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Orchids

✤ An intrusion detection system,
initially based on model-checking ideas [GL, Roger, CSFW‘01]
semantics and optimizations made precise in [GL, Olivain, RV’08]

✤ Should really be seen as a trace-based monitor.

✤ Detection can be expensive (at least in theory).

✤ Detection cost depends on signatures (=rules, =specifications):
Which signatures are expensive?
Can we decide which, algorithmically?
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Complexity of monitors

✤ Goal: Estimate upper bound fS(n) on
           number of threads (=monitor instances)
           — after reading n events
           — while monitoring signature S
   We shall give a simple definition of fS(n).

✤ Decision problem:
INPUT: a signature S
QUESTION: is fS(n) asymptotically polynomial?
           [Bonus question: if so, for which k is it O(nk)?]
    We give a linear-time algorithm.

lundi 26 septembre 16



Related work 

✤ Complexity of monitor algorithms:

✤ RV-Monitor [Luo et al., RV’14], data-driven:
      fS(n) polynomial, degree k = #parameters

✤ MonPoly-* [Basin et al., JACM’15]:
      fS(n) polynomial, degree k: see paper

✤ We will reduce our problem to asymptotics of recurrence equations:
see Analytic Combinatorics [Flajolet, Sedgwick ’09], but:
— Our solution is more elementary
— Our problem is slightly outside the scope of AC (max operator)
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Intrusion detection through 
model-checking [JGL&Roger, CSF01]

✤ The monitored machines
collect events:

✤ Signatures describe attacks:

Faut-il avoir peur des hackers?

Orchids

Détection d’attaque avec Orchids

1 2 3 4 75 6
ptrace exec ptrace ptraceptrace

ε(ATTACH, (SYSCALL,

(GETREGS,
ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

Tgt( )
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

) )

Imaginons le flux d’événements (∼ log):
open (”/etc/passwd”, ”r”, pid=58, euid=500)
ptrace (ATTACH, pid=57, euid=500, 58)
ptrace (ATTACH, pid=100, euid=500, 101)
exec (prog=”modprobe”, pid=101)
ptrace (ATTACH, pid=100, euid=500, 101)
exit (pid=58)

ptrace (SYSCALL, pid=100, 101)
ptrace (GETREGS, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (DETACH, pid=100, 101)

Faut-il avoir peur des hackers?

Orchids

Détection d’attaque avec Orchids

1 2 3 4 75 6
ptrace exec ptrace ptraceptrace
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ptrace

(POKETEXT, (DETACH,
Pid,Euid,Tgt

Tgt( )
) Pid,Tgt

Pid,Tgt

Pid,Tgt Pid,Tgt)

)

) )

Imaginons le flux d’événements (∼ log):
open (”/etc/passwd”, ”r”, pid=58, euid=500)
ptrace (ATTACH, pid=57, euid=500, 58)
ptrace (ATTACH, pid=100, euid=500, 101)
exec (prog=”modprobe”, pid=101)
ptrace (ATTACH, pid=100, euid=500, 101)
exit (pid=58)

ptrace (SYSCALL, pid=100, 101)
ptrace (GETREGS, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (POKETEXT, pid=100, 101)
ptrace (DETACH, pid=100, 101)

Time
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)

) )
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Orchids signatures, really
rule pidtrack synchronized($pid)
{
  state init
  {
    expect (.auditd.syscall==SYS_clone)
      goto newpid;
  }

  state newpid! {
    $pid = .auditd.exit;
    $uid = .auditd.euid;
    $gid = .auditd.egid;
    goto wait;
  }

  state wait!
  {
    expect (.auditd.pid == $pid &&
            .auditd.syscall == SYS_execve &&
            (.auditd.uid != .auditd.euid || .auditd.gid != .auditd.egid) &&
            .auditd.success == "yes")
      goto update_uid_gid;
    expect (.auditd.pid == $pid &&
            (.auditd.syscall == SYS_setresuid ||
             .auditd.syscall == SYS_setreuid ||
             .auditd.syscall == SYS_setuid) &&
            .auditd.success == "yes")
      goto update_setuid;
    expect (.auditd.pid == $pid &&
            (.auditd.syscall == SYS_setresgid ||
             .auditd.syscall == SYS_setregid ||
             .auditd.syscall == SYS_setgid) &&
            .auditd.success == "yes")
      goto update_setgid;
    expect (.auditd.pid == $pid &&
            .auditd.syscall == SYS_exit)
      goto end;
    expect (.auditd.pid == $pid &&
            (.auditd.euid != $uid || .auditd.egid != $gid))
      goto alert;
  }

  state update_uid_gid!
  {
    $uid = .auditd.euid;
    $gid = .auditd.egid;
    goto wait;
  }

  state update_setuid!
  {
    case (.auditd.egid != $gid) goto alert;
    else goto update_uid_gid;
  }

  state update_setgid!
  {
    case (.auditd.euid != $uid) goto alert;
    else goto update_uid_gid;
  }

  state alert!
  {
    $newuid = .auditd.euid;
    $newgid = .auditd.egid;
    report();
  }

  state end!
  {
    /* all went well */
  }
}
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Orchids signatures: checking
rule pidtrack synchronized($pid)
{
  state init
  {
    expect (.auditd.syscall==SYS_clone)
      goto newpid;
  }

  state newpid! {
    $pid = .auditd.exit;
    $uid = .auditd.euid;
    $gid = .auditd.egid;
    goto wait;
  }

  state wait!
  {
    expect (.auditd.pid == $pid &&
            .auditd.syscall == SYS_execve &&
            (.auditd.uid != .auditd.euid || .auditd.gid != .auditd.egid) &&
            .auditd.success == "yes")
      goto update_uid_gid;
    expect (.auditd.pid == $pid &&
            (.auditd.syscall == SYS_setresuid ||
             .auditd.syscall == SYS_setreuid ||
             .auditd.syscall == SYS_setuid) &&
            .auditd.success == "yes")
      goto update_setuid;
    expect (.auditd.pid == $pid &&
            (.auditd.syscall == SYS_setresgid ||
             .auditd.syscall == SYS_setregid ||
             .auditd.syscall == SYS_setgid) &&
            .auditd.success == "yes")
      goto update_setgid;
    expect (.auditd.pid == $pid &&
            .auditd.syscall == SYS_exit)
      goto end;
    expect (.auditd.pid == $pid &&
            (.auditd.euid != $uid || .auditd.egid != $gid))
      goto alert;
  }

  state update_uid_gid!
  {
    $uid = .auditd.euid;
    $gid = .auditd.egid;
    goto wait;
  }

  state update_setuid!
  {
    case (.auditd.egid != $gid) goto alert;
    else goto update_uid_gid;
  }

  state update_setgid!
  {
    case (.auditd.euid != $uid) goto alert;
    else goto update_uid_gid;
  }

  state alert!
  {
    $newuid = .auditd.euid;
    $newgid = .auditd.egid;
    report();
  }

  state end!
  {
    /* all went well */
  }
}

Create new thread (=monitor instance),
waiting for some event satisfying Boolean condition
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Orchids signatures: checking
rule pidtrack synchronized($pid)
{
  state init
  {
    expect (.auditd.syscall==SYS_clone)
      goto newpid;
  }

  state newpid! {
    $pid = .auditd.exit;
    $uid = .auditd.euid;
    $gid = .auditd.egid;
    goto wait;
  }

  state wait!
  {
    expect (.auditd.pid == $pid &&
            .auditd.syscall == SYS_execve &&
            (.auditd.uid != .auditd.euid || .auditd.gid != .auditd.egid) &&
            .auditd.success == "yes")
      goto update_uid_gid;
    expect (.auditd.pid == $pid &&
            (.auditd.syscall == SYS_setresuid ||
             .auditd.syscall == SYS_setreuid ||
             .auditd.syscall == SYS_setuid) &&
            .auditd.success == "yes")
      goto update_setuid;
    expect (.auditd.pid == $pid &&
            (.auditd.syscall == SYS_setresgid ||
             .auditd.syscall == SYS_setregid ||
             .auditd.syscall == SYS_setgid) &&
            .auditd.success == "yes")
      goto update_setgid;
    expect (.auditd.pid == $pid &&
            .auditd.syscall == SYS_exit)
      goto end;
    expect (.auditd.pid == $pid &&
            (.auditd.euid != $uid || .auditd.egid != $gid))
      goto alert;
  }

  state update_uid_gid!
  {
    $uid = .auditd.euid;
    $gid = .auditd.egid;
    goto wait;
  }

  state update_setuid!
  {
    case (.auditd.egid != $gid) goto alert;
    else goto update_uid_gid;
  }

  state update_setgid!
  {
    case (.auditd.euid != $uid) goto alert;
    else goto update_uid_gid;
  }

