A few things on Noetherian spaces

Jean Goubault-Larrecq, ENS Cachan, France

August 2-5, 2016

Noetherian spaces

- * **Defn.** A space is **Noetherian** iff every open is compact.
- * Here compact does not entail any kind of separation.
- * **Fact.** The following are equivalent:
 - (1) *X* is Noetherian
 - (2) Every subspace of *X* is compact
 - (3) Ascending sequences $U_1 \subseteq U_2 \subseteq ... \subseteq U_n \subseteq ...$ of opens stabilize
 - (4) Descending sequences $C_1 \supseteq C_2 \supseteq ... \supseteq C_n \supseteq ...$ of closed sets stabilize
- * We shall see other characterizations later.

Outline

- * Characterizations of Noetherian spaces (half of them well-known)
- * Transfering results from wqo theory to topology
- * Applications in software verification
- * Representations
- * Conclusion

Noetherian spaces, classically

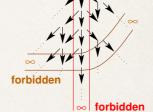
- * **Defn.** A space is **Noetherian** iff every open is compact.
- * **Prop.** The spectrum of a Noetherian ring is a Noetherian space.
- * E.g., the spectrum of a polynomial ring over ℚ, ℝ, or ℂ.
 Not my first source of inspiration here.
 We shall see many (simpler) examples.
- * **Note.** Noetherian + Hausdorff ⇔ finite, so we shall definitely **drop** Hausdorffness.

Noetherian spaces spaces

Finite spaces only

Well-quasi-orders

- * **Fact.** The following are equivalent for a quasi-ordering ≤:
 - (1) Every sequence $(x_n)_{n \in \mathbb{N}}$ is **good**: $x_m \le x_n$ for some m < n
 - (2) Every sequence $(x_n)_{n\in\mathbb{N}}$ is **perfect**: has a monotone subsequence
 - $(3) \le$ is well-founded and has no infinite antichain.
- **Defn.** Such a quasi-ordering ≤ is called a **well-quasi-order** (**wqo**).



* Applications: classification of graphs (Kuratowski, Robertson-Seymour) verification (computer science) model theory (logic: Fraïssé, Jullien, Pouzet)

The starting observation

- * Given a qo (X, \le) , its **Alexandroff topology** has as opens U all upwards-closed subsets of X.
- * **Prop.** Let (X, \leq) be wqo. With its Alexandroff topology, X is Noetherian.

The starting observation

- * Given a qo (X, \le) , its **Alexandroff topology** has as opens U all upwards-closed subsets of X.
- * **Prop.** Let (X, \leq) be wqo. With its Alexandroff topology, X is Noetherian.
- * *Proof.* Consider an infinite ascending sequence $U_1 \subsetneq U_2 \subsetneq ... \subsetneq U_n \subsetneq ...$ of opens. Pick x_n in U_n , not in any previous U_m . By wqo, $x_m \leq x_n$ for some m < n. Since $x_m \in U_m$ upwards-closed, $x_n \in U_m$: contradiction. \square
- * Plenty of wqos → plenty of Noetherian spaces.

 $\begin{array}{c} \times x_1 \\ \times x_3 \end{array}$

Noetherian + Alexandroff

- * **Prop.** Let (X, \leq) be wqo. With its Alexandroff topology, X is Noetherian.
- * There are also Noetherian spaces that are not Alexandroff:
 - spectra of rings, with the Zariski topology
 - powersets (see later)
- * **Conversely**, the qo sets (*X*, ≤) that are Noetherian in their Alexandroff topology are exactly the **wqo** sets.
- * *Proof.* From $(x_n)_{n\in\mathbb{N}}$ define $U_n = \uparrow \{x_1, ..., x_n\}$. This stabilizes at n: $U_{n-1} = U_n$, so $x_n \in \uparrow \{x_1, ..., x_{n-1}\}$. \square

Basic constructions

- * **Prop.** (1) Every **wqo** is Noetherian in its Alexandroff topology
 - (2) The **spectrum** of a Noetherian ring is Noetherian
 - (3) Finite **products** of Noetherian spaces are Noetherian
 - (4) Finite **coproducts** of Noetherian spaces are Noetherian
 - (5) Subspaces of Noetherian spaces are Noetherian
 - (6) Topologies coarser than a Noetherian topology are Noetherian
 - (7) Continuous **images** of Noetherian spaces are Noetherian (in particular, quotients)
- * We shall see other constructions that preserve Noetherianness.
- * We need additional characterizations of Noetherianness.

