
On cryptographic protocols,

regular tree languages,

and automated deduction

Jean Goubault-Larrecq
http://www.lsv.ens-cachan.fr/˜goubault/

Projet RNTL EVA, RNTL Prouvé ACI VERNAM, Rossignol
ACI jeunes chercheurs “Sécurité info., protocoles crypto., et détection d’intrusions”.

Futurs � Crypto, regular languages, automated deduction Page 1

1. Cryptographic protocols.
2. Modeling cryptographic protocols using Horn clauses.
3. What is a security proof?
4. Finding security proofs.
5. Deciding � � using resolution.
6. Deciding other classes using resolution.
7. Equational theories, xor, Diffie-Hellman, etc.
8. Security proofs, constructively.
9. Formally verifying security proofs.
10. Conclusion.

Futurs � Crypto, regular languages, automated deduction Page 2

Cryptographic protocols

Increasing need for strong security: smartcards, e-banking, e-commerce,
secure networks, etc.

Secrecy:� is secret if no intruder can emit� ;
Authenticity: the only process that can emit� is� ;
Freshness:� was built recently;
Non-duplication:� can only be received once (invoices);
Non-repudiation:� cannot deny having emitted� (orders).

Futurs � Crypto, regular languages, automated deduction Page 3

Cryptography is not enough

Even if you use perfect (unbreakable) encryption algorithms, it is not easy
to preserve secrecy or authenticity:

A B

{M}

encryption

decryption

(assumption: Kab is a secret key between
 A and B − no intruder knows it) we wish to guarantee this

write {M}

read {M}Kab

Kab
Kab

Futurs � Crypto, regular languages, automated deduction Page 4

Ex.: symmetric key Needham-Schroeder

�� �	�
 �� �
��
�� �

� � ��
 � � � � �
��
�� ��
 � � ��
 � �� �� � � � �

� � �	�
 � � � � ��
 � � � ��� � � �
 � � � � � � � � �� � �	�
 � � � � �� � �� � �

A B S

read A, B, Na
new sym key Kab

write {Na, B, Kab, {Kab, A} }

new Na
write A, B, Na

new Nb
read {Kab, A}

write {Nb}

read {<Nb+1>}

read {Nb}

read {<Na>, , Kab, M}
write M

Kbs

Kas

Kas

Kbs

Kab

Kab

Kab
write {Nb+1}Kab

Futurs � Crypto, regular languages, automated deduction Page 5

Who are Alice and Bob anyway?

Futurs � Crypto, regular languages, automated deduction Page 6

An Attack

� replays an old Kab ! , A | Kbs " —old enough that � managed to get
hold of Kab ! .

Kab0

Kab0Kab0

Kab0

C A B S

new Nb
read {Kab, A}

write {Nb}

read {<Nb+1>}

0

read {Nb}

write {Nb+1}

write {Kab , A}

Kbs

Kab

Kab

Kbs

Futurs � Crypto, regular languages, automated deduction Page 7

1. Cryptographic protocols.
2. Modeling cryptographic protocols using Horn clauses.
3. What is a security proof?
4. Finding security proofs.
5. Deciding � � using resolution.
6. Deciding other classes using resolution.
7. Equational theories, xor, Diffie-Hellman, etc.
8. Security proofs, constructively.
9. Formally verifying security proofs.
10. Conclusion.

Futurs � Crypto, regular languages, automated deduction Page 8

A Horn clause (pure Prolog) model
1. Intruder abilities.

#$ %&' (�*) �� + , #$ %&' () +
 #$ % &' (� + (- can encrypt)

#$ % &' () + , #$ %&' (�*) �. /10 243 576 8 +

#$ %&' (# (' 9;:
�< + + . . . and decrypt [symmetric keys])

#$ % &' (=> + (- can build

#$ %&' () ?� �) @ + , #$ %&' () ? +
 #$ %&' () @ + any list of known messages)

#$ %&' () ? + , #$ %&' () ?� �) @ + (- can read heads)

#$ %&' () @ + , #$ %&' () ?� �) @ + (- can read tails)

#$ % &' ('A B () + + , #$ %&' () + (- can add

#$ % &' () + , #$ %&' ('A B () + + and subtract one)

Futurs � Crypto, regular languages, automated deduction Page 9

2. Protocol clauses—current sessions (à la Blanchet/Nielson @ -Seidl)

�� ��
 �� �
 �
� � #$ %&' (=DC
FE
$ C (= C
 E > +> +

� � �
 �� �
��
�� �

� � ��
 � � � � �
��
�� � �

� � � �
 � �� ��

� � � �

#$ % &' GHH
I

� = � �
��
1J � �

� = J ��
 � > � . /0 243 5 KFL 50 M 8

> �. /10 243 5 KFN 50 M 8 +

O PP
Q

, #$ %&' (= �
 �
� �> +

/SR � �4T . /0 243 5UVW / N 5 L 57X � 8 8 8

� � ��
 � � � � �
��
�� ��

� � ��
 � � � � �

�� � �

� � ��
 � � � � � �
 � �� ��
#$ %&' () + , #$ % &' (� = $ C (= C
FE > +
 E
�� � �
) > � . /0 243 5 K1Y 50 M 8 +C # Z 9 (� � � + , #$ % &' (� = $ C (= C
FE > +
 E
�� � �
) > � . /0 243 5 K1Y 50 M 8 +