  state alert!
  {
    $newuid = .auditd.euid;
    $newgid = .auditd.egid;
    report();
  }

  state end!
  {
    /* all went well */
  }
}

If found, fork new thread going to next state
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Orchids signatures: checking
rule pidtrack synchronized($pid)
{
  state init
  {
    expect (.auditd.syscall==SYS_clone)
      goto newpid;
  }

  state newpid! {
    $pid = .auditd.exit;
    $uid = .auditd.euid;
    $gid = .auditd.egid;
    goto wait;
  }

  state wait!
  {
    expect (.auditd.pid == $pid &&
            .auditd.syscall == SYS_execve &&
            (.auditd.uid != .auditd.euid || .auditd.gid != .auditd.egid) &&
            .auditd.success == "yes")
      goto update_uid_gid;
    expect (.auditd.pid == $pid &&
            (.auditd.syscall == SYS_setresuid ||
             .auditd.syscall == SYS_setreuid ||
             .auditd.syscall == SYS_setuid) &&
            .auditd.success == "yes")
      goto update_setuid;
    expect (.auditd.pid == $pid &&
            (.auditd.syscall == SYS_setresgid ||
             .auditd.syscall == SYS_setregid ||
             .auditd.syscall == SYS_setgid) &&
            .auditd.success == "yes")
      goto update_setgid;
    expect (.auditd.pid == $pid &&
            .auditd.syscall == SYS_exit)
      goto end;
    expect (.auditd.pid == $pid &&
            (.auditd.euid != $uid || .auditd.egid != $gid))
      goto alert;
  }

  state update_uid_gid!
  {
    $uid = .auditd.euid;
    $gid = .auditd.egid;
    goto wait;
  }

  state update_setuid!
  {
    case (.auditd.egid != $gid) goto alert;
    else goto update_uid_gid;
  }

  state update_setgid!
  {
    case (.auditd.euid != $uid) goto alert;
    else goto update_uid_gid;
  }

  state alert!
  {
    $newuid = .auditd.euid;
    $newgid = .auditd.egid;
    report();
  }

  state end!
  {
    /* all went well */
  }
}

goto next state, waiting on 5 Boolean conditions:
create 5 threads, one for each
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Orchids signatures: checking
rule pidtrack synchronized($pid)
{
  state init
  {
    expect (.auditd.syscall==SYS_clone)
      goto newpid;
  }

  state newpid! {
    $pid = .auditd.exit;
    $uid = .auditd.euid;
    $gid = .auditd.egid;
    goto wait;
  }

  state wait!
  {
    expect (.auditd.pid == $pid &&
            .auditd.syscall == SYS_execve &&
            (.auditd.uid != .auditd.euid || .auditd.gid != .auditd.egid) &&
            .auditd.success == "yes")
      goto update_uid_gid;
    expect (.auditd.pid == $pid &&
            (.auditd.syscall == SYS_setresuid ||
             .auditd.syscall == SYS_setreuid ||
             .auditd.syscall == SYS_setuid) &&
            .auditd.success == "yes")
      goto update_setuid;
    expect (.auditd.pid == $pid &&
            (.auditd.syscall == SYS_setresgid ||
             .auditd.syscall == SYS_setregid ||
             .auditd.syscall == SYS_setgid) &&
            .auditd.success == "yes")
      goto update_setgid;
    expect (.auditd.pid == $pid &&
            .auditd.syscall == SYS_exit)
      goto end;
    expect (.auditd.pid == $pid &&
            (.auditd.euid != $uid || .auditd.egid != $gid))
      goto alert;
  }

  state update_uid_gid!
  {
    $uid = .auditd.euid;
    $gid = .auditd.egid;
    goto wait;
  }

  state update_setuid!
  {
    case (.auditd.egid != $gid) goto alert;
    else goto update_uid_gid;
  }

  state update_setgid!
  {
    case (.auditd.euid != $uid) goto alert;
    else goto update_uid_gid;
  }

  state alert!
  {
    $newuid = .auditd.euid;
    $newgid = .auditd.egid;
    report();
  }

  state end!
  {
    /* all went well */
  }
}

If found, fork new thread going to next state
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Orchids signatures, as automata
rule pidtrack synchronized($pid)
{
  state init
  {
    expect (.auditd.syscall==SYS_clone)
      goto newpid;
  }

  state newpid! {
    $pid = .auditd.exit;
    $uid = .auditd.euid;
    $gid = .auditd.egid;
    goto wait;
  }

  state wait!
  {
    expect (.auditd.pid == $pid &&
            .auditd.syscall == SYS_execve &&
            (.auditd.uid != .auditd.euid || .auditd.gid != .auditd.egid) &&
            .auditd.success == "yes")
      goto update_uid_gid;
    expect (.auditd.pid == $pid &&
            (.auditd.syscall == SYS_setresuid ||
             .auditd.syscall == SYS_setreuid ||
             .auditd.syscall == SYS_setuid) &&
            .auditd.success == "yes")
      goto update_setuid;
    expect (.auditd.pid == $pid &&
            (.auditd.syscall == SYS_setresgid ||
             .auditd.syscall == SYS_setregid ||
             .auditd.syscall == SYS_setgid) &&
            .auditd.success == "yes")
      goto update_setgid;
    expect (.auditd.pid == $pid &&
            .auditd.syscall == SYS_exit)
      goto end;
    expect (.auditd.pid == $pid &&
            (.auditd.euid != $uid || .auditd.egid != $gid))
      goto alert;
  }

  state update_uid_gid!
  {
    $uid = .auditd.euid;
    $gid = .auditd.egid;
    goto wait;
  }

  state update_setuid!
  {
    case (.auditd.egid != $gid) goto alert;
    else goto update_uid_gid;
  }

  state update_setgid!
  {
    case (.auditd.euid != $uid) goto alert;
    else goto update_uid_gid;
  }

  state alert!
  {
    $newuid = .auditd.euid;
    $newgid = .auditd.egid;
    report();
  }

  state end!
  {
    /* all went well */
  }
}
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From signatures to recurrence 
equations

✤ For each program point q,
define a sequence of natural numbers qn, n ∈ N, so that:
— if we start one thread at q,
— and proceed to read n events
then, after the n events have been read,
             at most qn threads are in existence.

✤ We do not compute qn,
rather we generate the equations they must satisfy,
symbolically.
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Recurrence equations
rule pidtrack synchronized($pid)
{
  state init
  {
    expect (.auditd.syscall==SYS_clone)
      goto newpid;
  }

  state newpid! {
    $pid = .auditd.exit;
    $uid = .auditd.euid;
    $gid = .auditd.egid;
    goto wait;
  }

  state wait!
  {
    expect (.auditd.pid == $pid &&
            .auditd.syscall == SYS_execve &&
            (.auditd.uid != .auditd.euid || .auditd.gid != .auditd.egid) &&
            .auditd.success == "yes")
      goto update_uid_gid;
    expect (.auditd.pid == $pid &&
            (.auditd.syscall == SYS_setresuid ||
             .auditd.syscall == SYS_setreuid ||
             .auditd.syscall == SYS_setuid) &&
            .auditd.success == "yes")
      goto update_setuid;
    expect (.auditd.pid == $pid &&
            (.auditd.syscall == SYS_setresgid ||
             .auditd.syscall == SYS_setregid ||
             .auditd.syscall == SYS_setgid) &&
            .auditd.success == "yes")
      goto update_setgid;
    expect (.auditd.pid == $pid &&
            .auditd.syscall == SYS_exit)
      goto end;
    expect (.auditd.pid == $pid &&
            (.auditd.euid != $uid || .auditd.egid != $gid))
      goto alert;
  }

  state update_uid_gid!
  {
    $uid = .auditd.euid;
    $gid = .auditd.egid;
    goto wait;
  }

  state update_setuid!
  {
    case (.auditd.egid != $gid) goto alert;
    else goto update_uid_gid;
  }

  state update_setgid!
  {
    case (.auditd.euid != $uid) goto alert;
    else goto update_uid_gid;
  }

  state alert!
  {
    $newuid = .auditd.euid;
    $newgid = .auditd.egid;
    report();
  }

  state end!
  {
    /* all went well */
  }
}

init0=1
initn+1=newpidn+initninit

newpid

wait1

wait2

wait3

wait4

wait5

uug

usu

usg

alert

end

lundi 26 septembre 16



Recurrence equations
rule pidtrack synchronized($pid)
{
  state init
  {
    expect (.auditd.syscall==SYS_clone)
      goto newpid;
  }

  state newpid! {
    $pid = .auditd.exit;
    $uid = .auditd.euid;
    $gid = .auditd.egid;
    goto wait;
  }