Cluster points

- * **Prop.** X is Noetherian iff every net $(x_i)_{i \in I}$ contains a cluster point x_i . (The important point is: the cluster point x_i belongs to the net.)
- * Proof.
 - (⇒) If X Noetherian, then subspace $K=\{x_i \mid i \in I\}$ is compact, hence $(x_i)_{i \in I}$ has a cluster point **in** K.
 - (⇐) Let U be open in X. Every net $(x_i)_{i \in I}$ inside U has a cluster point in U, viz. some x_i . So U is compact. \square
- * **Note:** in Alexandroff spaces, x_i cluster point means that for some i, cofinally [infinitely] many entries x_j are above x_i . (Take the open $\uparrow x_i$.) ... hence all sequences are **good**.

Self-convergent nets

- * A net $(x_i)_{i \in I}$ is **self-convergent** iff it converges to **every** x_i . (A very much non-Hausdorff notion!)
- * Thm. *X* is Noetherian iff every net $(x_i)_{i \in I}$ has a self-convergent subnet.
- * Proof. (⇒) Let J be {i∈I | x_i is a cluster point of the net}.
 By previous Prop., J is non-empty.
 Check: J is cofinal and directed in I; so (x_j)_{j∈J} is a subnet.
 By Kelley's Theorem, (x_j)_{j∈J} has a further subnet that is an ultranet.
 Check that this ultranet is self-convergent.
 (⇐) Obvious, using previous Prop.
- * In Alexandroff spaces, $(x_i)_{i \in I}$ self-convergent iff eventually monotone hence all sequences are **perfect**.

Ultrafilters

- * A similar characterization ($\lim \mathcal{U}$ =set of limits of \mathcal{U}):
- * **Thm.** X is Noetherian iff every ultrafilter \mathcal{U} is compact: $\lim \mathcal{U} \in \mathcal{U}$.
- * *Proof.* (⇒) Let *U* be (open) complement of lim *U*. If lim *U* not in *U*, then *U* is in *U* (ultrafilter). Since *U* is compact, *U* has a limit in *U*. So lim *U* intersects *U*: contradiction.
 - (\Leftarrow) Fix an open U. Let \mathcal{U} be an arbitrary ultrafilter containing U. Since $\lim \mathcal{U} \in \mathcal{U}$, $\lim \mathcal{U} \cap U \in \mathcal{U}$, so $\lim \mathcal{U} \cap U \neq \emptyset$. Hence \mathcal{U} has a limit in U: U is compact. \square

Application: finite products

* Well-known: finite products of Noetherian spaces are Noetherian. Here is a simple proof.

(Warning: I'm lying a bit about what a subnet is.)

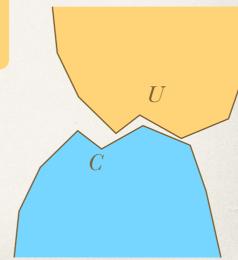
- * Let X, Y be Noetherian. Let $(x_i, y_i)_{i \in I}$ be a net in $X \times Y$. Extract a self-convergent subnet $(x_j)_{j \in J}$. From $(y_j)_{j \in J}$ extract a further self-convergent subnet $(y_k)_{k \in K}$. Then $(x_k, y_k)_{k \in K}$ is a self-convergent subnet of the original net.
- * This is a topological version of the Ramsey argument behind the classical wqo proofs.

Stone duality in a nutshell

- * There is a functor $O : Top \rightarrow Frame^{op}$ that:
 - maps each space *X* to its frame **O***X* of opens
 - maps $f: X \to Y$ to $\mathbf{O}f: \mathbf{O}Y \to \mathbf{O}X: V \mapsto f^1(V)$.
- * **O** is left-adjoint to a functor **pt** : **Frame** $^{op} \rightarrow$ **Top**.
- * **S**=**pt O** is the **sobrification** functor.
- * **Defn.** A space X is **sober** iff it is of the form **pt** L for some frame L iff it is of the form **S**Y for some space Y iff X=**S**X (all that, up to iso.)

The specialization quasi-ordering

- * **Defn** (specialization, \leq). In a space X, $x \leq y$ iff every open containing x also contains y iff $x \in \operatorname{cl}(\{y\})$.
- * X is T_0 iff \leq is antisymmetric (an ordering).
- * Every open *U* is upwards-closed. Every closed set *C* is downwards-closed.
- * The closure $cl(\lbrace x \rbrace)$ is $\downarrow x = \lbrace z \mid z \leq x \rbrace$.