� � �	�
 � � � � � �
 � �� ��� � � �
 � � � � � � � � � #$ % &' (�$ E (� ��
 �
�� + �� � � + , #$ %&' (� = � � �
 � > � . /0 243 5 KFL 50 M 8

Futurs � Crypto, regular languages, automated deduction Page 10

� � � �
 � � � � � � � � �� � ��
 � � � � � � � � � � � #$ %&' (�'A B (� � + �� � � + , #$ % &' (� � � � � � � +

3. Protocol clauses—old sessions

� � �
 �� �
��
�� �

� � ��
 � � � � �
��
�� � �

� � � �
 � �� ��

� � � �

#$ % &' GHH
I

� = � �
��
1J � �

� = J ��
 � > � . /0 243 5 KFL 50 M 8

> �. /10 243 5 KFN 50 M 8 +

O PP
Q

, #$ %&' (= �
 �
� �> +

/SR � �[T . /0 243 5 \W]^ / N 5 L 57X � 8 8 8

Futurs � Crypto, regular languages, automated deduction Page 11

4. Initial intruder knowledge

_ `bac d e _ f _ `bac d ehg f

_ `bac d ehi f _ `bac d ekj f

lc mn i eko f p _ `bac d eko f

lc m n i e l eqsr g t o f f

lc mn i e l eqvu w t j f f

lc m n i e l ei xzy t qvu a w e� tD{ tD| } f f f (old session keys

are compromised)

Futurs � Crypto, regular languages, automated deduction Page 12

5. Security queries

~ p lc mn i e l ei x y t�� r u e _ t g t| } f f f

can � build � }�
as created by � ?

~ p lc mn i e � }� f t _ l a x e � } � f
. . . as received by� ?

~ p lc mn i e ir � ec g e � }� t� t { f f "� � � f t lc mn i e � }� f

. . . as received by{ ?

Futurs � Crypto, regular languages, automated deduction Page 13

1. Cryptographic protocols.
2. Modeling cryptographic protocols using Horn clauses.
3. What is a security proof?
4. Finding security proofs.
5. Deciding � � using resolution.
6. Deciding other classes using resolution.
7. Equational theories, xor, Diffie-Hellman, etc.
8. Security proofs, constructively.
9. Formally verifying security proofs.
10. Conclusion.

Futurs � Crypto, regular languages, automated deduction Page 14

Security proof = no proof

A proof of ~ (false) is an attack.
. . . i.e., a way of running clauses 1.–5.

which enables � to eventually know some sensitive data, here.

Selinger’s Thesis: Security proof � no proof of ~ .

Futurs � Crypto, regular languages, automated deduction Page 15

Demo 1

If you see this slide,

please ask the speaker

to run h1

to find the attacks on

symmetric-key Needham-Schroeder.
In case the speaker forgets:

this finds an attack on� ,
mostly and less obvious. . . there is no attack on either � or � .

Futurs � Crypto, regular languages, automated deduction Page 16

1. Cryptographic protocols.
2. Modeling cryptographic protocols using Horn clauses.
3. What is a security proof?
4. Finding security proofs.
5. Deciding � � using resolution.
6. Deciding other classes using resolution.
7. Equational theories, xor, Diffie-Hellman, etc.
8. Security proofs, constructively.
9. Formally verifying security proofs.
10. Conclusion.

Futurs � Crypto, regular languages, automated deduction Page 17

Automated deduction

� � Roadmap:

Launch some automated prover (SPASS, Otter, Vampire, Waldmeister,
Bliksem, . . .) on the given set of clauses 1.–5.

If ~ was derived, there is a possible attack.

If the prover terminates without deriving ~ , no attack.
(Yes!)

If the prover does not terminate, well, er. . .
. . . this actually happens fairly often. . .

Note: Blanchet uses an ad hoc two-step resolution strategy

that terminates often (always on so-called tagged protocols).

You can also use finite model finders, e.g., Paradox [CS03] (very promising).

Futurs � Crypto, regular languages, automated deduction Page 18

Abstraction

Basic Idea: turn the initial clause set � into a clause set ��� such that:

� �� falls into a decidable subclass.
. . . I tend to like � ? [Nielson&Nielson&Seidl02] personally.

� �� implies � .
. . . so if ��� is not contradictory, neither is � .

Great, this exists!
Forerunner is [Frühwirth&Shapiro&Vardi&Yardeni91].
This is independent of every application domain. . .

Futurs � Crypto, regular languages, automated deduction Page 19

The � � class, and the canonical abstraction

Clauses of � � :
� eko f p ��� � or � e� e o � tD� � � t o � f f p �� � �

Decidable DEXPTIME-complete.
. . . by ad hoc techniques [Nielson&Nielson&Seidl02]

. . . by ordered resolution with selection [Goubault-Larrecq03]

Defines exactly the regular tree languages.
. . . using a clause language that is much more expressive than ordinary tree automata,

even alternating tree automata,

even two-way,

. . . matches exactly the definite set constraints

with unrestricted (even non-linear) comprehensions.

And . all clauses 1. (intruder) are in � � already.

