not easy
to preserve secrecy or authenticity:

A encryption B

write {M}Kab

M1 decrypt107

— rcad {M}Kab

(assumption: Kab is an
A and B — no intruder knows it)

we wish to guarantee this
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Ex.: symmetric key Needham-Schroeder

1. A—S:A B,N,
2. S — A: {Na7 B)Kaba {Kab)A}Kbs}Kas
3. A— B: {Ka,b7A}Kbs
4. B— A:{Ny}k,,
5. A—)B:{Nb+1}Kab
A B S

new Na

write A, B, Na read A, B, Na

- new sym key Kab
write {Na, B, Kab, {Kab, A} g }gas

el

read {<Na», <B>, Kab, M}Kas

write M

new NDb
write {Nb}

read {Nb}Kab
write {Nb+l}
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Who are Alice and Bob anyway?
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An Attack

C' replays an old {Kabg, A | Kbs} —old enough that C' managed to get
hold of Kaby.

3 | read A}Kbs
new Nb
write {N

read {Nb}mﬁo— Kab,
write {Nbgtl lK!]i
0
—. | read {<Nb+1
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1. Cryptographic protocols.

2. Modeling cryptographic protocols using Horn clauses.
3. What is a security proof?

4. Finding security proofs.

5. Deciding 4 using resolution.
6. Deciding other classes using resolution.

/. Equational theories, xor, Diffie-Hellman, etc.
8. Security proofs, constructively.

9. Formally verifying security proofs.

10. Conclusion.
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A Horn clause (pure Prolog) model
1. Intruder abilities.

knows({M}x) < knows(M),knows(K) (C' can encrypt)
knows(M) <= knows({M }y(sym x));
knows (k(sym, X)) ...and decrypt [symmetric keys])
knows([]) (C can build
knows(M7 :: M2) < knows(Mj),knows(M2) any list of known messages)
knows(M71) <= knows(M; :: M3) (C canread heads)
knows(M2) < knows(M;p :: M2) (C can read tails)
knows(suc(M)) < knows(M) (C' can add

knows(M) < knows(suc(M)) and subtract one)
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2. Protocol clauses—current sessions (a la Blanchet/Nielson?-Seidl)

1.A—> S:A, B, N, knows([a,b,na([a,b])])

1.A—=S: A B, N,
2.S— A :{Na, B, K,
{Kab7A}KbS

} K as

{[Na, Bakabv

knows < knows([A, B, Ng))

{[kaln A]}k(sym,[B,s])
[ i(sym,[A,5]))

(kgp=k(sym,cur(A,B,Ng)))

2.5 —A :{Nq, B, Kap,
{Kab7 A}Kbs

P Kas
3. A— B :{Kaba A}Kbs

knows(M) < knows({[na([a,b]), b, Kat, M]}x(sym,[a,s]))
a—keY(Kab) <~ knows({[na([aa bD,b, KabaM]}k(sym,[a,s]))

3.A—B :{Kaba A}Kbs
4. B— A :{Nb}Kab
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4. B —A :{Nb}Kab

5 A BNy 1), o e S Rnons (i)

3. Protocol clauses—old sessions

1.A—=S: A, B,N,
2.5— A I{Na, B, Kaba
{Kab, A} Ky,

}Kqs

{[Naa B, kaba
knows {[kat, Al i(sym,[B,s]) | <= knows([A, B, Ng))

]}k(sym,[A,s]))

(kgp=k(sym,prev(A,B,Ng)))
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4. Initial intruder knowledge

agent(a
(

agent(s

)
)
knows(X)
knows(k(pub, X))
)

)

)
knows(k(prv, i)
knows(k(sym, prev(A, B, N,))
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5. Security queries

1 <« knows(k(sym, cur(a,b, N,)))
can C build K
as created by S?
1 <« knows(Kg),akey(Kgp)
. as received by A?
1 <« knows({suc(nb(Ku, A, B))}k,,), knows(Kyp)

. as received by B?
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1. Cryptographic protocols.

2. Modeling cryptographic protocols using Horn clauses.
3. What is a security proof?

4. Finding security proofs.

5. Deciding 4 using resolution.

6. Deciding other classes using resolution.

/. Equational theories, xor, Diffie-Hellman, etc.