Sober spaces

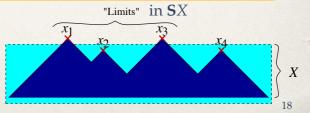
- * Call *C* **irreducible closed** iff closed and: if $C \subseteq \bigcup_{i=1}^n C_i$ then $C \subseteq C_i$ for some *i*. E.g., $\downarrow x = \operatorname{cl}(\lbrace x \rbrace)$ is irreducible closed, for every point *x*.
- * **Fact.** X is sober iff T_0 and all irreducible closed sets are of this form.
- * All Hausdorff spaces are sober, but there are more (e.g., continuous and quasi-continuous dcpos in domain theory).

Sobrification

- * The sobrification functor can be described more concisely as:
 - -- **S**X = {irreducible closed subsets of X} Opens $\diamondsuit U$ ={ $C \mid C \cap U \neq \emptyset$ }, $U \in \mathbf{O}X$
 - For $f: X \to Y$ to, $\mathbf{S}f: \mathbf{S}X \to \mathbf{S}Y: C \mapsto \mathrm{cl}(f(C))$.
 - X **embeds** into SX through $\eta: X \rightarrow SX: x \mapsto \downarrow x$.
- * **Fact.** X is Noetherian iff **S**X is Noetherian.
- * *Proof.* \diamond :**O** $X \rightarrow$ **OS**X iso, and Noetherianness is a property of opens (ascending sequences of opens stabilize). \square
- * **Fact.** The Noetherian sober spaces X are the Stone duals **pt** L of distributive lattices L with the ascending chain condition.

Sober Noetherian spaces

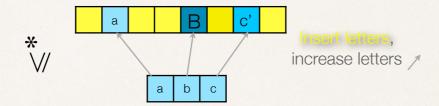
- * An **order-theoretic** characterization. Call sets of the form $\downarrow \{x_1, ..., x_n\}$ **finitary**.
- * **Thm.** A sober space *X* is Noetherian iff:
 - $(1) \le$ is **well-founded**, and
 - (2) the set of lower bounds of any finite set is **finitary**. Then:
 - (3) The topology of X is the upper topology of \leq
 - (4) The closed sets are the finitary sets.
- * *Proof.* Folklore, or see (JGL 2013) or (Dickmann,Schwartz&Tressl).



Outline

- * Characterizations of Noetherian spaces (half of them well-known)
- * Transfering results from wqo theory to topology
- * Applications in software verification
- * Representations
- * Conclusion

Higman's Lemma



- * **Lemma** (Higman 1954). If $X_0 \le is$ wqo, then so is the qoset X^* of finite words under **subword** relation \le^* .
- * **Thm** (Topological Higman Lemma, JGL 2013). If *X* is Noetherian, then so is *X** with the **subword** topology.
- * My aim here is to give you a proof of that, imitating Nash-Williams' classic proof (1963) of Higman's Lemma.

The subword topology

* **Defn.** For opens U_1 , U_2 , ..., U_n in X, let $[U_1 \ U_2 ... \ U_n]$ be set of words ... $a_1 ... a_2 ...$ (etc.) ... $a_n ...$ with $a_1 \in U_1$, $a_2 \in U_2$, ..., $a_n \in U_n$.

The **subword topology** on X^* is generated by those sets $[U_1 \ U_2 ... \ U_n]$.

- Specialization quasi-ordering is ≤*
- * If *X* is Alexandroff, then subword topology=Alexandroff on *X**, so Higman's Lemma is a special case of the topological Higman Lemma.

Bad sequences

- * Let X be a topological space, with subbase \mathcal{Z} . A **bad sequence** is a sequence $(U_n)_{n\in\mathbb{N}}$ of elements of \mathcal{Z} such that no U_n is included in a union $\bigcup_{m< n} U_n$ of previous elements.
- * **Lemma.** If *X* is not Noetherian, then (whatever the subbase) it has a bad sequence.
- * *Proof.* Let U be non-compact open. By Alexander's Subbase Lemma, U has a cover $(U_i)_{i \in I}$ by elements of \mathcal{E} that has no finite subcover.

Pick some U_{i1} . Some point x_1 in U is not in U_{i1} .

Pick U_{i2} containing x_1 . Some point x_2 in U is not in $U_{i1} \cup U_{i2}$.