Futurs � Crypto, regular languages, automated deduction Page 20

Canonical abstraction: name subterms
�� �� ¢¡ £££¤

¥ ¦¨§ �© � © � ª «7¬ ©­® ¯ ª � © � © § � ° °©¥ ¦ � ª «7¬ © ­® ¯ ª � © � © § � ° °© � ±² � ª «7¬ © ¦� © ± °±² � ª «7¬ © ¦ � © ± ° °

³ ´´´µ
¶ �� �� ª ¦ � © � © § � ± °

//

· ¸ ¹ ªº ª � © � © § � ° ° ¶ � � �� ª ¦ � © � © § � ± °· ¸ » ª § � ° ¶ · ¸ ¹ ª º ª � © � © § � ° ° · ¼ ½ ª� ° ¶ · ¸ ¹ ª º ª � © � © § � ° °· ¾ ¸ ª � ° ¶ · ¸ ¹ ª º ª � © � © § � ° ° · ¼¿ ª «7¬ ° ¶ · ¸ ¹ ªº ª � © � © § � ° °· ¼ À ª ¦ ± ° ¶ · ¸ ¹ ª º ª � © � © § � ° ° · ¾ ¿ ª ° ¶ · ¸ ¹ ª º ª � © � © § � ° °· ¼ ¹ ª­® ¯ ª � © � © § � ° ° ¶ · ¸ ¹ ª º ª � © � © § � ° ° · ¼ ¼ ª � ª¨Á ¸© Á ¼ ° ° ¶ · ¼¿ ª¨Á ¸ °© · ¼ ¹ ª¨Á ¼ °· ¾ ½ ª �Â Â Á ¼ ° ¶ · ¾ ¸ ª � °© · ¼ À ª¨Á ¼ ° · ¼ » ª¨Á ¸Â Â Á ¼ ° ¶ · ¼ ¼ ª¨Á ¸ °© · ¾ ½ ª¨Á ¼ °· ¾ ¾ ªÁ ¸Â Â Á ¼ ° ¶ · ¾ ¿ ª¨Á ¸ °© · ¼ À ª¨Á ¼ ° · ¾ ¼ ª� Â Â Á ¼ ° ¶ · ¼ ½ ª� °© · ¾ ¾ ª¨Á ¼ °· ¼ Ã ª � ªÁ ¸© Á ¼ ° ° ¶ · ¼¿ ª¨Á ¸ °© · ¾ ¼ ª¨Á ¼ ° · ¼ Ä ª¥ Á ¸ ² Á ¼ ° ¶ · ¼ » ª¨Á ¸ °© · ¼ Ã ª¨Á ¼ °· ¼ ¾ ªÁ ¸Â Â Á ¼ ° ¶ · ¼ Ä ª¨Á ¸ °© · ¼ À ª¨Á ¼ ° · ¼ ¸ ª¨Á ¸Â Â Á ¼ ° ¶ · ¼ ¼ ª¨Á ¸ °© · ¼ ¾ ª¨Á ¼ °· ¸ Ã ª� Â Â Á ¼ ° ¶ · ¼ ½ ª� °© · ¼ ¸ ª¨Á ¼ ° · ¸ Ä ª § �Â Â Á ¼ ° ¶ · ¸ » ª § � °© · ¸ Ã ª¨Á ¼ °· ¾ ¹ ª �Â Â Á ¼ ° ¶ · ¾ ¸ ª � °© · ¾ ¾ ª¨Á ¼ ° · ¸ À ª � ª¨Á ¸© Á ¼ ° ° ¶ · ¼¿ ª¨Á ¸ °© · ¾ ¹ ª¨Á ¼ °�� �� ª¥ Á ¸ ² Á ¼ ° ¶ · ¸ Ä ª¨Á ¸ °© · ¸ À ª¨Á ¼ °

Futurs � Crypto, regular languages, automated deduction Page 21

Modélisation

Undecidable

Decidable

 ~ tree automata

Prolog programs
 = Horn clauses No proof of false

abstraction

No proof of false

h1

Security guarantee

Cryptographic protocols

Restricted Prolog programs

Futurs � Crypto, regular languages, automated deduction Page 22

1. Cryptographic protocols.
2. Modeling cryptographic protocols using Horn clauses.
3. What is a security proof?
4. Finding security proofs.
5. Deciding � � using resolution.
6. Deciding other classes using resolution.
7. Equational theories, xor, Diffie-Hellman, etc.
8. Security proofs, constructively.
9. Formally verifying security proofs.
10. Conclusion.

Futurs � Crypto, regular languages, automated deduction Page 23

Er, would you mind if I skipped this part and the next one?

Futurs � Crypto, regular languages, automated deduction Page 24

Deciding � � using resolution

Idea: using some specific refinement of resolution, show that only finitely
many clauses can be inferred.

dates back to [Joyner76], even to [Maslov64,Mints80]

We use a pretty general refinement: ordered resolution
Å ÆÇÈ É4Ê Ë Å Ç Ì ËÍ ÎÏ Ð�Ñ Ò� �Ñ � � �Ñ Ò� �
ÌÇ Ó Ë É Ê Ë Å Ç Ì ËÍ ÎÏ Ð� � Ñ Ô� �

�Õ Ñ � � Õ
(i) Ö ×SØ ;

(ii) Ù7Ú Û Ü	Ý Þvß ?áàÚ ß � âà à à â ß ã àÚ ß � ä ;
(iii) ß ? âà à à â ß ã are å -maximal in main;

(iv) ß � is å -maximal in side.