8. Security proofs, constructively.
9. Formally verifying security proofs.
10. Conclusion.
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Security proof = no proof

A proof of _L (false) 1s an attack.
. 1.e., a way of running clauses 1.-5.

which enables C' to eventually know some sensitive data, here.

Selinger’s Thesis: Security proof = no proof of L.
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Demo 1

If you see this slide,
please ask the speaker
torun hl

to find the attacks on

symmetric-key Needham-Schroeder.

In case the speaker forgets:
this finds an attack on B,
mostly and less obvious. .. there is no attack on either A or S.

B boratoire
S nécification%‘%_

et
\Uirification @ivria Fyturs = Crypto, regular languages, automated deduction Page 16



1. Cryptographic protocols.

2. Modeling cryptographic protocols using Horn clauses.
3. What is a security proof?

4. Finding security proofs.

5. Deciding 4 using resolution.

6. Deciding other classes using resolution.

/. Equational theories, xor, Diffie-Hellman, etc.

8. Security proofs, constructively.

9. Formally verifying security proofs.

10. Conclusion.
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Automated deduction

—> Roadmap:

Launch some automated prover (SPASS, Otter, Vampire, Waldmeister,
Bliksem, ...) on the given set of clauses 1.-5.

It 1L was derived, there 1s a possible attack.

If the prover terminates without deriving L, no attack.
(Yes!)

If the prover does not terminate, well, er. ..
... this actually happens fairly often. ..
Note: Blanchet uses an ad hoc two-step resolution strategy
that terminates often (always on so-called tagged protocols).
You can also use finite model finders, e.g., Paradox [CS03] (very promising).
3 s 22— (st
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Abstraction

Basic Idea: turn the initial clause set .S into a clause set S’ such that:
e S’ falls into a decidable subclass.

... I tend to like H1 [Nielson&Nielson&Seidl02] personally.
e S" implies S.

...soif S’ is not contradictory, neither is S.

Great, this exists!
Forerunner is [Frithwirth&Shapiro& Vardi& Yardeni9l].
This 1s independent of every application domain. . .
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The 7, class, and the canonical abstraction

Clauses of H:
P(X)<body or P(f(Xy1,...,X,)) < body

Decidable DEXPTIME-complete.
... by ad hoc techniques [Nielson&Nielson&Seidl02]

... by ordered resolution with selection [Goubault-Larrecq03]

Defines exactly the regular tree languages.
...using a clause language that is much more expressive than ordinary tree automata,
even alternating tree automata,
even two-way,
... matches exactly the definite set constraints

with unrestricted (even non-linear) comprehensions.

And. ... ..o all clauses 1. (intruder) are in H; already.
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Canonical abstraction: name subterms

{ [Ng, B, k(sym, cur(A, B, Ng)),
knows {[k(sym, cur(A’B’Na))’A]}k(sym,[B,s]) «— knows([A, B, Ng])

[ e(sym,[A,s]))

a15(9(A, B, Ng)) < knows([A, B, Ng])
918(Na) < q15(9(A, B, Nqg)) a20(B) < q15(9(A, B, Ng))
931(A) < q15(9(A, B, Ng))  q24(sym) < q15(9(A, B, Ng))
a27([) <= q15(9(A, B, Ng))  4a34(s) < a15(9(A, B, Ng))
qo5(cur(A, B, Ng)) <= q15(9(A, B, Ng))  g22(k(X1, X2)) < 924(X1), q25(X2)
a30(A 1 X9) <= q31(A),a27(X2)  q28(X71 + X2) <= g22(X1),4930(X2)
933 (X1 = Xg) < a34(X1),927(X2) a32(B :: X3) < q20(B), a33(X2)
a29 (k(X1, X2)) <= 924(X1),932(X2) 926 {X1}x,) <= 928(X1), 929(X2)
q23 (X1 1+ Xg) <= q26(X1),q927(X2) a21(Xq1 2 X2) <= g22(X1), q23(X2)
q19(B :: X2) <= q20(B),q21(X2) 4a16(Na : X2) < q18(Na), a19(X2)
q35(A 2 X9) <= q31(A), q33(X2) q17(k(X1, X2)) <= g24(X1), a35(X2)
knows({ X1} x,) <= 916(X1), q17(X2)
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Undecidable ecurity guarantee

[ Cryptographic protocols j

AN

Modélisation

No proof of false

/\

Prolog programs
= Horn clauses

hl abstraction

Restricted Prolog programs
~ tree automata

No proof of false

Decidable
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1. Cryptographic protocols.