Pick U_{i3} containing x_2 . Some point ... etc. \square

Minimal bad sequences

- * Assume additionally a well-founded \sqsubseteq ordering on \mathcal{Z} . A **bad sequence** $(U_n)_{n\in\mathbb{N}}$ is **minimal** iff every \sqsubseteq -lexicographically smaller sequence $(V_n)_{n\in\mathbb{N}}$ is **good** (i.e., not bad). [i.e., $V_0 = U_0$, $V_1 = U_1$, ..., $V_{n-1} = U_{n-1}$, and $V_n \sqsubseteq U_n$ (strictly) for some n]
- **Lemma.** If *X* is not Noetherian, then (whatever 𝔞 and \sqsubseteq) it has a minimal bad sequence.
- * *Proof.* Find $U_0 \sqsubseteq$ -minimal so that it starts a bad sequence. Given U_0 , find $U_1 \sqsubseteq$ -minimal so that U_0 , U_1 start a bad sequence. Given U_0 , U_1 , find $U_2 \sqsubseteq$ -minimal so that ... etc. \square
- * Note: Similar to wqos, where bad sequences are sequences of points.

Proof plan

- On X*, let ② consist of the subbasic opens [U₁ U₂... U_m].
 Let [U₁ U₂... U_m] ⊆ [V₁ V₂... V_n] iff
 there is a (strictly) increasing map f:{1,2,...,m} → {1,2,...,n}
 such that U_k = V_{f(k)}.
 (I.e., the V_ps are obtained by inserting new opens in the list of U_ks.)
- * If X^* is not Noetherian, then extract some minimal bad sequence.
- * Using the zoom-in Lemma (next slide), find a smaller sequence: that one must be good, leading to a contradiction.

The zoom-in Lemma

- * **Lemma.** Let X be Noetherian, and $a_n \in U_n$ open for each $n \in \mathbb{N}$. There is a subsequence $(a_{n(k)})_k$ s.t. $a_{n(k)} \in U_{n(0)} \cap ... \cap U_{n(k)}$ for every k.
- * *Proof.* Pick a cluster point $a_{n(0)}$ (inside the sequence itself).

Infinitely many a_ns with n>n(0) are in $U_{n(0)}$, forming a subsequence. Pick a cluster point $a_{n(1)}$ from that subsequence.

Infinitely many a_ns with n>n(1) from that subsequence are in $U_{n(0)} \cap U_{n(1)}$, forming a sub-subsequence. Pick a cluster point $a_{n(2)}$ from that sub-subsequence... etc.

- * **Thm** (Topological Higman Lemma, JGL 2013). If *X* is Noetherian, then so is *X** with the **subword** topology.
- * *Proof* (1/3).

```
Imagine X* is not Noetherian, and let
```

 $\mathcal{U}_n = [U_{n1} \ U_{n2} \dots \ U_{nm} \dots]$ form a minimal bad sequence.

Pick a word w_n in \mathcal{U}_n that is in no previous \mathcal{U}_m .

Let $\mathcal{R}_n = [U_{n2} \dots U_{nm} \dots]$ be « \mathcal{U}_n without its first open U_{n1} ».

By definition, $w_n = l_n a_n r_n$ where $a_n \in U_{n1}$, $r_n \in \mathbb{Z}_n$.

By zoom-in, extract $(a_{n(k)})_k$ s.t. $a_{n(k)} \in U_{n(0)1} \cap ... \cap U_{n(k)1}$ for every k.

By minimality, \mathcal{U}_0 , \mathcal{U}_1 , ..., $\mathcal{U}_{n(0)-1}$, $\mathcal{R}_{n(0)}$, $\mathcal{R}_{n(1)}$, ... is **good**. So, for some k:

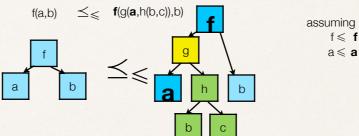
 $\mathcal{R}_{n(k)} \subseteq \mathcal{U}_0 \cup ... \cup \mathcal{U}_{n(0)-1} \cup \mathcal{R}_{n(0)} \cup ... \cup \mathcal{R}_{n(k-1)}$.