Futurs � Crypto, regular languages, automated deduction Page 25

Deciding � � using resolution

Idea: using some specific refinement of resolution, show that only finitely
many clauses can be inferred.

dates back to [Joyner76], even to [Maslov64,Mints80]

We use a pretty general refinement: ordered resolution with selection.
Å ÆÇÈ É4Ê Ë Å Ç Ì ËÍ ÎÏ Ð�Ñ Ò� �Ñ � � �Ñ Ò� �
ÌÇ Ó Ë É Ê Ë Å Ç Ì ËÍ ÎÏ Ð� � Ñ Ô� �

�Õ Ñ � � Õ
(i) Ö ×SØ ;

(ii) Ù7Ú Û Ü	Ý Þvß ?áàÚ ß � âà à à â ß ã àÚ ß � ä ;
(iii) æçè Þ �é ê ß ?é à à à é ê ß ã äÚ ë andß ? âà à à â ß ã are å -maximal in main;

(iv) ì ß � í æç è Þ � � é ì ß � ä , or æçè Þ � � é ì ß � äÚ ë andß � is å -maximal in side.

Futurs � Crypto, regular languages, automated deduction Page 26

Specializing ordered resolution with selection

To decide � � , define:

� � eïî fñð ò eïî � f iffî strict super-term ofî � ;

� óôõ e � f is set of all literals Ô � eî f of depth ö depth of head.

� Main premises are:

� � e� e o � tD� � � t o � f f p { � e o � f tD� � � t { � eko � f t

{ � ÷ � eko � ÷ � f tD� � � t { ø eko ø f

where ù Þvú ä denotes some conjunction û ? Þú ä âà à à â û R Þvú ä

. . . these are (almost) alternating tree automata clauses

� � e o f

universal clauses

Futurs � Crypto, regular languages, automated deduction Page 27

Deciding � � using resolution (cont’d)

E.g.,

ü (ý (< ?
�< @ + + , þ (< ? +
4ÿ (< ? +
�� (< � + � (< + , ü (ý (� (<
< +
 � (<
�� + + +
�� (< + +

� (< + , þ (� (<
�< + +
4ÿ (� (<
�< + +
�� (< +
�� (< � +

Conclusion is smaller than side premise (in some multiset ordering).

Futurs � Crypto, regular languages, automated deduction Page 28

Deciding � � using resolution (cont’d)

This may loop:

ü (ý (< ?
�< @ + + , þ (< ? +
4ÿ (< @ + � (< + , ü (< +
�� (< +

� (ý (< ?
�< @ + + , � (ý (< ?
�< @ + +
 þ (< ? +
4ÿ (< @ +

Conclusion is not smaller than premisses, but at least it is not too large.

If only this happened, then we would still generate only finitely many
clauses.

Futurs � Crypto, regular languages, automated deduction Page 29

The need for splitting

þ (ý (<
� + + , þ � (< +
ü (�*) �� + , þ () +
4ÿ (� +

� () + , ü (�*) �� +
 � (� +

� () + , þ () +
 ÿ (� +
 � (� +

� (ý (<
� + + , þ � (< +
4ÿ (� +
 � (� +

���

�� (< + , � (ý (<
� + +

ÿ � (� +
 � � (� +

�� (< + , þ � (< +
4ÿ (� +
 � (� +
4ÿ � (� +
 � � (� +

� larger and larger clauses (no bound).

Futurs � Crypto, regular languages, automated deduction Page 30

Splitting variants

� Condensing [Joyner76];

� Splitting [tableaux community]: if �Ñ � � holds (where

	
 e � f�� 	
 e � � f �
), then � or � � must hold.

� replace �é � � non-deterministically by � or � �

This would decide � ? . . . in NEXPTIME.

� Splittingless splitting [Voronkov&Riazanov01]: �Ñ � � is equivalent to

� ��� e �Ñ � f�� e � � Ñ � � f .
e.g., replace � Þ�� ä�� � Þ�� ä â�� Þ�� ä â�� Þ�� ä

by � Þ� ä� � Þ� ä â� and� � û Þ� ä â�� Þ� ä

with� Ú Ö� Þ û � � ä

This decides � ? . . . in DEXPTIME (optimal).

Futurs � Crypto, regular languages, automated deduction Page 31

1. Cryptographic protocols.
2. Modeling cryptographic protocols using Horn clauses.
3. What is a security proof?
4. Finding security proofs.
5. Deciding � � using resolution.
6. Deciding other classes using resolution.
7. Equational theories, xor, Diffie-Hellman, etc.
8. Security proofs, constructively.
9. Formally verifying security proofs.
10. Conclusion.

Futurs � Crypto, regular languages, automated deduction Page 32

Solving decidable classes using resolution: a long history

� Maslov [64] designs the inverse method, shows several classes
decidable.
Mints [80] shows that the inverse method is essentially positive
hyperresolution (i.e., óô õ e � f � ! õ õ " ô # $ %
 ô õ %$ ô& õ ó' 	 � ") on a
definitional clausal form [Tseitin58].

� Joyner [76] shows that ordered resolution (i.e., óô õ e � f �
) decides
the monadic, Ackermann, Gödel, extended Skolem and Maslov classes.
Note: still no resolution method decides the Bernays-Schönfinkel class!

� de Nivelle [98] introduces the guarded fragment, shows it decidable
using ordered resolution.

� See chapter of HAR by Fermüller, Leitsch, Hustadt, Tammet for more
info.