2. Modeling cryptographic protocols using Horn clauses.
3. What is a security proof?

4. Finding security proofs.

5. Deciding 7 using resolution.

6. Deciding other classes using resolution.

/. Equational theories, xor, Diffie-Hellman, etc.

8. Security proofs, constructively.

9. Formally verifying security proofs.

10. Conclusion.
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Er, would you mind if I skipped this part and the next one?
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Deciding 7{; using resolution

Idea: using some specific refinement of resolution, show that only finitely
many clauses can be inferred.
dates back to [Joyner76], even to [Maslov64,Mints80]

We use a pretty general refinement: ordered resolution

main premise side premise
CVHAV...V+A, C'v-A
CoVvCo

(i) n>1;
(ii) o =mgu (A; = A',..., A, = A');

(iii) Ai,..., A, are >-maximal in main;

(iv) A’ is >-maximal in side.
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Deciding 7{; using resolution

Idea: using some specific refinement of resolution, show that only finitely
many clauses can be inferred.
dates back to [Joyner76], even to [Maslov64,Mints80]

We use a pretty general refinement: ordered resolution with selection.

main premise side premise
CVHAV...V+A, C'v-A
CoVvCo

(i) n>1;
(ii) o =mgu (A; = A',..., A, = A');

(iii) sel (CV+A;V...V+A,)=0and A4,..., A, are =-maximal in main;

(iv) —A" €sel (C'V —A"),orsel (C'V —A") =0and A is =-maximal in side.
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Specializing ordered resolution with selection

To decide Hq, define:
e P(t) = Q(t') iff t strict super-term of ¢';
e sel (C) is set of all literals — P(¢) of depth > depth of head.

= Main premises are:
e P(f(X1,...,Xn)) < B1(X1),...,Bn(X,),
Boi1(Xnt1)s- -+ s Bi(Xom)
where B(X) denotes some conjunction Py (X), ..., Px(X)
... these are (almost) alternating tree automata clauses
e P(X)

universal clauses
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Deciding 7{; using resolution (cont’d)

E.g.,
P(f(X1,X3)) < Q(X1), R(X1),T(X3) U(X) <= P(f(9(X, X),9(X,Y))), V(X))

U(X) <= Q(9(X, X)), R(9(X, X)), V(X), T(X3)

Conclusion 1s smaller than side premise (in some multiset ordering).
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Deciding 7{; using resolution (cont’d)

This may loop:
P(f(X1,X32)) <= Q(X1), R(X2) S(X) <= P(X),T(X)

S(f(X1,X2)) = T(f(X1,X2)),Q(X1), R(X2)

Conclusion 1s not smaller than premisses, but at least it 1s not too large.

If only this happened, then we would still generate only finitely many

clauses.
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The need for splitting

P({M}k) <= Q(M), R(K)
S(M) <= P({M}k),U(K)

QUf(X,Y)) = Q'(X) S(M) <= Q(M),R(K),U(K)

S'(X) < S(f(X,Y)),

S(F(X,Y) <= Q'(X), R(K), U(K) R(Y),U'(Y)

S'(X) < Q'(X), R(K),U(K), R'(Y),U'(Y)

= larger and larger clauses (no bound).
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Splitting variants

e Condensing [Joyner76];

e Splitting [tableaux community]: if C'V C" holds (where
fv(C) Nfv(C’) = 0), then C or C’ must hold.
= replace C' V C’ non-deterministically by C or C’

This would decide H1 ... in NEXPTIME.

e Splittingless splitting [ Voronkov&Riazanov0O1]: C' vV C’ is equivalent to
dg- (CVg) AN (C"V —g).

e.g., replace S(M) < Q(M), R(K),U(K)

by S(M) < Q(M),gand g « P(K),U(K)

with ¢ = ne(P N U)

This decides H1 ... in DEXPTIME (optimal).
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1. Cryptographic protocols.

2. Modeling cryptographic protocols using Horn clauses.
3. What is a security proof?

4. Finding security proofs.

5. Deciding 4 using resolution.

6. Deciding other classes using resolution.

/. Equational theories, xor, Diffie-Hellman, etc.