  state wait!
  {
    expect (.auditd.pid == $pid &&
            .auditd.syscall == SYS_execve &&
            (.auditd.uid != .auditd.euid || .auditd.gid != .auditd.egid) &&
            .auditd.success == "yes")
      goto update_uid_gid;
    expect (.auditd.pid == $pid &&
            (.auditd.syscall == SYS_setresuid ||
             .auditd.syscall == SYS_setreuid ||
             .auditd.syscall == SYS_setuid) &&
            .auditd.success == "yes")
      goto update_setuid;
    expect (.auditd.pid == $pid &&
            (.auditd.syscall == SYS_setresgid ||
             .auditd.syscall == SYS_setregid ||
             .auditd.syscall == SYS_setgid) &&
            .auditd.success == "yes")
      goto update_setgid;
    expect (.auditd.pid == $pid &&
            .auditd.syscall == SYS_exit)
      goto end;
    expect (.auditd.pid == $pid &&
            (.auditd.euid != $uid || .auditd.egid != $gid))
      goto alert;
  }

  state update_uid_gid!
  {
    $uid = .auditd.euid;
    $gid = .auditd.egid;
    goto wait;
  }

  state update_setuid!
  {
    case (.auditd.egid != $gid) goto alert;
    else goto update_uid_gid;
  }

  state update_setgid!
  {
    case (.auditd.euid != $uid) goto alert;
    else goto update_uid_gid;
  }

  state alert!
  {
    $newuid = .auditd.euid;
    $newgid = .auditd.egid;
    report();
  }

  state end!
  {
    /* all went well */
  }
}

init0=1
initn+1=newpidn+initn

newpidn=wait1n+
      wait2n+...+wait5n

init

newpid

wait1

wait2

wait3

wait4

wait5

uug

usu

usg

alert

end
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Recurrence equations
rule pidtrack synchronized($pid)
{
  state init
  {
    expect (.auditd.syscall==SYS_clone)
      goto newpid;
  }

  state newpid! {
    $pid = .auditd.exit;
    $uid = .auditd.euid;
    $gid = .auditd.egid;
    goto wait;
  }

  state wait!
  {
    expect (.auditd.pid == $pid &&
            .auditd.syscall == SYS_execve &&
            (.auditd.uid != .auditd.euid || .auditd.gid != .auditd.egid) &&
            .auditd.success == "yes")
      goto update_uid_gid;
    expect (.auditd.pid == $pid &&
            (.auditd.syscall == SYS_setresuid ||
             .auditd.syscall == SYS_setreuid ||
             .auditd.syscall == SYS_setuid) &&
            .auditd.success == "yes")
      goto update_setuid;
    expect (.auditd.pid == $pid &&
            (.auditd.syscall == SYS_setresgid ||
             .auditd.syscall == SYS_setregid ||
             .auditd.syscall == SYS_setgid) &&
            .auditd.success == "yes")
      goto update_setgid;
    expect (.auditd.pid == $pid &&
            .auditd.syscall == SYS_exit)
      goto end;
    expect (.auditd.pid == $pid &&
            (.auditd.euid != $uid || .auditd.egid != $gid))
      goto alert;
  }

  state update_uid_gid!
  {
    $uid = .auditd.euid;
    $gid = .auditd.egid;
    goto wait;
  }

  state update_setuid!
  {
    case (.auditd.egid != $gid) goto alert;
    else goto update_uid_gid;
  }

  state update_setgid!
  {
    case (.auditd.euid != $uid) goto alert;
    else goto update_uid_gid;
  }

  state alert!
  {
    $newuid = .auditd.euid;
    $newgid = .auditd.egid;
    report();
  }

  state end!
  {
    /* all went well */
  }
}

init0=1
initn+1=newpidn+initn

newpidn=wait1n+
      wait2n+...+wait5n

init

newpid

wait1

wait2

wait3

wait4

wait5

uug

usu

usg

alert

end

(Some equations skipped)

lundi 26 septembre 16



Recurrence equations
rule pidtrack synchronized($pid)
{
  state init
  {
    expect (.auditd.syscall==SYS_clone)
      goto newpid;
  }

  state newpid! {
    $pid = .auditd.exit;
    $uid = .auditd.euid;
    $gid = .auditd.egid;
    goto wait;
  }

  state wait!
  {
    expect (.auditd.pid == $pid &&
            .auditd.syscall == SYS_execve &&
            (.auditd.uid != .auditd.euid || .auditd.gid != .auditd.egid) &&
            .auditd.success == "yes")
      goto update_uid_gid;
    expect (.auditd.pid == $pid &&
            (.auditd.syscall == SYS_setresuid ||
             .auditd.syscall == SYS_setreuid ||
             .auditd.syscall == SYS_setuid) &&
            .auditd.success == "yes")
      goto update_setuid;
    expect (.auditd.pid == $pid &&
            (.auditd.syscall == SYS_setresgid ||
             .auditd.syscall == SYS_setregid ||
             .auditd.syscall == SYS_setgid) &&
            .auditd.success == "yes")
      goto update_setgid;
    expect (.auditd.pid == $pid &&
            .auditd.syscall == SYS_exit)
      goto end;
    expect (.auditd.pid == $pid &&
            (.auditd.euid != $uid || .auditd.egid != $gid))
      goto alert;
  }

  state update_uid_gid!
  {
    $uid = .auditd.euid;
    $gid = .auditd.egid;
    goto wait;
  }

  state update_setuid!
  {
    case (.auditd.egid != $gid) goto alert;
    else goto update_uid_gid;
  }

  state update_setgid!
  {
    case (.auditd.euid != $uid) goto alert;
    else goto update_uid_gid;
  }

  state alert!
  {
    $newuid = .auditd.euid;
    $newgid = .auditd.egid;
    report();
  }

  state end!
  {
    /* all went well */
  }
}

init0=1
initn+1=newpidn+initn

newpidn=wait1n+
      wait2n+...+wait5n

init

newpid

wait1

wait2

wait3

wait4

wait5

uug

usu

usg

alert

end

(Some equations skipped)

usgn=max(usun,alertn)
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Recurrence equations: syntax

✤ INPUT: finite collection of equations of the form

✤ (sums) un+k=a1 vn + a2 wn + ..., where each ai>0 integer, k natural

✤ (max) un+k=max(vn, wn,... ), k natural number

✤ plus initial conditions u0=constant (≥=1, natural).

✤ Goal: find asymptotic formulae for every un, vn, wn, etc.
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Converting to graphs

✤ Encode those equations as graphs, where:
— each sequence (un) is a vertex u

— there are + and max vertices

— un+k=a1 vn + a2 wn + ... is encoded as

— un+k=max(vn, wn,... ) is encoded as

✤ Close to initial automaton,
but not quite the same

✤ Our algorithm works entirely on the graph.

+ max
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Converting to graphs

✤ Encode those equations as graphs, where:
— each sequence (un) is a vertex u

— there are + and max vertices

— un+k=a1 vn + a2 wn + ... is encoded as

— un+k=max(vn, wn,... ) is encoded as

✤ Close to initial automaton,
but not quite the same

✤ Our algorithm works entirely on the graph.

+ max

u
+k v

w...

a1

a2
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Converting to graphs

✤ Encode those equations as graphs, where:
— each sequence (un) is a vertex u

— there are + and max vertices

— un+k=a1 vn + a2 wn + ... is encoded as

— un+k=max(vn, wn,... ) is encoded as

✤ Close to initial automaton,
but not quite the same

✤ Our algorithm works entirely on the graph.

+ max

u
+k v

w...

a1

a2

u
+k v

w...

1
1
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Exponential behaviors 1

✤ Here is the simplest example of a 
sequence that is asymptotically 
exponential

✤ In general, we wish to find a simple 
criterion to detect which vertices have 
exponential behaviors
              (the bad* vertices)

✤ Will depend on the strongly 
connected components (SCCs) of the 
graph.

+1

two

one

1

1

1

1

+1

+1
1 1 1

1

Example 2

u+1
2

Example 1

Example 4

+1t s

vu

w

u

v

+1

+1

+1+1

1

1

1
1

1

+1

Fig. 2. Three examples of graphs G(⌃)

3. there is no other edge.

Introducing auxiliary symbols as necessary, Example 1 is really the system:

un+1

= 2un u
0

= 1

Its graph is shown on the top left of Figure 2. We distinguish the plus vertices by
showing them on a light grey background. We also distinguish the vertex labels
by writing them with a plus sign, viz., +1, not 1. The right-hand graph is that
of the system of Example 2, put into the adequate form:

un+1

=vn + onen u
0

=1 vn+1

=un + wn v
0

=1 wn+1

=wn + twon
onen+1

=onen one
0

=1 twon+1

=twon two
0

=2 w
0

=1

Similarly for the graph of Example 4, shown at the bottom left.
Using the graph G(⌃), we evacuate the problem of those systems ⌃ that

have non-unique solutions, or no solution: we say that ⌃ is well-formed if and
only if there is no cycle in the graph that goes only through vertices labeled +0.