Futurs � Crypto, regular languages, automated deduction Page 33

Positive set constraints are clause sets

Set constraint Automatic clause
() * � ((< +,+ � * (< +

() *.- / � ((< ++ � * (< ++ � / (< +

(�0 *) / � ((< ++ � * (< ++ � / (< +

() 1 * � ((< +,+ � * (< +1 () * � ((< +,+ � * (< +

() ý ((?
� � �
 (ã +
2 33333

4 333335
� ((ý (< ?
� � �
�< ã + + + � (? (< ? +

� � �
� ((ý (< ?
� � �
�< ã + + + � (ã (< ã +� ((� (< ?
� � �
�< 6 + + (for all� 798 ý +

ý ((?
� � �
 (ã +) (+ + ã:; ?� (: (< : + + � ((ý (< ?
� � �
�< ã + +

ý=< ?: ((+) * � ((ý (< ?
� � �
�< ã + +,+ � * (< : +
Futurs � Crypto, regular languages, automated deduction Page 34

Solving first-order automatic clauses by ordered resolution

Looking at the previous slide, we have two kinds of clauses:

� Blocks{ eko f � > � � eko fÑ � � �Ñ > � ø eko f ;

� Complex clauses ? @ > � @ e� @ eko � tD� � � t o � f fÑ { � eko � fÑ � � �Ñ { � eko � f

Ordered resolution (with splitting) generates only finitely many such
clauses.

� terminates in NEXPTIME.

Ô this is optimal: the problem is NEXPTIME-complete.

Ô in fact this isA a way of deciding the monadic class
[Bachmair&Ganzinger&Waldmann93].

Ô when restricted to Horn clauses, defines languages recognized by
tree automata with equality tests between brothers.

Futurs � Crypto, regular languages, automated deduction Page 35

A nice extension [Limet&Salzer04]: tree tuple languages

Tree tuple languages:
BC C � o D e f " D BE B DGF H B D B I F

where F denotes template tuples (e.g., J eLK tNM f).
Constraints: o O B .

Several subclasses shown decidable (in particular pseudo-regular TTLs)
using variants of resolution + definition introduction.

Futurs � Crypto, regular languages, automated deduction Page 36

1. Cryptographic protocols.
2. Modeling cryptographic protocols using Horn clauses.
3. What is a security proof?
4. Finding security proofs.
5. Deciding � � using resolution.
6. Deciding other classes using resolution.
7. Equational theories, xor, Diffie-Hellman, etc.
8. Security proofs, constructively.
9. Formally verifying security proofs.
10. Conclusion.

Futurs � Crypto, regular languages, automated deduction Page 37

The need for equational theories

See e.g., NRL analyzer (C. Meadows): handled through rewrite rules.

� E.g., the RSA rule (see this morning’s talk):

 � "� "� P ¸ Q �

�SR �R � Q �

� E.g., explicit decryption (Meadows, Millen, Blanchet, Jacquemard and
Delaune, etc.):

Ta � u x q d e � " � t �SR � f Q �
Some theories resists the rewrite rule approach (see next slides).

at least if we want terminating algorithms, which you may or may not care about.

Futurs � Crypto, regular languages, automated deduction Page 38

The need for equational theories — Group Diffie-Hellman

Consider a group of| people, wishing to get some key � , such that:

1. No intruder outside the group knows the key;

Futurs � Crypto, regular languages, automated deduction Page 39

The need for equational theories — Group Diffie-Hellman

Consider a group of| people, wishing to get some key � , such that:

1. No intruder outside the group knows the key;
2. and no single person (or even no proper subgroup) can force a predicted
value of � for the entire group.

Futurs � Crypto, regular languages, automated deduction Page 40

Group Diffie-Hellman: the IKA.1 protocol

(taken from [Millen&Denker02]

a N2N3 a N1N3 a N1N2 a N1N2N3

a N2 a N1 a N1N2

a 1 a N1 M 2

a N1N3N4 a N1N2N4

M 2

M 1

3

M 4M 3

M

Upflow

a N2N3N4 M 4

Downflow

Group key: a N1N2N3N4

M 1-3

Futurs � Crypto, regular languages, automated deduction Page 41

An attack on IKA.1

a N2

a 1 a N1

a N1N2a N1

a N1
a 1

M 2

M 1

M 3

3M

M 2

a N1N3

M 2

M 1

Upflow

Downflow

2 3

a N2N3

M : 1

M , M :

gK = a

gK = a N1N2N3

N1

Futurs � Crypto, regular languages, automated deduction Page 42

Modular exponentiation

The IKA.1 protocol rests on Abelian group laws for exponents:

e!UWV fYX � UV X � e| � f � e� | f � � | � | �

K � � � K � � � � R � � K

This is not handled in the free term model.

Futurs � Crypto, regular languages, automated deduction Page 43

Modeling IKA.1

EncodeUZV as B e� f , exponent multiplication as an
associative-commutative (AC) symbol [.

. . . possibly with unit (ACU), possibly an inverse (AbGrp).

(Main) new intruder rule:

#$ %&' (�\ (<] � + + , #$ % &' (\ (< + +
 #$ %&' (� +

Drawback: We still miss some specific equations, e.g.U V �V � e!U � fV .
. . . but see [Chevalier&Küste&Rusinowitch&Turuani03],

[Kapur&Narendran&Wang03]

Nice point: This models variants in other groups, e.g., using elliptic curve
cryptography (B e� f is� times some fixed point on the curve).