- * **Thm** (Topological Higman Lemma, JGL 2013). If *X* is Noetherian, then so is *X** with the **subword** topology.
- * Proof (2/3). Recall: $\mathcal{U}_n = [U_{n1} \ U_{n2} \dots U_{nm} \dots]$, w_n in \mathcal{U}_n , in no previous \mathcal{U}_m . $\mathcal{R}_n = [U_{n2} \dots U_{nm} \dots]$ $w_n = l_n \ a_n \ r_n$ where $a_n \in U_{n1}$, $r_n \in \mathcal{R}_n$. $a_{n(k)} \in U_{n(0)1} \cap \dots \cap U_{n(k)1}$ $\mathcal{R}_{n(k)} \subseteq \mathcal{U}_0 \cup \dots \cup \mathcal{U}_{n(0)-1} \cup \mathcal{R}_{n(0)} \cup \dots \cup \mathcal{R}_{n(k-1)}$.
- * Note $r_{n(k)} \in \mathcal{R}_{n(k)}$.

- * **Thm** (Topological Higman Lemma, JGL 2013). If *X* is Noetherian, then so is *X** with the **subword** topology.
- * Proof(2/3). Recall: $\mathcal{U}_n = [U_{n1} \ U_{n2} \dots U_{nm} \dots]$, w_n in \mathcal{U}_n , in no previous \mathcal{U}_m . $\mathcal{R}_n = [U_{n2} \dots U_{nm} \dots]$ $w_n = l_n \ a_n \ r_n$ where $a_n \in U_{n1}$, $r_n \in \mathcal{R}_n$. $a_{n(k)} \in U_{n(0)1} \cap \dots \cap U_{n(k)1}$ $\mathcal{R}_{n(k)} \subseteq \mathcal{U}_0 \cup \dots \cup \mathcal{U}_{n(0)-1} \cup \mathcal{R}_{n(0)} \cup \dots \cup \mathcal{R}_{n(k-1)}$.
- * Note $r_{n(k)} \in \mathcal{Z}_{n(k)}$. Case 1: $r_{n(k)} \in \mathcal{U}_m$ for some m in 0, ..., n(0)-1. Then the larger $w_{n(k)}$ is in \mathcal{U}_m , too. (Opens are upwards-closed.) Impossible since \mathcal{U}_m is previous (m < n(k)).

- * **Thm** (Topological Higman Lemma, JGL 2013). If *X* is Noetherian, then so is *X** with the **subword** topology.
- * Proof (3/3). Recall: $\mathcal{U}_n = [U_{n1} \ U_{n2} \dots U_{nm} \dots]$, w_n in \mathcal{U}_n , in no previous \mathcal{U}_m . $\mathcal{R}_n = [U_{n2} \dots U_{nm} \dots]$ $w_n = l_n \ a_n \ r_n$ where $a_n \in U_{n1}$, $r_n \in \mathcal{R}_n$. $a_{n(k)} \in U_{n(0)1} \cap \dots \cap U_{n(k)1}$ $\mathcal{R}_{n(k)} \subseteq \mathcal{U}_0 \cup \dots \cup \mathcal{U}_{n(0)-1} \cup \mathcal{R}_{n(0)} \cup \dots \cup \mathcal{R}_{n(k-1)}$.
- * Note $r_{n(k)} \in \mathcal{R}_{n(k)}$. Case 2: $r_{n(k)} \in \mathcal{R}_{n(j)}$ for some j in 0, ..., k-1. Note that $a_{n(k)} \in U_{n(j)1}$. Hence $w_{n(k)} = l_{n(k)} a_{n(k)} r_{n(k)}$ is in $\mathcal{U}_{n(j)}$, too. Impossible since $\mathcal{U}_{n(j)}$ is previous (j < k).

Kruskal's Theorem



- * Thm (Kruskal 1960). If $X_i \le is$ wqo, then so is the qoset $\mathcal{T}(X)$ of finite trees labeled by X under homeomorphic embedding relation \le .
- * **Thm** (Topological Kruskal Theorem, JGL 2013). If X is Noetherian, then so is $\mathcal{T}(X)$ with the **tree** topology.
- * Admitted. Slightly more complex.

Powersets

- * Let $\mathbb{P}(X)$ come with the lower Vietoris topology, with subbase $\Diamond U = \{A \mid A \cap U \neq \emptyset\}, U \in \mathbf{O}X$.
- * **Thm** (JGL, 2007). If X is Noetherian, then so is $\mathbb{P}(X)$.
- * *Proof.* If $\mathbb{P}(X)$ not Noetherian, let $(\diamondsuit U_n)_{n \in \mathbb{N}}$ be a bad sequence: no $\diamondsuit U_n$ is included in $\bigcup_{m < n} \diamondsuit U_m = \diamondsuit \bigcup_{m < n} U_m$.