Proposition 1. Every well-formed system ⌃ has a unique solution, consisting
of uniquely-defined sequences (un)n2N for each u 2 Q, which satisfy all the equa-
tions in ⌃.

Note that G(⌃) has no provision for specifying initial conditions such as u
0

=

1. They are not needed for Proposition 1. They will be useless in our subsequent
developments as well: the asymptotic behavior of un will be independent of u

0

.

6 Sccs, and asymptotics

We shall see that the key to understanding the asymptotic behavior of sequences
defined by a well-formed system of recurrence equations ⌃ lies in the strongly
connected components of G(⌃).

9

Equation: un+1=2un

lundi 26 septembre 16



SCCs (a classic of graph theory)

✤ A set of vertices A is strongly connected
iff every vertex of A is reachable from 
every other.

✤ An SCC is a maximal strongly connected 
set.

✤ SCCs can be computed in linear time by 
Tarjan’s algorithm [J.Computing’72]

✤ The SCCs form the vertices of the so-
called condensation graph, which is 
acyclic
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Fig. 3. Sccs in a graph G(⌃)

label at least 2, they all go out of their start scc. (Vertex labels have been removed
for clarity; they are all +1, although this is not important.)

Say that a vertex u 2 Q is bad⇤ if and only if some bad vertex is reachable
from it, namely if and only if there is a path from u to some bad vertex v. We shall
see that the bad⇤ vertices u are exactly those such that (un)n2N has exponential
behavior. In Example 1, u is bad⇤. There is no bad⇤ vertex in Example 2 or in
Example 4, or in Figure 3.

Proposition 2. For every bad⇤ vertex u in Q, (un)n2N has exponential behavior.

Proof (Sketch). There is a path from u to some bad vertex v. We show that
(vn)n2N will have exponential behavior, which implies the claim by Lemma 1.
Since v is bad, for some a 2 {0, 1}, vn+a is defined as a sum of at least two
values sn, tn (where it may be that s = t). Since v is again reachable from both
s and t, sn and tn are larger than or equal to vn�k for some constant k. Hence
vn+a � 2vn�k, which entails the claim. ut

If an scc contains a bad⇤ vertex, then all its vertices are bad⇤. Let us consider
the case of sccs A without any bad⇤ vertex. We shall illustrate the various cases
we need to consider on the graph shown in Figure 3. The idea of our algorithm is
that we shall iterate on all sccs A, from bottom to top, deducing a characteristic
degree dA such that un = ⇥(ndA

) for every vertex u in A from the characteristic
degrees of sccs below A.

We first deal with the case of trivial sccs, i.e., sccs with only one vertex and
no self-loop. By abuse of language, say that u is a trivial scc iff {u} is.

11

[SCCs shown as gray boxes]
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Exponential behaviors 2

✤ In general, call a vertex u bad iff
— u is a + vertex
— the sum of the labels of edges
     out of u but remaining in the same
     SCC is ≥2

✤ A vertex is bad* iff there is a path 
from that vertex to a bad vertex

✤ Prop. The bad* vertices are exactly 
those that have exponential behavior.

+1

two

one

1

1

1

1

+1

+1
1 1 1

1

Example 2

u+1
2

Example 1

Example 4

+1t s

vu

w

u

v

+1

+1

+1+1

1

1

1
1

1

+1

Fig. 2. Three examples of graphs G(⌃)

3. there is no other edge.

Introducing auxiliary symbols as necessary, Example 1 is really the system:

un+1

= 2un u
0

= 1

Its graph is shown on the top left of Figure 2. We distinguish the plus vertices by
showing them on a light grey background. We also distinguish the vertex labels
by writing them with a plus sign, viz., +1, not 1. The right-hand graph is that
of the system of Example 2, put into the adequate form:

un+1

=vn + onen u
0

=1 vn+1

=un + wn v
0

=1 wn+1

=wn + twon
onen+1

=onen one
0

=1 twon+1

=twon two
0

=2 w
0

=1

Similarly for the graph of Example 4, shown at the bottom left.
Using the graph G(⌃), we evacuate the problem of those systems ⌃ that

have non-unique solutions, or no solution: we say that ⌃ is well-formed if and
only if there is no cycle in the graph that goes only through vertices labeled +0.

Proposition 1. Every well-formed system ⌃ has a unique solution, consisting
of uniquely-defined sequences (un)n2N for each u 2 Q, which satisfy all the equa-
tions in ⌃.

Note that G(⌃) has no provision for specifying initial conditions such as u
0

=

1. They are not needed for Proposition 1. They will be useless in our subsequent
developments as well: the asymptotic behavior of un will be independent of u

0

.

6 Sccs, and asymptotics

We shall see that the key to understanding the asymptotic behavior of sequences
defined by a well-formed system of recurrence equations ⌃ lies in the strongly
connected components of G(⌃).

9

(Example)

u
+k v

w

a1

a2

u is bad iff a1 + a2 ≥ 2
(a3 is not counted) 

a3
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Polynomial behaviors 1: trivial SCCs

✤ Now assume there is no bad vertex.
We shall map each SCC A to a 
number k so that un=O(nk) for every 
vertex u in A.

✤ Look at the trivial SCCs: those with 
no edge entirely inside the SCC

✤ cn+1=5tn: if tn=O(nk) then cn=O(nk)
— no increase in degree.
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Fig. 3. Sccs in a graph G(⌃)

label at least 2, they all go out of their start scc. (Vertex labels have been removed
for clarity; they are all +1, although this is not important.)

Say that a vertex u 2 Q is bad⇤ if and only if some bad vertex is reachable
from it, namely if and only if there is a path from u to some bad vertex v. We shall
see that the bad⇤ vertices u are exactly those such that (un)n2N has exponential
behavior. In Example 1, u is bad⇤. There is no bad⇤ vertex in Example 2 or in
Example 4, or in Figure 3.

Proposition 2. For every bad⇤ vertex u in Q, (un)n2N has exponential behavior.

Proof (Sketch). There is a path from u to some bad vertex v. We show that
(vn)n2N will have exponential behavior, which implies the claim by Lemma 1.
Since v is bad, for some a 2 {0, 1}, vn+a is defined as a sum of at least two
values sn, tn (where it may be that s = t). Since v is again reachable from both
s and t, sn and tn are larger than or equal to vn�k for some constant k. Hence
vn+a � 2vn�k, which entails the claim. ut

If an scc contains a bad⇤ vertex, then all its vertices are bad⇤. Let us consider
the case of sccs A without any bad⇤ vertex. We shall illustrate the various cases
we need to consider on the graph shown in Figure 3. The idea of our algorithm is
that we shall iterate on all sccs A, from bottom to top, deducing a characteristic
degree dA such that un = ⇥(ndA

) for every vertex u in A from the characteristic
degrees of sccs below A.

We first deal with the case of trivial sccs, i.e., sccs with only one vertex and
no self-loop. By abuse of language, say that u is a trivial scc iff {u} is.

11

trivial

trivial
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Polynomial behaviors 2

✤ Now assume there is no bad vertex.
In every SCC, every + vertex has at 
most one outgoing edge that remains 
in the SCC, and it has label 1.
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Fig. 3. Sccs in a graph G(⌃)

label at least 2, they all go out of their start scc. (Vertex labels have been removed
for clarity; they are all +1, although this is not important.)

Say that a vertex u 2 Q is bad⇤ if and only if some bad vertex is reachable
from it, namely if and only if there is a path from u to some bad vertex v. We shall
see that the bad⇤ vertices u are exactly those such that (un)n2N has exponential
behavior. In Example 1, u is bad⇤. There is no bad⇤ vertex in Example 2 or in
Example 4, or in Figure 3.

Proposition 2. For every bad⇤ vertex u in Q, (un)n2N has exponential behavior.

Proof (Sketch). There is a path from u to some bad vertex v. We show that
(vn)n2N will have exponential behavior, which implies the claim by Lemma 1.
Since v is bad, for some a 2 {0, 1}, vn+a is defined as a sum of at least two
values sn, tn (where it may be that s = t). Since v is again reachable from both
s and t, sn and tn are larger than or equal to vn�k for some constant k. Hence
vn+a � 2vn�k, which entails the claim. ut

If an scc contains a bad⇤ vertex, then all its vertices are bad⇤. Let us consider
the case of sccs A without any bad⇤ vertex. We shall illustrate the various cases
we need to consider on the graph shown in Figure 3. The idea of our algorithm is
that we shall iterate on all sccs A, from bottom to top, deducing a characteristic
degree dA such that un = ⇥(ndA

) for every vertex u in A from the characteristic
degrees of sccs below A.

We first deal with the case of trivial sccs, i.e., sccs with only one vertex and
no self-loop. By abuse of language, say that u is a trivial scc iff {u} is.