. . . close to Stern and Pointcheval’s Generic Group Model [SP94].

Futurs � Crypto, regular languages, automated deduction Page 44

Tree automata modulo an equational theory ^

� In case _ is AC, ACU, or AbGrp, we recently used resolution
techniques to design a complete (but unsound) approximation
procedure [JGL,Roger,Verma04];

first automated verification of the IKA.1 group key establishment protocol

in the pure eavesdropper model

this approximation implemented in the MOP platform [Roger03]

� Various decidability/undecidability results known mod AC, ACU, ACI,
ACUX, AbGrp, etc.;

The expert on _ -tree automata: K.N. Verma (now at TUM)

The author of the MOP tool: M. Roger (now at CEA)

Futurs � Crypto, regular languages, automated deduction Page 45

The need for equational theories — exclusive-or (xor)

Used for various duties:

� mutual secret exchange (� @ Q � C � ` a "� � a (b � K t M),

� Q � @C � � [� c);

� encryption (one-time pad, ElGamal encryption): encrypt� by
computing� [� .

Theory of xor = ACU plus� [� � d .
see works by Comon and Cortier, by Rusinowitch and Turuani, by Verma.

Futurs � Crypto, regular languages, automated deduction Page 46

The Needham-Schroeder public key protocol (1978)

write {Na, A | Kb}
new Na

A B

write {Nb | Kb}

new Nb

B decrypts using his private key

read {Na, A | Kb^−1}

read {<Na>, Nb | Ka^−1}

write {Na, Nb | Ka}

read {<Nb> | Kb^−1}

A’s public key;
A decrypts with her private key

B’s public key;

Futurs � Crypto, regular languages, automated deduction Page 47

Lowe’s Attack (1995)

A B

write {Na, A | Ki}
new Na

read {Na, A | Ki^−1}
write {Na, A | Kb}

C

read M
write M

read {Nb | Ki^−1}
write {Nb | Ka}

Here B believes he is talking
with A, instead talks with C

new Nb
read {Na, A | Kb^−1}

write {Na, Nb | Ka}

read {<Nb> | Ka^−1}

read {<Na>, Nb | Ka^−1}

write {Nb | Ki}

A starts
talking with C... who turns to B

Futurs � Crypto, regular languages, automated deduction Page 48

The corrected Needham-Schroeder-Lowe protocol

write {Na, A | Kb}
new Na

A B

write {Nb | Kb}

new Nb
read {Na, A | Kb^−1}

read {<Nb> | Kb^−1}

write {Na, Nb, B | Ka}

read {<Na>, Nb, | Ka^−1}

A now checks B’s identity.

Futurs � Crypto, regular languages, automated deduction Page 49

The Joux attack

(I learnt it from Antoine Joux (DCSSI), sep. 2002)

� Encrypt using ElGamal encryption. Interesting point:

 � "� � � [�

modulo the theory of xor, plus the theory of homomorphism:

 � � tD� � � t� � "� � � � "� tD� � � t � � "�

� Intruder xors second message from{ with d t d t e{ [e f to substitute
his own identitye for{ this defeats Lowe’s fix.

Note that ElGamal encryption is very secure, though.

� Paradox: attack works even with � " � as one-time pad.
. . . the only provably secure encryption scheme!

Futurs � Crypto, regular languages, automated deduction Page 50

1. Cryptographic protocols.
2. Modeling cryptographic protocols using Horn clauses.
3. What is a security proof?
4. Finding security proofs.
5. Deciding � � using resolution.
6. Deciding other classes using resolution.
7. Equational theories, xor, Diffie-Hellman, etc.
8. Security proofs, constructively.
9. Formally verifying security proofs.
10. Conclusion.

Futurs � Crypto, regular languages, automated deduction Page 51

Security proof = no proof (revised)

A proof of ~ (false) is an attack.
. . . i.e., a way of running clauses 1.–5.

which enables � to eventually know some sensitive data, here.

Selinger’s Thesis: Security proof � no proof of ~ .
[Selinger01], Models for an Adversary-Centric Protocol Logic

1st LACPV, JGL, ed., 2001.

Constructively, the non-existence of a proof will be witnessed by a model.

This is by completeness of first-order logic [Gödel1930].

Futurs � Crypto, regular languages, automated deduction Page 52

(Finite models)

Example [Selinger01]: proof of Needham-Schroeder-Lowe using:

J f � � � �

� f � R � � � � �

� � � R � � � � �

� � � R � � � � �

� � � R � � � � �

� � � R � � � � �

� 8 known

� 8 unknown

f 8 known key,

with known inverse

etc.

The model is an invariant of every run of the protocol; it satisfies all the
clauses, including the security queries.

. . . e.g., g � h � Ú � : encrypting known data with a known key

yields a (possibly) known message.

Problem left open by Selinger: find the model.

Futurs � Crypto, regular languages, automated deduction Page 53

Getting models from failed proofs
Let us return to � � .

In case SPASS, h1, . . . , tells you there is no proof of ~ , what do you do?

Idea [Tammet and others]:

� the saturated clause set must be a description of some model;

� more precisely, extracting the productive clauses (i.e., � such that

óô õ e � f �
) describes a model [folklore, Bachmair&Ganzinger].