8. Security proofs, constructively.

9. Formally verifying security proofs.

10. Conclusion.
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Solving decidable classes using resolution: a long history

e Maslov [64] designs the inverse method, shows several classes
decidable.
Mints [80] shows that the inverse method is essentially positive
hyperresolution (i.e., sel (C') = {all negative literals of C'}) on a
definitional clausal form [Tseitin58].

e Joyner [76] shows that ordered resolution (i.e., sel (C') = ) decides
the monadic, Ackermann, Godel, extended Skolem and Maslov classes.
Note: still no resolution method decides the Bernays-Schonfinkel class!

e de Nivelle [98] introduces the guarded fragment, shows it decidable

using ordered resolution.

e See chapter of HAR by Fermiiller, Leitsch, Hustadt, Tammet for more

. info.
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Positive set constraints are clause sets

Set constraint

Automatic clause

§Cn
§CnuU(¢
E§NnC(¢
¢ C Cn
L C

ggf(‘glaagn)

f(é-l)'“agn) g£
7€) Cn

—&(X) V +n(X)
—€(X) V +(X) V +¢(X)
—E(X) V —n(X) V +¢(X)

—&§(X) vV —n(X)
+£(X) V +n(X)

[ —E(f( X1, X)) V €1 (X0)

—E(f( X1, Xn)) V +En(Xn)

L _g(g(Xla'-me)) (forallg;éf)
Wiy —&i(Xs) V +E(f (X1, .., Xn))
—&(f(X1,..., Xn)) V +n(X5)
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Solving first-order automatic clauses by ordered resolution

Looking at the previous slide, we have two kinds of clauses:
e Blocks B(X)=+P(X)V...V£P,(X);
o Complex clauses \/, £P;(fi(X1,..., X))V B1(X1) V...V B, (X,)

Ordered resolution (with splitting) generates only finitely many such
clauses.

= terminates in NEXPTIME.

— this 1s optimal: the problem is NEXPTIME-complete.

— 1n fact this 1s ~ a way of deciding the monadic class

[Bachmair&Ganzinger&Waldmann93].
— when restricted to Horn clauses, defines languages recognized by

tree automata with equality tests between brothers.
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A nice extension [Limet&Salzer(4]: tree tuple languages

Tree tuple languages:
e: = X|{()}|e x e|0oele/O

where O denotes template tuples (e.g., g(1,2)).
Constraints: X D e.

Several subclasses shown decidable (in particular pseudo-regular TTLs)
using variants of resolution + definition introduction.
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1. Cryptographic protocols.

2. Modeling cryptographic protocols using Horn clauses.
3. What is a security proof?

4. Finding security proofs.

5. Deciding 4 using resolution.
6. Deciding other classes using resolution.

7. Equational theories, xor, Diffie-Hellman, etc.
8. Security proofs, constructively.

9. Formally verifying security proofs.

10. Conclusion.
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The need for equational theories

See e.g., NRL analyzer (C. Meadows): handled through rewrite rules.
e E.g., the RSA rule (see this morning’s talk):

{{M}k}k— — M
K17 o K

e E.g., explicit decryption (Meadows, Millen, Blanchet, Jacquemard and

Delaune, etc.):

decrypt({M}g,K™') — M

Some theories resists the rewrite rule approach (see next slides).

at least if we want terminating algorithms, which you may or may not care about.
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The need for equational theories — Group Diffie-Hellman

Consider a group of N people, wishing to get some key K, such that:

1. No intruder outside the group knows the key;
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The need for equational theories — Group Diffie-Hellman

Consider a group of N people, wishing to get some key K, such that:

1. No intruder outside the group knows the key;
2. and no single person (or even no proper subgroup) can force a predicted

value of K for the entire group.
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Group Diffie-Hellman: the IKA.1 protocol

(taken from [Millen&Denker(02]

Upflow
1 N1
|V|1 'a a M2
| N1 NIN2
M2 aN2 a ~a M3
f N2N3 . NIN3 CNIN2 T NiNeNs My
M3 "a a a a
Downflpw
5 ? ? M
M, _N2N3N4 NINGN4  NIN2N4 4
Group key: aNTNZN3N4
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An attack on IKA.1

Upflow
an N1
My r.a a/L | My
T I
M, a2 NI ar\JI1N2 Mg
I
Downlflow
i
|
y A1 AN =
1
N2N3 _ N1N3
My a a Mg
. _ N1N2N3
|\/|2,|\/|3. Kg—a
. _ N1
M1. Kg—a
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Modular exponentiation

The IKA.1 protocol rests on Abelian group laws for exponents:

(a™)N =™ M(NP)= (MNP MN=NM

This 1s not handled in the free term model.
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Modeling IKA.1

Encode a™ as e(M), exponent multiplication as an
associative-commutative (AC) symbol .