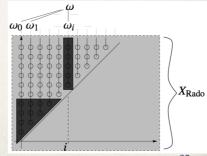
 Since \diamondsuit is monotonic, no U_n is included in $\bigcup_{m < n} U_m$.

 Therefore $(U_n)_{n \in \mathbb{N}}$ is bad: contradiction. \square
- * Specialization qo: $A \leq {}^{\flat}B$ iff every $a \in A$ is below some $b \in B$.

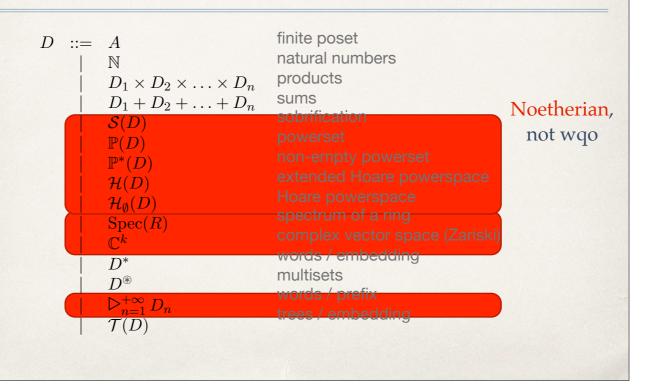
Powersets, or: beyond wqos

- * Let $\mathbb{P}(X)$ come with the lower Vietoris topology, with subbase $\Diamond U = \{A \mid A \cap U \neq \emptyset\}, U \in \mathbf{O}X$.
- * **Thm** (JGL, 2007). If X is Noetherian, then so is $\mathbb{P}(X)$.
- * Specialization qo: $A \leq {}^{\flat}B$ iff every $a \in A$ is below some $b \in B$. Pretty remarkable, since:
- * **Prop** (Rado, 1957). There are wqos X, \leq such that $\mathbb{P}(X)$, \leq b is **not** wqo.

 $X_{\text{Rado}} = \{(i,j) \mid i \le j\}, (i,j) \sqsubseteq (k,l) \text{ iff } i = k \text{ and } j \le l \text{ or } j \le k.$



A catalogue of Noetherian spaces

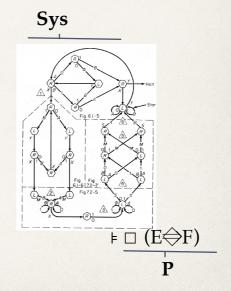


Outline

- * Characterizations of Noetherian spaces (half of them well-known)
- * Transfering results from wqo theory to topology
- * Applications in software verification
- * Representations
- * Conclusion

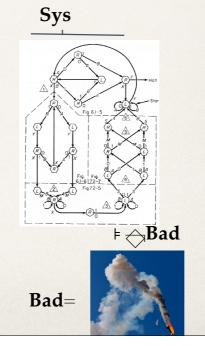
Verification

- * How do you ensure a software/hardware system **Sys** is **correct**?
- * **Testing**: fine and useful, but not exhaustive
- Verification: given a desirable property P,
 check that
 Sys ⊧ P
- * That check should be done by an **algorithm**.



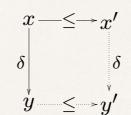
Verification

- * A paradigmatic case is given by:
 - **Sys** is a transition system (a directed graph, vertices=states)
 - **P** is a (non-)reachability property «can **Sys** evolve from an initial state *s* to a state in the set **Bad**?»
- * Verification is **undecidable** in general. Decidable for **Sys** finite. But most systems are infinite.
- * Classes of infinite-state systems/properties for which verification would be decidable?

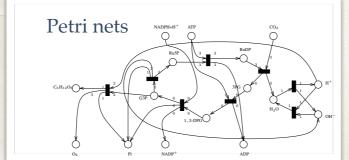


Well-Structured Transition Systems (WSTS)

- * A transition system: state space *X*, transition relation δ
- * with a wqo ≤
- * satisfying monotonicity



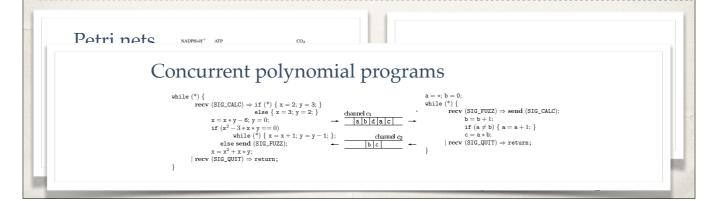
(Finkel 1990, Abdulla,Čerāns, Jonsson&Tsay 2000, Finkel&Schnoebelen 2001)



... and many other examples

Topological WSTS

- * A transition system: state space *X*, transition relation $\stackrel{\delta}{\longrightarrow}$
- * with a **Noetherian** topology
- * satisfying **lower semi-continuity**: for every open U, $\delta^{-1}(U)$ open.