11
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Polynomial behaviors 2

✤ Now assume there is no bad vertex.
In every SCC, every + vertex has at 
most one outgoing edge that remains 
in the SCC, and it has label 1.
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Fig. 3. Sccs in a graph G(⌃)

label at least 2, they all go out of their start scc. (Vertex labels have been removed
for clarity; they are all +1, although this is not important.)

Say that a vertex u 2 Q is bad⇤ if and only if some bad vertex is reachable
from it, namely if and only if there is a path from u to some bad vertex v. We shall
see that the bad⇤ vertices u are exactly those such that (un)n2N has exponential
behavior. In Example 1, u is bad⇤. There is no bad⇤ vertex in Example 2 or in
Example 4, or in Figure 3.

Proposition 2. For every bad⇤ vertex u in Q, (un)n2N has exponential behavior.

Proof (Sketch). There is a path from u to some bad vertex v. We show that
(vn)n2N will have exponential behavior, which implies the claim by Lemma 1.
Since v is bad, for some a 2 {0, 1}, vn+a is defined as a sum of at least two
values sn, tn (where it may be that s = t). Since v is again reachable from both
s and t, sn and tn are larger than or equal to vn�k for some constant k. Hence
vn+a � 2vn�k, which entails the claim. ut

If an scc contains a bad⇤ vertex, then all its vertices are bad⇤. Let us consider
the case of sccs A without any bad⇤ vertex. We shall illustrate the various cases
we need to consider on the graph shown in Figure 3. The idea of our algorithm is
that we shall iterate on all sccs A, from bottom to top, deducing a characteristic
degree dA such that un = ⇥(ndA

) for every vertex u in A from the characteristic
degrees of sccs below A.

We first deal with the case of trivial sccs, i.e., sccs with only one vertex and
no self-loop. By abuse of language, say that u is a trivial scc iff {u} is.

11
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Polynomial behaviors 2

✤ Now assume there is no bad vertex.
In every SCC, every + vertex has at 
most one outgoing edge that remains 
in the SCC, and it has label 1.
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Fig. 3. Sccs in a graph G(⌃)

label at least 2, they all go out of their start scc. (Vertex labels have been removed
for clarity; they are all +1, although this is not important.)

Say that a vertex u 2 Q is bad⇤ if and only if some bad vertex is reachable
from it, namely if and only if there is a path from u to some bad vertex v. We shall
see that the bad⇤ vertices u are exactly those such that (un)n2N has exponential
behavior. In Example 1, u is bad⇤. There is no bad⇤ vertex in Example 2 or in
Example 4, or in Figure 3.

Proposition 2. For every bad⇤ vertex u in Q, (un)n2N has exponential behavior.

Proof (Sketch). There is a path from u to some bad vertex v. We show that
(vn)n2N will have exponential behavior, which implies the claim by Lemma 1.
Since v is bad, for some a 2 {0, 1}, vn+a is defined as a sum of at least two
values sn, tn (where it may be that s = t). Since v is again reachable from both
s and t, sn and tn are larger than or equal to vn�k for some constant k. Hence
vn+a � 2vn�k, which entails the claim. ut

If an scc contains a bad⇤ vertex, then all its vertices are bad⇤. Let us consider
the case of sccs A without any bad⇤ vertex. We shall illustrate the various cases
we need to consider on the graph shown in Figure 3. The idea of our algorithm is
that we shall iterate on all sccs A, from bottom to top, deducing a characteristic
degree dA such that un = ⇥(ndA

) for every vertex u in A from the characteristic
degrees of sccs below A.

We first deal with the case of trivial sccs, i.e., sccs with only one vertex and
no self-loop. By abuse of language, say that u is a trivial scc iff {u} is.

11

✤ For a non-trivial SCC A, an edge u → v
going out of A is:
— expensive iff u is a + vertex
— cheap iff u is a max vertex

✤ (Call cheap any edge out of a trivial SCC, too.)
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Polynomial behaviors 2

✤ Now assume there is no bad vertex.
In every SCC, every + vertex has at 
most one outgoing edge that remains 
in the SCC, and it has label 1.
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Fig. 3. Sccs in a graph G(⌃)

label at least 2, they all go out of their start scc. (Vertex labels have been removed
for clarity; they are all +1, although this is not important.)

Say that a vertex u 2 Q is bad⇤ if and only if some bad vertex is reachable
from it, namely if and only if there is a path from u to some bad vertex v. We shall
see that the bad⇤ vertices u are exactly those such that (un)n2N has exponential
behavior. In Example 1, u is bad⇤. There is no bad⇤ vertex in Example 2 or in
Example 4, or in Figure 3.

Proposition 2. For every bad⇤ vertex u in Q, (un)n2N has exponential behavior.

Proof (Sketch). There is a path from u to some bad vertex v. We show that
(vn)n2N will have exponential behavior, which implies the claim by Lemma 1.
Since v is bad, for some a 2 {0, 1}, vn+a is defined as a sum of at least two
values sn, tn (where it may be that s = t). Since v is again reachable from both
s and t, sn and tn are larger than or equal to vn�k for some constant k. Hence
vn+a � 2vn�k, which entails the claim. ut

If an scc contains a bad⇤ vertex, then all its vertices are bad⇤. Let us consider
the case of sccs A without any bad⇤ vertex. We shall illustrate the various cases
we need to consider on the graph shown in Figure 3. The idea of our algorithm is
that we shall iterate on all sccs A, from bottom to top, deducing a characteristic
degree dA such that un = ⇥(ndA

) for every vertex u in A from the characteristic
degrees of sccs below A.

We first deal with the case of trivial sccs, i.e., sccs with only one vertex and
no self-loop. By abuse of language, say that u is a trivial scc iff {u} is.

11

✤ For a non-trivial SCC A, an edge u → v
going out of A is:
— expensive iff u is a + vertex
— cheap iff u is a max vertex

✤ (Call cheap any edge out of a trivial SCC, too.)

cheap
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Polynomial behaviors 2

✤ Now assume there is no bad vertex.
In every SCC, every + vertex has at 
most one outgoing edge that remains 
in the SCC, and it has label 1.
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Fig. 3. Sccs in a graph G(⌃)

label at least 2, they all go out of their start scc. (Vertex labels have been removed
for clarity; they are all +1, although this is not important.)

Say that a vertex u 2 Q is bad⇤ if and only if some bad vertex is reachable
from it, namely if and only if there is a path from u to some bad vertex v. We shall
see that the bad⇤ vertices u are exactly those such that (un)n2N has exponential
behavior. In Example 1, u is bad⇤. There is no bad⇤ vertex in Example 2 or in
Example 4, or in Figure 3.

Proposition 2. For every bad⇤ vertex u in Q, (un)n2N has exponential behavior.

Proof (Sketch). There is a path from u to some bad vertex v. We show that
(vn)n2N will have exponential behavior, which implies the claim by Lemma 1.
Since v is bad, for some a 2 {0, 1}, vn+a is defined as a sum of at least two
values sn, tn (where it may be that s = t). Since v is again reachable from both
s and t, sn and tn are larger than or equal to vn�k for some constant k. Hence
vn+a � 2vn�k, which entails the claim. ut

If an scc contains a bad⇤ vertex, then all its vertices are bad⇤. Let us consider
the case of sccs A without any bad⇤ vertex. We shall illustrate the various cases
we need to consider on the graph shown in Figure 3. The idea of our algorithm is
that we shall iterate on all sccs A, from bottom to top, deducing a characteristic
degree dA such that un = ⇥(ndA

) for every vertex u in A from the characteristic
degrees of sccs below A.

We first deal with the case of trivial sccs, i.e., sccs with only one vertex and
no self-loop. By abuse of language, say that u is a trivial scc iff {u} is.

11

✤ For a non-trivial SCC A, an edge u → v
going out of A is:
— expensive iff u is a + vertex
— cheap iff u is a max vertex

✤ (Call cheap any edge out of a trivial SCC, too.)

cheap

cheap
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Polynomial behaviors 2

✤ Now assume there is no bad vertex.
In every SCC, every + vertex has at 
most one outgoing edge that remains 
in the SCC, and it has label 1.
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Fig. 3. Sccs in a graph G(⌃)

label at least 2, they all go out of their start scc. (Vertex labels have been removed
for clarity; they are all +1, although this is not important.)

Say that a vertex u 2 Q is bad⇤ if and only if some bad vertex is reachable
from it, namely if and only if there is a path from u to some bad vertex v. We shall
see that the bad⇤ vertices u are exactly those such that (un)n2N has exponential
behavior. In Example 1, u is bad⇤. There is no bad⇤ vertex in Example 2 or in
Example 4, or in Figure 3.

Proposition 2. For every bad⇤ vertex u in Q, (un)n2N has exponential behavior.