... possibly with unit (ACU), possibly an inverse (AbGrp).

(Main) new intruder rule:

knows(e(X ®Y)) <« knows(e(X)),knows(Y)

Drawback: We still miss some specific equations, e.g. a™ oM = (ab)M.
... but see [Chevalier&Kiiste&Rusinowitch& TuruaniO3],

[Kapur&Narendran&Wang03]
Nice point: This models variants in other groups, e.g., using elliptic curve
cryptography (e(M) is M times some fixed point on the curve).
... close to Stern and Pointcheval’s Generic Group Model [SP94].
B boratoire
N nécification%‘%_

et
\Uirification @ivria Fyturs = Crypto, regular languages, automated deduction Page 44




Tree automata modulo an equational theory &

e In case £ i1s AC, ACU, or AbGrp, we recently used resolution
techniques to design a complete (but unsound) approximation
procedure [JGL,Roger,Verma0O4];

first automated verification of the IKA.1 group key establishment protocol
in the pure eavesdropper model

this approximation implemented in the MOP platform [Roger03]

e Various decidability/undecidability results known mod AC, ACU, ACI,
ACUX, AbGrp, etc.;

The expert on £-tree automata: K.N. Verma (now at TUM) '

The author of the MOP tool: M. Roger (now at CEA) E i
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The need for equational theories — exclusive-or (xor)

Used for various duties:

e mutual secret exchange (A; — S : {Ma, }k, (@ =1,2),
S — A; : My b Ms);

e cncryption (one-time pad, ElGamal encryption): encrypt M by
computing M ¢ K.

Theory of xor = ACU plus M & M = Q.

see works by Comon and Cortier, by Rusinowitch and Turuani, by Verma.
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The Needham-Schroeder public key protocol (1978)

B’s public key;

new Na

write {Na, A | Kb} read {Na, A | KbA—l}

—3-cw Nb
write {Na, Nb | Ka}

A’s public key;
A decrypts with her private key

read {<Na>,| Nb | Ka*-1}
write {Nb || Kb}
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Lowe’s Attack (1995)

A A starts

new Na

write {Na,

read {<Na>,| Nb |

write {Nb |[ Ki}

LY ratoire
S nemﬁcatnon

éetrification @inriA Futurs @

B
with C w‘ho turns to B
read {Na,| A | Ki*-1}
write {Na], A | Kb}
. read {Na, A | Kb*-1}
new Nb
write {Na, Nb | Ka}
read M
write M
3 | read {Nb | Ki”*-1}
write {Nb | Ka}
— 3 read {<Nb> | Ka*-1}
Here B believes he is talking
with A, instead talks with C
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The corrected Needham-Schroeder-Lowe protocol

new Na
write {Na,

A | Kb} read {Na, A | Kb*-1}
—ew Nb
write {Na, Nb] B | Ka}

A now checks B’s identity.

read {<Na>,| NY, <B>|| Ka*-1}
write {Nb || Kb}

read {<Nb> | Kb”*-1}
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The Joux attack

(I learnt it from Antoine Joux (DCSSI), sep. 2002)

e Encrypt using ElGamal encryption. Interesting point:
M}y = MoK
modulo the theory of xor, plus the theory of homomorphism:

{Ml,---,Mn}K — {Ml}K7"'7{MTL}K

e Intruder xors second message from B with 0,0, (B @ I) to substitute
his own identity / for B. ... this defeats Lowe’s fix.

Note that EIGamal encryption is very secure, though.

e Paradox: attack works even with { M } i as one-time pad.

1 ... the only provably secure encryption scheme!
1boratoire
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1. Cryptographic protocols.

2. Modeling cryptographic protocols using Horn clauses.
3. What is a security proof?

4. Finding security proofs.

5. Deciding 4 using resolution.
6. Deciding other classes using resolution.

/. Equational theories, xor, Diffie-Hellman, etc.
8. Security proofs, constructively.

9. Formally verifying security proofs.

10. Conclusion.
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Security proof = no proof (revised)

A proof of _L (false) 1s an attack.

. 1.e., a way of running clauses 1.-5.

which enables C' to eventually know some sensitive data, here.