In the � � case, provided you use ordered resolution with selection +
splittingless splitting, the productive clauses are:

� � e� e o � tD� � � t o � f f p { � e o � f tD� � � t { � eko � f t
where ù Þvú ä denotes some conjunction û ? Þú ä âà à à â û R Þvú ä

. . . these are alternating tree automata clauses

� � e o f

universal clauses

Futurs � Crypto, regular languages, automated deduction Page 54

Tree automata and sets of Horn clauses

qeven

qodd

qlist−even0

[]suc (_) suc (_)

_ :: _

Zi Z$ (,j + .%k k ('A B (< + + , Zi Z$ (< +�Zi Z$ ('A B (< + + , %k k (< +�lm ' n Zi Z$ (< � � � + , Zi Z$ (< +
 lm ' n Zi Z$ (� +�lm ' n Zi Z$ (=> +�
Non-emptiness o Contradiction

(of lm ' n Zi Z$) (with p , lm ' n Zi Z$ (< +�)

Futurs � Crypto, regular languages, automated deduction Page 55

Deterministic automata

The automaton on the previous slide is even deterministic.
Important: such automata define models.
Here the domain is a wac t m T T tNq j i d a w ac t ~ " .

j Zi Z$
=> lm ' n Zi Z$

'A B
Zi Z$ %k k

%k k Zi Z$

lm' n Zi Z$ p

p p
� � Zi Z$ %k k lm ' n Zi Z$ p

Zi Z$ p p lm ' n Zi Z$ p

%k k p p p p

lm ' n Zi Z$ p p p p

p p p p p

Futurs � Crypto, regular languages, automated deduction Page 56

Non-determinism, alternation

Non-determinism:
#$ %&' (� < ? � 6 ¼ + , CA r st (< ? +
 CA ru v (< @ +�

CA r w x (� < ? � 6 ¼ + , CA r st (< ? +
 CA ru v (< @ +�

#$ %&' (� < ? � 6 ¼ + , #$ %&' (< ? +
 #$ %&' (< @ +�

Alternation:

ü (< + , þ (< +
4ÿ (< +

ü (ý (<
� + + , þ (< +
4ÿ (< +
 � (� +
Note: alternating automata can be converted to deterministic automata

(in exponential time).

Futurs � Crypto, regular languages, automated deduction Page 57

Modélisation

Undecidable

Decidable

 ~ tree automata

Prolog programs
 = Horn clauses Model

abstraction

Model

h1

Security guarantee

Cryptographic protocols

Restricted Prolog programs

Futurs � Crypto, regular languages, automated deduction Page 58

Demo 2

Here the speaker should show you

the model h1 found on

symmetric-key Needham-Schroeder.

If the speaker forgets:
it is hopeless to determinize it. . .

Futurs � Crypto, regular languages, automated deduction Page 59

1. Cryptographic protocols.
2. Modeling cryptographic protocols using Horn clauses.
3. What is a security proof?
4. Finding security proofs.
5. Deciding � � using resolution.
6. Deciding other classes using resolution.
7. Equational theories, xor, Diffie-Hellman, etc.
8. Security proofs, constructively.
9. Formally verifying security proofs.
10. Conclusion.

Futurs � Crypto, regular languages, automated deduction Page 60

Checking security proofs formally [in Coq here]

Name of the game: write a Coq proof of y D � � , where y is described by
an alternating tree automaton z .

First approach: Determinize z

� a complete deterministic tree automaton � a finite model y .

Produce a proof of y D � � by enumerating all elements of y (as in
Selinger’s approach).

Problem 1: determinizing takes exponential time (in practice too!)

Problem 2: translating it to Coq requires some skills!

Futurs � Crypto, regular languages, automated deduction Page 61

{}| ~ in Coq — given explicitly

Section k Z� .

Variable � � � Z n ,j � � ,'A B� �
 � .

Inductive �C m� � �
� � % �� 8

�C m � �� �C m � (j +

| �C m � �� � � � � �m : �C m � (� +
 �C m� ('A B (� + +

with m : �C m � � �
 � � % �� 8

m : �C m� �� � � � � � �C m � (� +
 m : �C m � ('A B (� + +

End k Z � .
Clauses: apply to �}� 8 n Z� : �� ��� �� � � n Z� :� � Z n� 8 �� n Z� : � �� n Z� : � n Z� :�

Model: apply to �� 8 � defined using tables, à la Selinger.
Theorem: � � �� �W� �� � R � �,� �� � � 8 � � ¡ � � defined using Fixpoint.
Proof: enumerate �£¢ time ¤ ¥§¦¢ ¨� ¨ © .

Futurs ª Crypto, regular languages, automated deduction Page 62

Checking security proofs formally [in Coq here]

Name of the game: write a Coq proof of y D � � .

Second approach: keep y as an alternating tree automaton.
. . . exponentially more succinct than finite model «¬ Check ­ ®Z¯ ° by model-checking first-order clauses against alternating

tree automata.
DEXPTIME-complete, but . . . efficient in practice.

¬ Keep a trace of model-checking as a Coq proof.

Futurs ª Crypto, regular languages, automated deduction Page 63

Model-checking clauses against an alternating tree
automaton

± ²³µ´ ¶¸· ¹ º¼» ½¹ universal

in ¾ ¿ º¼ÀÁÂ Ã· ½± ² ³Ä´
Apply

± Å Æ ³ Ç ²³ ºÉÈ Ê Ê Ë ½ Exact (using an ind. hyp.)