Proof (Sketch). There is a path from u to some bad vertex v. We show that
(vn)n2N will have exponential behavior, which implies the claim by Lemma 1.
Since v is bad, for some a 2 {0, 1}, vn+a is defined as a sum of at least two
values sn, tn (where it may be that s = t). Since v is again reachable from both
s and t, sn and tn are larger than or equal to vn�k for some constant k. Hence
vn+a � 2vn�k, which entails the claim. ut

If an scc contains a bad⇤ vertex, then all its vertices are bad⇤. Let us consider
the case of sccs A without any bad⇤ vertex. We shall illustrate the various cases
we need to consider on the graph shown in Figure 3. The idea of our algorithm is
that we shall iterate on all sccs A, from bottom to top, deducing a characteristic
degree dA such that un = ⇥(ndA

) for every vertex u in A from the characteristic
degrees of sccs below A.

We first deal with the case of trivial sccs, i.e., sccs with only one vertex and
no self-loop. By abuse of language, say that u is a trivial scc iff {u} is.

11

✤ For a non-trivial SCC A, an edge u → v
going out of A is:
— expensive iff u is a + vertex
— cheap iff u is a max vertex

✤ (Call cheap any edge out of a trivial SCC, too.)

cheap

cheap

expensive
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Polynomial behaviors 2

✤ Now assume there is no bad vertex.
In every SCC, every + vertex has at 
most one outgoing edge that remains 
in the SCC, and it has label 1.
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Fig. 3. Sccs in a graph G(⌃)

label at least 2, they all go out of their start scc. (Vertex labels have been removed
for clarity; they are all +1, although this is not important.)

Say that a vertex u 2 Q is bad⇤ if and only if some bad vertex is reachable
from it, namely if and only if there is a path from u to some bad vertex v. We shall
see that the bad⇤ vertices u are exactly those such that (un)n2N has exponential
behavior. In Example 1, u is bad⇤. There is no bad⇤ vertex in Example 2 or in
Example 4, or in Figure 3.

Proposition 2. For every bad⇤ vertex u in Q, (un)n2N has exponential behavior.

Proof (Sketch). There is a path from u to some bad vertex v. We show that
(vn)n2N will have exponential behavior, which implies the claim by Lemma 1.
Since v is bad, for some a 2 {0, 1}, vn+a is defined as a sum of at least two
values sn, tn (where it may be that s = t). Since v is again reachable from both
s and t, sn and tn are larger than or equal to vn�k for some constant k. Hence
vn+a � 2vn�k, which entails the claim. ut

If an scc contains a bad⇤ vertex, then all its vertices are bad⇤. Let us consider
the case of sccs A without any bad⇤ vertex. We shall illustrate the various cases
we need to consider on the graph shown in Figure 3. The idea of our algorithm is
that we shall iterate on all sccs A, from bottom to top, deducing a characteristic
degree dA such that un = ⇥(ndA

) for every vertex u in A from the characteristic
degrees of sccs below A.

We first deal with the case of trivial sccs, i.e., sccs with only one vertex and
no self-loop. By abuse of language, say that u is a trivial scc iff {u} is.

11

✤ For a non-trivial SCC A, an edge u → v
going out of A is:
— expensive iff u is a + vertex
— cheap iff u is a max vertex

✤ (Call cheap any edge out of a trivial SCC, too.)

cheap

cheap

expensive

cheap
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Polynomial behaviors 2

✤ Now assume there is no bad vertex.
In every SCC, every + vertex has at 
most one outgoing edge that remains 
in the SCC, and it has label 1.
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Fig. 3. Sccs in a graph G(⌃)

label at least 2, they all go out of their start scc. (Vertex labels have been removed
for clarity; they are all +1, although this is not important.)

Say that a vertex u 2 Q is bad⇤ if and only if some bad vertex is reachable
from it, namely if and only if there is a path from u to some bad vertex v. We shall
see that the bad⇤ vertices u are exactly those such that (un)n2N has exponential
behavior. In Example 1, u is bad⇤. There is no bad⇤ vertex in Example 2 or in
Example 4, or in Figure 3.

Proposition 2. For every bad⇤ vertex u in Q, (un)n2N has exponential behavior.

Proof (Sketch). There is a path from u to some bad vertex v. We show that
(vn)n2N will have exponential behavior, which implies the claim by Lemma 1.
Since v is bad, for some a 2 {0, 1}, vn+a is defined as a sum of at least two
values sn, tn (where it may be that s = t). Since v is again reachable from both
s and t, sn and tn are larger than or equal to vn�k for some constant k. Hence
vn+a � 2vn�k, which entails the claim. ut

If an scc contains a bad⇤ vertex, then all its vertices are bad⇤. Let us consider
the case of sccs A without any bad⇤ vertex. We shall illustrate the various cases
we need to consider on the graph shown in Figure 3. The idea of our algorithm is
that we shall iterate on all sccs A, from bottom to top, deducing a characteristic
degree dA such that un = ⇥(ndA

) for every vertex u in A from the characteristic
degrees of sccs below A.

We first deal with the case of trivial sccs, i.e., sccs with only one vertex and
no self-loop. By abuse of language, say that u is a trivial scc iff {u} is.

11

✤ For a non-trivial SCC A, an edge u → v
going out of A is:
— expensive iff u is a + vertex
— cheap iff u is a max vertex

✤ (Call cheap any edge out of a trivial SCC, too.)

cheap

cheap
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Polynomial behaviors 3

✤ Say that an SCC A has degree k iff every vertex of A is O(nk).

✤ Prop. Assume:
— A → Bi (SCCs) through at least one expensive edge, i=1...m,
— A → Cj (SCCs) through cheap edges only, j=1...n.
Assume each Bi has degree bi, each Cj has degree cj.
Then A has degree : max ({bi +1|i=1...m} ∪ {cj | j=1...n}).

✤ I.e., expensive edges increase degree by 1,
       cheap edges don’t.
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Polynomial behaviors: the key case

✤ Recall that in every SCC, every + vertex has 
at most one outgoing edge that remains in 
the SCC, and it has label 1.

✤ In the example to the right: there is a 
unique cycle inside the SCC.

✤ From the equations, un+3=qn+2+un.
So u3n+a+1=q3n+a+q3(n-1)+a+q3(n-3)+a+...+qa.
Let q’n=q3n+a.
If qn=O(nk), then q’n=O(nk),
           and therefore q’n+q’n-1+...+q’0=O(nk+1).
So un=O(nk+1).      [Increase in degree!]

q

u
v

w

un+1=qn+vn

vn+1=wn

wn+1=un

+1
+0

+0
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The algorithm (a bird’s eye view)

✤ Compute graph, and its SCCs by 
Tarjan’s algorithm

✤ Map each SCC to
its degree, bottom-up:
— expensive edges raise degree by 1
— bad vertices set degree to +∞

✤ Simple modification of Tarjan’s 
algorithm, works in linear time
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Fig. 3. Sccs in a graph G(⌃)

label at least 2, they all go out of their start scc. (Vertex labels have been removed
for clarity; they are all +1, although this is not important.)

Say that a vertex u 2 Q is bad⇤ if and only if some bad vertex is reachable
from it, namely if and only if there is a path from u to some bad vertex v. We shall
see that the bad⇤ vertices u are exactly those such that (un)n2N has exponential
behavior. In Example 1, u is bad⇤. There is no bad⇤ vertex in Example 2 or in
Example 4, or in Figure 3.

Proposition 2. For every bad⇤ vertex u in Q, (un)n2N has exponential behavior.

Proof (Sketch). There is a path from u to some bad vertex v. We show that
(vn)n2N will have exponential behavior, which implies the claim by Lemma 1.
Since v is bad, for some a 2 {0, 1}, vn+a is defined as a sum of at least two
values sn, tn (where it may be that s = t). Since v is again reachable from both
s and t, sn and tn are larger than or equal to vn�k for some constant k. Hence
vn+a � 2vn�k, which entails the claim. ut

If an scc contains a bad⇤ vertex, then all its vertices are bad⇤. Let us consider
the case of sccs A without any bad⇤ vertex. We shall illustrate the various cases
we need to consider on the graph shown in Figure 3. The idea of our algorithm is
that we shall iterate on all sccs A, from bottom to top, deducing a characteristic
degree dA such that un = ⇥(ndA

) for every vertex u in A from the characteristic
degrees of sccs below A.

We first deal with the case of trivial sccs, i.e., sccs with only one vertex and
no self-loop. By abuse of language, say that u is a trivial scc iff {u} is.

11
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The algorithm (a bird’s eye view)

✤ Compute graph, and its SCCs by 
Tarjan’s algorithm

✤ Map each SCC to
its degree, bottom-up:
— expensive edges raise degree by 1
— bad vertices set degree to +∞

✤ Simple modification of Tarjan’s 
algorithm, works in linear time
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Fig. 3. Sccs in a graph G(⌃)

label at least 2, they all go out of their start scc. (Vertex labels have been removed
for clarity; they are all +1, although this is not important.)