Selinger’s Thesis: Security proof = no proof of L.
[Selinger01], Models for an Adversary-Centric Protocol Logic

Ist LACPV, JGL, ed., 2001.

Constructively, the non-existence of a proof will be witnessed by a model.

This is by completeness of first-order logic [G6del1930].
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(Finite models)

Example [Selinger01]: proof of Needham-Schroeder-Lowe using:

k w K U N S .
i A A —
{K}k K K U U U
(U |l U K U U U W : known k.ey,
{N} U U U U U with known inverse
{S}w U U U U U etc.

The model 1s an invariant of every run of the protocol; it satisfies all the
clauses, including the security queries.
...e.g., {U}x = K: encrypting known data with a known key

yields a (possibly) known message.

Problem left open by Selinger: find the model.
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Getting models from failed proofs

Let us return to .
In case SPASS, h1, ..., tells you there is no proof of |, what do you do?

Idea [Tammet and others]:

e the saturated clause set must be a description of some model;

e more precisely, extracting the productive clauses (i.e., C' such that
sel (C) = () describes a model [folklore, Bachmair&Ganzinger].

In the H; case, provided you use ordered resolution with selection +
splittingless splitting, the productive clauses are:
o P(f(X1,...,Xn)) < B1(X1),...,Bn(Xy),

where B(X) denotes some conjunction P (X), ..., Pr(X)

... these are alternating tree automata clauses

e P(X)

universal clauses
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Tree automata and sets of Horn clauses

0 \‘ (\ Dist—even
J M even(0).

Dev odd(suc (X)) <~ eVGIl(X)-
\ even(suc(X)) <= odd(X).

suc () listeven(X :: Y) <= even(X), listeven(Y)

) (
\ listeven([])

odd @

—
[—

suc

Non-emptiness <  Contradiction

(of listeven) (with L <= listeven(X).)

B boratoire
S nécification%‘%_

et
\Uirification @ivria Fyturs = Crypto, regular languages, automated deduction Page 55



Deterministic automata

The automaton on the previous slide is even deterministic.
Important: such automata define models.

Here the domain is {even, odd, listeven, | }.

suc > even odd listeven L
O | even even odd even 1 il listeven L
odd even odd 1L 1L L al
[] | listeven 1listeven | L listeven | L 1 1 1
L L 1L L L L L
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Non-determinism, alternation

Non-determinism:

knows({X1}x,) < _aux_36(X1),--aux_17(X2).
_aux 20({ X1} x,) <« -aux_36(X1),--aux_17(X2).
knows({X1}x,) < knows(Xq),knows(X2).

Alternation:

P(X) <« Q(X),R(X)
P(f(X,Y)) <« Q(X), R(X),S5(Y)

Note: alternating automata can be converted to deterministic automata

(in exponential time).
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Undecidable ecurity guarantee

[ Cryptographic protocols j
AN
Modélisation
Prolog programs
{ = Horn clauses } MOdelA
hl abstraction
Restricted Prolog programs Model

~ tree automata

Decidable
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Demo 2

Here the speaker should show you

the model h1 found on

symmetric-key Needham-Schroeder.

If the speaker forgets:
it is hopeless to determinize it.. .
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1. Cryptographic protocols.

2. Modeling cryptographic protocols using Horn clauses.
3. What is a security proof?

4. Finding security proofs.

5. Deciding 4 using resolution.
6. Deciding other classes using resolution.

/. Equational theories, xor, Diffie-Hellman, etc.
8. Security proofs, constructively.

9. Formally verifying security proofs.

10. Conclusion.
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Checking security proofs formally [in Coq here]

Name of the game: write a Coq proof of M = S, where M is described by
an alternating tree automaton A.

First approach: Determinize A
= a complete deterministic tree automaton = a finite model M.

Produce a proof of M = S by enumerating all elements of M (as in
Selinger’s approach).

Problem 1: determinizing takes exponential time (in practice too!)

Problem 2: translating it to Coq requires some skills!
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M | S in Coq — M given explicitly

Section def.
Variable N :Set,0:N, suc: N — N.
Inductive pair : N — Prop :=
pair_0 : pair(0)
| pair_S:VN : N impair(N) — pair(suc(N))
with  impair : N — Prop :=
impair S : VN : N-.pair(NN) — impair(suc(N))

End def.
Clauses: apply to N=term Inductive term: Set := 0 : term|S : term — term.
Model: apply to N=D defined using tables, a la Selinger.
Theorem: A\ g VU : DF . [C] [# := 7] [-] defined using Fixpoint.
Proof: enumerate D* time O(2%I51).
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Checking security proofs formally [in Coq here]

Name of the game: write a Coq proof of M = S.