± ²³µ´ ¶ Ì ¹ º¼» ½¹ universal

in ¾ ¿ º¼ÀÁÂ Ã Ì ½ Exact

± ²³ ¿ ¶Í Í Í ¶ ³ Î º Î Ï¼Ð ½

the³ Ñ ’s being non-empty and sharing no free variable¿ Ò Ñ Ò Î º¼Ó ËÔÂ Õ ½± ² ³ Ñ

Cut, Tauto

Futurs ª Crypto, regular languages, automated deduction Page 64

± ²³µ´ ¶¸· ¹ ºÖ ºØ×» ½ ½ ¹ not universal in ¾ ¿Æ ¹ ºÖ º × Ù ½ ½Ú Û Ñ º × Ù ½Ü ¿ Ò Ñ ÒÝ Ç
= clauses in ¾ ¿ with head ¹ ºÖ º × Ù ½ ½ ºÉÞ ÔÂ ß · àÉá âÁ ½³Ä´ Ú Û ¿ ºØ×» ½ Í Í Í ³Ä´ Ú ÛÝ ºØ×» ½

Inversion, Elim, Tauto

± ²· ¹ º Ù ½ ¶ ãåä æ�ç ¿�è æ ¹ æ º Ù ½¹ é ¹ Ñ not universal in ¾ ¿ é ¿ Ò Ñ Ò äÆ ¹ ºÖ Ñ º × Ù ½ ½Ú Û Ñ º × Ù ½Ü ¿ Ò Ñ ÒÝ Ç

= clauses of ¾ ¿ with head ¹±´ ç ± Å Æ· ¹ º Ù ½ ¶ ã ä æ�ç ¿�è æ ¹ æ º Ù ½ Ç³ Ñ ç ã ä æ�ç ¿�è æ ¹ æ ºÖ Ñ º × Ù ½ ½ ºÉÞ ÔÂ ß · à¼êëì ½±´ ² ³ ¿ Ú Û ¿ º × Ù ½ Í Í Í ±´ ²³ Ý Ú ÛÝ º × Ù ½
Fix, Case, Inversion (induction)

± ²³�´ ¶ Ì ¹ ºÖ ºØ×» ½ ½ ¹ not universal in ¾ ¿Æ ¹ ºÖ º × Ù ½ ½Ú í æïî Ñ æ º Ù æ ½Ü ¿ Ò Ñ ÒÝ Ç

= clauses of ¾ ¿ with head ¹ ºÖ º × Ù ½ ½

et³ ¿ñð Í Í Í ð ³ ä is a CNF

of³´ ¶ ãÝ Ñç ¿ í æïî Ñ æ º¼» æ ½ ºÉÞ ÔÂ ß Ì ½±´ ²³ ¿ Í Í Í ±´ ²³ ä

Cut, Tauto (heavy)

Futurs ª Crypto, regular languages, automated deduction Page 65

Demo 3

Did the speaker show you

the h1mc model-checker in action?

And the resulting Coq proof?

Did he showed you Coq check this proof?

Futurs ª Crypto, regular languages, automated deduction Page 66

To sum up

Modélisation

Undecidable

Decidable

 ~ tree automata

Prolog programs
 = Horn clauses Model

abstraction

Model

h1

h1

h1mc

Security guarantee

Prover

(Coq proof)Cryptographic protocols

Restricted Prolog programs

Model−checker

Futurs ª Crypto, regular languages, automated deduction Page 67

1. Cryptographic protocols.
2. Modeling cryptographic protocols using Horn clauses.
3. What is a security proof?
4. Finding security proofs.
5. Deciding ò ó using resolution.
6. Deciding other classes using resolution.
7. Equational theories, xor, Diffie-Hellman, etc.
8. Security proofs, constructively.
9. Formally verifying security proofs.
10. Conclusion.

Futurs ª Crypto, regular languages, automated deduction Page 68

Conclusion and perspectives

ô Verifying protocols is finding models:
How do model-finding tools fare (e.g., Paradox [CS03])?
Preliminary experiments: (with Ankit Gupta, IIT Delhi)

õ works faster than h1 for most secure protocols in Blanchet/Seidl style

(loops on insecure protocols),

produces much smaller (deterministic) models;

õ should adapt without problems to equational theories (under investigation);

õ clauses from precise models (from EVA, or from Csur, see next slide)

easier for h1 than for Paradox: why?

Futurs ª Crypto, regular languages, automated deduction Page 69

Conclusion and perspectives

ô Mathematical tools: a nice integration:
automated deduction/automata/model-checking/computer-aided proofs;

ô Relation between logic models and cryptographers’ proofs:
mentioned by C. Meadows this morning, many references

. . . a simple and elegant theorem in a model with time and probabilities:

see M. Baudet’s talk (tomorrow).

ô Towards analyzing actual code:
most protocols exist as C/C++ code, not little diagrams!

. . . source of many attacks (buffer overflow, swapping attacks, plain bugs, . . .)

. . . under investigation in the Csur project (with F. Parrennes, now at RATP)

Futurs ª Crypto, regular languages, automated deduction Page 70

Conclusion

“Logic wins!”
(Roy Dyckhoff, may 1996,

private communication,

— out of context.)

Futurs ª Crypto, regular languages, automated deduction Page 71