The standard backward algorithm

- * **Defn** (coverability). **INPUT**: state s, and open state set **Bad QUESTION**: $s \rightarrow_{\delta}$ * **Bad**?
- * **Prop.** Given an effective topological WSTS, coverability is **decidable**.
- * *Proof.* The function pre* computes $U_0 = \mathbf{Bad}$, $U_{n+1} = U_n \cup \delta^{-1}(U_n)$. This **terminates** because $U_0 \subseteq U_1 \subseteq ... \subseteq U_n \subseteq ...$ stabilizes (Noetherianness). At the end, $U_n = \{s \mid s \rightarrow_{\delta}^* \mathbf{Bad}\}$. \square

```
fun pre* U =
  let V = pre U
  in
    if V⊆U
       then U
    else pre* (U ∪ V)
  end;

fun coverability (s, bad) =
  s in pre* (bad);
```

(Don't be fooled by the simplicity of the algorithm: complexity is not even primitive recursive in general —and I mean the complexity of the problem, independently of the algorithm.)

Effective?

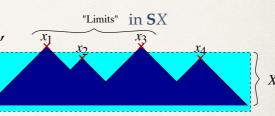
- * By an **effective** topological WSTS, we mean one where:
 - opens *U* are **representable** by some data structure
 - the inclusion test $U \subseteq V$ is **decidable**
 - one-step predecessors $\delta^{-1}(U)$ of open sets are **computable**.
- * When the Noetherian state space is Alexandroff (a wqo), there is a standard representation of open (upwards-closed) sets:
- * **Prop.** In a wqo, every upwards-closed subset is the upward closure $\uparrow \{x_1, ..., x_n\}$ of finitely many points.

* No longer true in more general Noetherian spaces.

Sobrification and closed sets

* Recall that, in a sober Noetherian space, every closed set *C* is **finitary**:

$$C=\downarrow\{x_1,...,x_n\}.$$



- * Provides alternate representation of open sets *U* in Noetherian *X*:
 - U is also open in larger space SX
 - represent \hat{U} by its closed complement in $\mathbf{S}X$,
 - i.e., by finite sets of **points** in SX.
- *** □** Find computable **representations** of **points** of **S***X*.

Outline

- * Characterizations of Noetherian spaces (half of them well-known)
- * Transfering results from wqo theory to topology
- * Applications in software verification
- * Representations
- * Conclusion

A simple case

- * Consider $\mathbb N$ with the (Alexandroff topology of) its ordering \leq .
- * Its closed subsets are \emptyset , $[n]=\{0,1,...,n\}$ and the whole of \mathbb{N} .
- * All except \emptyset are irreducible. Hence:
- **Prop.** A representation for $S\mathbb{N}$ is \mathbb{N}_{ω} , i.e., \mathbb{N} plus a top element ω .
- * This is an effective representation.
- * I'm not giving the topology on \mathbb{N}_{ω} : this must be the upper topology of its ordering.

Products

- * Another simple case. We know that $\mathbf{S}(\prod_i X_i) = \prod_i \mathbf{S}X_i$, up to iso (R.-E. Hoffmann 1979). Hence:
- * **Prop.** A representation of $S(X_1 \times ... \times X_n)$ is the Cartesian product of representations for SX_i .
- * This is effective, provided the representations for SX_i are.

Words and regular expressions

* **Thm** (Finkel&JGL 2009). A representation for **S**(*X**) is the space of **word products**, i.e., **regular expressions** of the form:

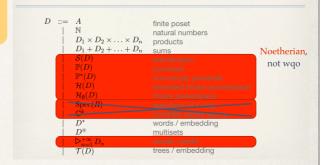
 $R_1 R_2 \dots R_n$

where each R_i is of the form:

- $-(\downarrow a)^?$ with $a \in \mathbf{S}(X)$, or
- -((↓{ a_1 , ..., a_k })* with a_1 , ..., a_k ∈ $\mathbf{S}(X)$
- * Proof omitted. Again, effectivity is preserved. Was already known for wqos (Kabil&Pouzet 1992).
- * Embedding $X^* \to \mathbf{S}(X^*)$ maps $a_1a_2...a_n$ to $(\downarrow a_1)^? (\downarrow a_2)^? ... (\downarrow a_n)^?$ Limit elements include $(\downarrow a_1)^? (\downarrow \{a_2, a_3\})^* (\downarrow a_1)^?$, for example.