Say that a vertex u 2 Q is bad⇤ if and only if some bad vertex is reachable
from it, namely if and only if there is a path from u to some bad vertex v. We shall
see that the bad⇤ vertices u are exactly those such that (un)n2N has exponential
behavior. In Example 1, u is bad⇤. There is no bad⇤ vertex in Example 2 or in
Example 4, or in Figure 3.

Proposition 2. For every bad⇤ vertex u in Q, (un)n2N has exponential behavior.

Proof (Sketch). There is a path from u to some bad vertex v. We show that
(vn)n2N will have exponential behavior, which implies the claim by Lemma 1.
Since v is bad, for some a 2 {0, 1}, vn+a is defined as a sum of at least two
values sn, tn (where it may be that s = t). Since v is again reachable from both
s and t, sn and tn are larger than or equal to vn�k for some constant k. Hence
vn+a � 2vn�k, which entails the claim. ut

If an scc contains a bad⇤ vertex, then all its vertices are bad⇤. Let us consider
the case of sccs A without any bad⇤ vertex. We shall illustrate the various cases
we need to consider on the graph shown in Figure 3. The idea of our algorithm is
that we shall iterate on all sccs A, from bottom to top, deducing a characteristic
degree dA such that un = ⇥(ndA

) for every vertex u in A from the characteristic
degrees of sccs below A.

We first deal with the case of trivial sccs, i.e., sccs with only one vertex and
no self-loop. By abuse of language, say that u is a trivial scc iff {u} is.

11

degree 0

(max of the empty set)
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The algorithm (a bird’s eye view)

✤ Compute graph, and its SCCs by 
Tarjan’s algorithm

✤ Map each SCC to
its degree, bottom-up:
— expensive edges raise degree by 1
— bad vertices set degree to +∞

✤ Simple modification of Tarjan’s 
algorithm, works in linear time
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Fig. 3. Sccs in a graph G(⌃)

label at least 2, they all go out of their start scc. (Vertex labels have been removed
for clarity; they are all +1, although this is not important.)

Say that a vertex u 2 Q is bad⇤ if and only if some bad vertex is reachable
from it, namely if and only if there is a path from u to some bad vertex v. We shall
see that the bad⇤ vertices u are exactly those such that (un)n2N has exponential
behavior. In Example 1, u is bad⇤. There is no bad⇤ vertex in Example 2 or in
Example 4, or in Figure 3.

Proposition 2. For every bad⇤ vertex u in Q, (un)n2N has exponential behavior.

Proof (Sketch). There is a path from u to some bad vertex v. We show that
(vn)n2N will have exponential behavior, which implies the claim by Lemma 1.
Since v is bad, for some a 2 {0, 1}, vn+a is defined as a sum of at least two
values sn, tn (where it may be that s = t). Since v is again reachable from both
s and t, sn and tn are larger than or equal to vn�k for some constant k. Hence
vn+a � 2vn�k, which entails the claim. ut

If an scc contains a bad⇤ vertex, then all its vertices are bad⇤. Let us consider
the case of sccs A without any bad⇤ vertex. We shall illustrate the various cases
we need to consider on the graph shown in Figure 3. The idea of our algorithm is
that we shall iterate on all sccs A, from bottom to top, deducing a characteristic
degree dA such that un = ⇥(ndA

) for every vertex u in A from the characteristic
degrees of sccs below A.

We first deal with the case of trivial sccs, i.e., sccs with only one vertex and
no self-loop. By abuse of language, say that u is a trivial scc iff {u} is.
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The algorithm (a bird’s eye view)

✤ Compute graph, and its SCCs by 
Tarjan’s algorithm

✤ Map each SCC to
its degree, bottom-up:
— expensive edges raise degree by 1
— bad vertices set degree to +∞

✤ Simple modification of Tarjan’s 
algorithm, works in linear time

rd

1

e

s

t

c

a

b

v

u

1

1

1

1
1

1

1 1

1

1

5

w

1

7 4

1

1

f

Fig. 3. Sccs in a graph G(⌃)

label at least 2, they all go out of their start scc. (Vertex labels have been removed
for clarity; they are all +1, although this is not important.)

Say that a vertex u 2 Q is bad⇤ if and only if some bad vertex is reachable
from it, namely if and only if there is a path from u to some bad vertex v. We shall
see that the bad⇤ vertices u are exactly those such that (un)n2N has exponential
behavior. In Example 1, u is bad⇤. There is no bad⇤ vertex in Example 2 or in
Example 4, or in Figure 3.

Proposition 2. For every bad⇤ vertex u in Q, (un)n2N has exponential behavior.

Proof (Sketch). There is a path from u to some bad vertex v. We show that
(vn)n2N will have exponential behavior, which implies the claim by Lemma 1.
Since v is bad, for some a 2 {0, 1}, vn+a is defined as a sum of at least two
values sn, tn (where it may be that s = t). Since v is again reachable from both
s and t, sn and tn are larger than or equal to vn�k for some constant k. Hence
vn+a � 2vn�k, which entails the claim. ut

If an scc contains a bad⇤ vertex, then all its vertices are bad⇤. Let us consider
the case of sccs A without any bad⇤ vertex. We shall illustrate the various cases
we need to consider on the graph shown in Figure 3. The idea of our algorithm is
that we shall iterate on all sccs A, from bottom to top, deducing a characteristic
degree dA such that un = ⇥(ndA

) for every vertex u in A from the characteristic
degrees of sccs below A.

We first deal with the case of trivial sccs, i.e., sccs with only one vertex and
no self-loop. By abuse of language, say that u is a trivial scc iff {u} is.
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The algorithm (a bird’s eye view)

✤ Compute graph, and its SCCs by 
Tarjan’s algorithm

✤ Map each SCC to
its degree, bottom-up:
— expensive edges raise degree by 1
— bad vertices set degree to +∞

✤ Simple modification of Tarjan’s 
algorithm, works in linear time
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Fig. 3. Sccs in a graph G(⌃)

label at least 2, they all go out of their start scc. (Vertex labels have been removed
for clarity; they are all +1, although this is not important.)

Say that a vertex u 2 Q is bad⇤ if and only if some bad vertex is reachable
from it, namely if and only if there is a path from u to some bad vertex v. We shall
see that the bad⇤ vertices u are exactly those such that (un)n2N has exponential
behavior. In Example 1, u is bad⇤. There is no bad⇤ vertex in Example 2 or in
Example 4, or in Figure 3.

Proposition 2. For every bad⇤ vertex u in Q, (un)n2N has exponential behavior.

Proof (Sketch). There is a path from u to some bad vertex v. We show that
(vn)n2N will have exponential behavior, which implies the claim by Lemma 1.
Since v is bad, for some a 2 {0, 1}, vn+a is defined as a sum of at least two
values sn, tn (where it may be that s = t). Since v is again reachable from both
s and t, sn and tn are larger than or equal to vn�k for some constant k. Hence
vn+a � 2vn�k, which entails the claim. ut

If an scc contains a bad⇤ vertex, then all its vertices are bad⇤. Let us consider
the case of sccs A without any bad⇤ vertex. We shall illustrate the various cases
we need to consider on the graph shown in Figure 3. The idea of our algorithm is
that we shall iterate on all sccs A, from bottom to top, deducing a characteristic
degree dA such that un = ⇥(ndA

) for every vertex u in A from the characteristic
degrees of sccs below A.

We first deal with the case of trivial sccs, i.e., sccs with only one vertex and
no self-loop. By abuse of language, say that u is a trivial scc iff {u} is.

11

degree 0degree 0

degree 0cheap

degree 0

lundi 26 septembre 16



The algorithm (a bird’s eye view)

✤ Compute graph, and its SCCs by 
Tarjan’s algorithm

✤ Map each SCC to
its degree, bottom-up:
— expensive edges raise degree by 1
— bad vertices set degree to +∞

✤ Simple modification of Tarjan’s 
algorithm, works in linear time
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Fig. 3. Sccs in a graph G(⌃)

label at least 2, they all go out of their start scc. (Vertex labels have been removed
for clarity; they are all +1, although this is not important.)

Say that a vertex u 2 Q is bad⇤ if and only if some bad vertex is reachable
from it, namely if and only if there is a path from u to some bad vertex v. We shall
see that the bad⇤ vertices u are exactly those such that (un)n2N has exponential
behavior. In Example 1, u is bad⇤. There is no bad⇤ vertex in Example 2 or in
Example 4, or in Figure 3.

Proposition 2. For every bad⇤ vertex u in Q, (un)n2N has exponential behavior.