Second approach: keep M as an alternating tree automaton.
...exponentially more succinct than finite model M
— Check M = S by model-checking first-order clauses against alternating
tree automata.
DEXPTIME-complete, but ... efficient in practice.
— Keep a trace of model-checking as a Coq proof.

B boratoire
S nécification%‘%_

et
\Uirification @ivria Fyturs = Crypto, regular languages, automated deduction Page 63



Model-checking clauses against an alternating tree
automaton

h;C! v —P(t)

P universal

in g Apply
(Univ—)
h; c’
hu{C};C
(Loop) Exact (using an ind. hyp.)
h; !l v +P(t)
P universal
. Exact
in 7wq
(Univ+4)
h;CyV...VCp (n>2)
the C'; ’s being non-empty and sharing no free variable
’ i< Cut, Tauto
— (Split)
h; C;
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h; C!' v —P(f(f)) P notuniversal in ™1
{P(f(X)) « D;(X)
1< i< m}
= clauses in 7r{ with head P(f()?))

c' <Dy ... ¢ < D@

h; —P(X) V \/j:1 :i:JP‘7 (X)
P, P; notuniversalinmy,1 < i < k
{P(f3;(X)) <= Dy (X)
1< i< m}
= clauses of 7v1 with head P
R =hU{—P(X)V \/;?:1 +,P;(X)}
Cy = VE_1 £ P;(£:(X))

R';cp <« Di(X) ... h';Cm < Dm(X)

h; C' v +P(f(1)) P not universal in 7 |
{P(f(X)) <= N\j B;;(X;)
1< i< m}
= clauses of 7v1 with head P (f (X))
etCq1 A ... N CpisaCNF

of ¢! v \/:’;1 /\J B’Lj (tj)

(Elim+)

h/,C]_ hlckﬂ
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Inversion, Elim, Tauto

Fix, Case, Inversion (induction)

Cut, Tauto (heavy)
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Demo 3

Did the speaker show you

the h1mc model-checker in action?
And the resulting Coq proof?
Did he showed you Coq check this proof?
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To sum up

[ Cryptographic protocols ] (Coq proof)
Model-checker
Modélisation
hlmc

[Prolog programs } Model

= Horn clauses

hl abstraction

Prover

h1l
Restricted Prolog programs
g prog Model

~ tree automata

Decidable
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Cryptographic protocols.

Modeling cryptographic protocols using Horn clauses.
. What is a security proof?

Finding security proofs.

Deciding H1 using resolution.

Deciding other classes using resolution.

Equational theories, xor, Diffie-Hellman, etc.

Security proofs, constructively.

Formally verifying security proofs.

10. Conclusion.

© XN O Wb =

B boratoire
) oécification&‘%_

\érification Bivria Futurs = Crypto, regular languages, automated deduction Page 68



Conclusion and perspectives

e Verifying protocols is finding models:
How do model-finding tools fare (e.g., Paradox [CS03])?
Preliminary experiments: (with Ankit Gupta, IIT Delhi)

— works faster than h1 for most secure protocols in Blanchet/Seidl style
(loops on insecure protocols),

produces much smaller (deterministic) models;

— should adapt without problems to equational theories (under investigation);
— clauses from precise models (from EVA, or from Csur, see next slide)

easier for h1 than for Paradox: why?
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Conclusion and perspectives

e Mathematical tools: a nice integration:

automated deduction/automata/model-checking/computer-aided proofs;

e Relation between logic models and cryptographers’ proofs:

mentioned by C. Meadows this morning, many references
. a simple and elegant theorem in a model with time and probabilities:

see M. Baudet’s talk (tomorrow).

e Towards analyzing actual code:
most protocols exist as C/C++ code, not little diagrams!

...source of many attacks (buffer overflow, swapping attacks, plain bugs, ...)

...under investigation in the Csur project (with F. Parrennes, now at RATP)
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Conclusion

“Logic wins!”
(Roy Dyckhoff, may 1996,
private communication,

— out of context.)
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