Representations

* Thm (Finkel&JGL, unpublished). For **all** the spaces *X* in our catalogue A catalogue of Noetherian spaces of Noetherian spaces, **S**X has effective representations.



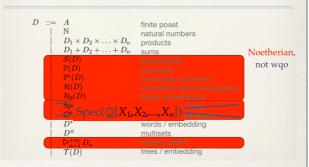
Representations

- * Thm (Finkel&JGL, unpublished). For **all** the spaces *X* in our catalogue A catalogue of Noetherian spaces of Noetherian spaces, **S***X* has effective representations.
- * ... up to a small change: replace Spec(R) and \mathbb{C}^k (Zariski) with some concrete spectrum, say, Spec($\mathbb{Q}[X_1,X_2,...,X_n]$).



Representations

- * Thm (Finkel&JGL, unpublished). For **all** the spaces *X* in our catalogue A catalogue of Noetherian spaces of Noetherian spaces, **S***X* has effective representations.
- * ... up to a small change: replace Spec(R) and \mathbb{C}^k (Zariski) with some concrete spectrum, say, Spec($\mathbb{Q}[X_1,X_2,...,X_n]$).
- Including (infinite) powersets!



Representing powersets?

- * Recall $\mathbb{P}(X)$ has subbase $\diamond U = \{A \mid A \cap U \neq \emptyset\}, U \in \mathbf{O}X$. Let $\mathbb{F}(Y)$ be the set of **finitary** subsets of Y, with subspace topology.
- * **Prop.** $\mathbf{S}(\mathbb{P}(X)) = \mathbb{F}(\mathbf{S}X)$, up to iso. Hence a representation for $\mathbf{S}(\mathbb{P}(X))$ is given by finite sets [antichains] of elements from a representation of $\mathbf{S}X$.
- * *Proof.* Let $\mathbf{H}(X)$ be subspace of closed subsets of X. $\mathrm{cl}: \mathbb{P}(X) \to \mathbf{H}(X)$ is a quasi-iso, i.e. $\mathbf{O}(\mathrm{cl}): \mathbf{OH}(X) \to \mathbf{OP}(X)$ is iso. (Exercise: use $A \cap U \neq \emptyset$ iff $\mathrm{cl}(A) \cap U \neq \emptyset$.) Hence $\mathbf{S}(\mathbb{P}(X)) = \mathbf{S}(\mathbf{H}(X))$. But $\mathbf{H}(X)$ is always sober (Schalk93): so $\mathbf{S}(\mathbb{P}(X)) = \mathbf{H}(X)$. Since $\mathbf{OX} = \mathbf{OS}X$, $\mathbf{H}(X) = \mathbf{H}(\mathbf{S}(X))$: so $\mathbf{S}(\mathbb{P}(X)) = \mathbf{H}(\mathbf{S}(X))$. All elements of $\mathbf{H}(\mathbf{S}(X))$ are finitary: so $\mathbf{S}(\mathbb{P}(X)) = \mathbb{F}(\mathbf{S}X)$.

Outline

- * Characterizations of Noetherian spaces (half of them well-known)
- * Transfering results from wqo theory to topology
- * Applications in software verification
- * Representations
- * Conclusion

Conclusion

- * There is more to Noetherian spaces than algebraic geometry.

 A deep connection with wqos.

 Basic theory in (JGL 2013), Section 9.7.
- * Any topological analogue of **better** quasi-orderings?
- * Any topological analogue of the Robertson-Seymour theorem (for undirected finite graphs with labels in a Noetherian space)?
- * Any topological analogue of the theory of **maximal order types** of wqos? (Hint: ordinal height of **H**(*X*), of **S***X*.) Application to complexity of WSTS verification tasks (à la Schnoebelen, Schmitz, Halfon).

new mathematical monographs: 22

Non-Hausdorff Topology
and Domain Theory
selected topics in rolint-set topology
yean Goutbault-Larrecq