Proof (Sketch). There is a path from u to some bad vertex v. We show that
(vn)n2N will have exponential behavior, which implies the claim by Lemma 1.
Since v is bad, for some a 2 {0, 1}, vn+a is defined as a sum of at least two
values sn, tn (where it may be that s = t). Since v is again reachable from both
s and t, sn and tn are larger than or equal to vn�k for some constant k. Hence
vn+a � 2vn�k, which entails the claim. ut

If an scc contains a bad⇤ vertex, then all its vertices are bad⇤. Let us consider
the case of sccs A without any bad⇤ vertex. We shall illustrate the various cases
we need to consider on the graph shown in Figure 3. The idea of our algorithm is
that we shall iterate on all sccs A, from bottom to top, deducing a characteristic
degree dA such that un = ⇥(ndA

) for every vertex u in A from the characteristic
degrees of sccs below A.

We first deal with the case of trivial sccs, i.e., sccs with only one vertex and
no self-loop. By abuse of language, say that u is a trivial scc iff {u} is.
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The algorithm (a bird’s eye view)

✤ Compute graph, and its SCCs by 
Tarjan’s algorithm

✤ Map each SCC to
its degree, bottom-up:
— expensive edges raise degree by 1
— bad vertices set degree to +∞

✤ Simple modification of Tarjan’s 
algorithm, works in linear time
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Fig. 3. Sccs in a graph G(⌃)

label at least 2, they all go out of their start scc. (Vertex labels have been removed
for clarity; they are all +1, although this is not important.)

Say that a vertex u 2 Q is bad⇤ if and only if some bad vertex is reachable
from it, namely if and only if there is a path from u to some bad vertex v. We shall
see that the bad⇤ vertices u are exactly those such that (un)n2N has exponential
behavior. In Example 1, u is bad⇤. There is no bad⇤ vertex in Example 2 or in
Example 4, or in Figure 3.

Proposition 2. For every bad⇤ vertex u in Q, (un)n2N has exponential behavior.

Proof (Sketch). There is a path from u to some bad vertex v. We show that
(vn)n2N will have exponential behavior, which implies the claim by Lemma 1.
Since v is bad, for some a 2 {0, 1}, vn+a is defined as a sum of at least two
values sn, tn (where it may be that s = t). Since v is again reachable from both
s and t, sn and tn are larger than or equal to vn�k for some constant k. Hence
vn+a � 2vn�k, which entails the claim. ut

If an scc contains a bad⇤ vertex, then all its vertices are bad⇤. Let us consider
the case of sccs A without any bad⇤ vertex. We shall illustrate the various cases
we need to consider on the graph shown in Figure 3. The idea of our algorithm is
that we shall iterate on all sccs A, from bottom to top, deducing a characteristic
degree dA such that un = ⇥(ndA

) for every vertex u in A from the characteristic
degrees of sccs below A.

We first deal with the case of trivial sccs, i.e., sccs with only one vertex and
no self-loop. By abuse of language, say that u is a trivial scc iff {u} is.
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Implementation(s)

✤ Two early prototypes in 2013.  Integrated into Orchids, 2015.

✤ 7 signatures are O(n), 1 is O(n2),
1 is detected as O(n3) [overapproximated: it is really O(n2)],
1 is O(1).

Rule found to be in O(n) — reason explained on last line
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Early implementations (2013)

✤ One early implementation also 
gave the coefficient of the 
dominant monomial.
We found later that this is 
incorrect (see Example 4 in the 
paper).

✤ An even earlier implementation 
compiled the recurrence 
equations to Sage and to Maple
— in very special cases (no max)
— very precise result, but 
becomes unreadable when output 
is large.

The rule associated to this graph has an polynomial behavior represented by

the dominant monomial 0.16666666666666666 * n^3.0.  To approximately reach

this behavior, you first need to launch a series of event in order to follow

the path from qInit to q1 to q2. Once this is done, you have to launch as

much events as you want and each event must match at the time the guard of

each the following transitions :

qInit -> q1

q1 -> q2

q2 -> q3

If this is possible, the number of thread will grow according to the 

polynomial solution found.

Il n’y a rien d’étonnant ici, et surtout, aucune nouvelle notion à ajouter à notre outil, puisque

nous pouvons transformer les graphes contenant des coupures longues en graphes solvables par

notre outil.

14.3 – Retour à la règle « ptrace »

Tel que rencontré plus tôt, cette règle implémente une coupure longue qui nous empêchait

d’évaluer son comportement réel. Après notre petite analyse, voici le nouveau graphe correspondant

à cette règle :

67

rsolve({fq0(n) = fq0(n-1) + fq1(n-1), fq1(n) = fq1(n-1) + fq2(n-1),

fq2(n) = fq2(n-1) + fq3(n-1), fq3(n) = fq3(n-1), fq0(0) = 1, fq1(0)

= 1, fq2(0) = 1, fq3(0) = 1}, {fq0, fq1, fq2, fq3})

Résultat : 

f q0(n)=
n

3

6
+

5∗n
6

+1

• Un second arbre avec plusieurs chemins tous de longueur différents :

La commande Maple :

rsolve({fq0(n) = fq0(n-1) + fq1(n-1) + fq5(n-1), fq1(n) = fq1(n-1) 

+ fq2(n-1) + fq6(n-1), fq5(n) = fq5(n-1), fq2(n) = fq2(n-1) + 

fq3(n-1) + fq7(n-1), fq6(n) = fq6(n-1), fq3(n) = fq3(n-1) + 

fq4(n-1), fq7(n) = fq7(n-1), fq4(n) = fq4(n-1), fq0(0) = 1, fq1(0) 

= 1, fq5(0) = 1, fq2(0) = 1, fq6(0) = 1, fq3(0) = 1, fq7(0) = 1, 

fq4(0) = 1}, {fq0, fq1, fq5, fq2, fq6, fq3, fq7, fq4})

Résultat :

f q0(n)=
n

4

24
+
n

3

12
+

11∗n2

24
+

17∗n
12

+1

Nous observons donc bien que pour les arbres directionnels, il y a fort probablement un lien

entre la longueur du plus long chemin et le degré du polynôme. Cette relation sera démontrée un

peu plus tard.

4. Résolution de graphe contenant des cycles

Maintenant que nous connaissons bien les arbres directionnels, il est intéressant de s’attarder

à ce qu’il advient lorsqu’une boucle s’introduit. Pour entrer dans le vif du sujet, voici un premier

graphe simple qui nous servira d’exemple :

15

rsolve({fq0(n) = fq0(n-1) + fq1(n-1), fq1(n) = fq1(n-1) + fq2(n-1),

fq2(n) = fq2(n-1) + fq3(n-1), fq3(n) = fq3(n-1), fq0(0) = 1, fq1(0)

= 1, fq2(0) = 1, fq3(0) = 1}, {fq0, fq1, fq2, fq3})

Résultat : 

f q0(n)=
n

3

6
+

5∗n
6

+1

• Un second arbre avec plusieurs chemins tous de longueur différents :

La commande Maple :

rsolve({fq0(n) = fq0(n-1) + fq1(n-1) + fq5(n-1), fq1(n) = fq1(n-1) 

+ fq2(n-1) + fq6(n-1), fq5(n) = fq5(n-1), fq2(n) = fq2(n-1) + 

fq3(n-1) + fq7(n-1), fq6(n) = fq6(n-1), fq3(n) = fq3(n-1) + 

fq4(n-1), fq7(n) = fq7(n-1), fq4(n) = fq4(n-1), fq0(0) = 1, fq1(0) 

= 1, fq5(0) = 1, fq2(0) = 1, fq6(0) = 1, fq3(0) = 1, fq7(0) = 1, 

fq4(0) = 1}, {fq0, fq1, fq5, fq2, fq6, fq3, fq7, fq4})

Résultat :

f q0(n)=
n

4

24
+
n

3

12
+

11∗n2

24
+

17∗n
12

+1

Nous observons donc bien que pour les arbres directionnels, il y a fort probablement un lien

entre la longueur du plus long chemin et le degré du polynôme. Cette relation sera démontrée un

peu plus tard.

4. Résolution de graphe contenant des cycles

Maintenant que nous connaissons bien les arbres directionnels, il est intéressant de s’attarder

à ce qu’il advient lorsqu’une boucle s’introduit. Pour entrer dans le vif du sujet, voici un premier

graphe simple qui nous servira d’exemple :
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Conclusion

✤ A very useful tool for warning signature writers of rules that would 
take up too many resources...
which would allow denial-of-service attacks on Orchids itself (!).

✤ Beyond that, a very general technique for finding asymptotics of 
certain recurrence equations.  Could be used as in [Assaf, PhD, 2015] 
to deduce quantitative information flow guarantees from an 
estimation of the number of paths in execution trees?

✤ Other questions?
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