
The ORCHIDS Intrusion Detection Tool
�

Julien Olivain Jean Goubault-Larrecq

LSV/CNRS UMR 8643 & INRIA Futurs projet SECSI & ENS Cachan
61 avenue du président-Wilson, F-94235 Cachan Cedex

olivain@lsv.ens-cachan.fr
Phone: +33-1 47 40 75 50 Fax: +33-1 47 40 24 64

Abstract. ORCHIDS is an intrusion detection tool based on techniques for fast,
on-line model-checking. Temporal formulae are taken from a temporal logic tai-
lored to the description of intrusion signatures. They are checked against merged
network and system event flows, which together form a linear Kripke structure.

1 Introduction: Misuse Detection as Model-Checking

ORCHIDS is a new intrusion detection tool, capable of analyzing and correlating events
over time, in real time. Its purpose is to detect, report, and take countermeasures against
intruders. The core of the engine is based on the language and algorithm in the second
part of the paper by Muriel Roger and Jean Goubault-Larrecq [5]. The precise algorithm
is described in two reports [2, 1].

The point, explained in [5], is that intrusion detection, and specifically misuse de-
tection, whereby bad behavior (so-called attacks) is specified in some language and
alerts are notified when bad behavior is detected, is essentially a model-checking task.
The Kripke model to be analyzed is an event flow (collected from various logs, and
other system or network sources), and complex attack signatures are described in some
application-specific temporal logic.

Let us give an example of a modern at-
tack [4]. Far from being a gedankenexperi-
ment, this really works in practice and has
already been used to penetrate some sys-
tems. We also insist that, as systems get
more and more secure, we are faced with
more and more complex attacks, and [4] is
just one representative.
The schema on the right displays what a
modular kernel (e.g., Linux) does when a
user program (here with pid

�����
) calls an

unimplemented functionality.

socket(AF_SECURITY, ...)

Malicious program

Not implemented

pid = 100

Search for
a matching
kernel module

modprobe

User mode

pid=101

(kernel privileges)

not found

Fail

errno=ENOSYS

Kernel mode

(unimplemented system functionality)

�
Partially supported by the RNTL Project DICO, the ACI jeunes chercheurs “Sécurité infor-
matique, protocoles cryptographiques et détection d’intrusions” and the ACI cryptologie “Psi-
Robuste”.

The kernel will search for a kernel module that implements this functionality, calling
the modprobe utility to search and install the desired module. If modprobe does not
find any matching module, an error code is reported to the user program.

socket(AF_SECURITY, ...)

Malicious program

(unimplemented system call)

Not implemented

pid = 100

Search for
a matching
kernel module

modprobe

User mode

pid=101

(kernel privileges)

not found

Fail

errno=ENOSYS

Kernel mode

Kernel updates rights

pid 101 : root, root

1

2

(a) A race condition in the kernel

1

2

socket(AF_SECURITY, ...)

(unimplemented system call)

Not implemented

Search for
a matching
kernel module

modprobe

Kernel mode User mode

pid=101

(kernel privileges)
Kernel updates rights

pid 101 : root, root

ptrace(PTRACE_ATTACH, 101)

Insert shellcode

exec ("/bin/sh")

Shellcode runs
with root privileges

Attacker has
root privileges.

Malicious program

(b) The final exploit

Fig. 1. The ptrace Linux attack

While this is how this is meant to work, some versions of Linux suffer from a
race condition (Figure 1(a)): while modprobe has all kernel privileges, the kernel up-
dates the owner tables to make modprobe root-owned instead of user-owned while
modprobe has already started running. So there is a small amount of time where
the malicious program has complete control over the kernel process modprobe: be-
tween timepoints 1 and 2 . The malicious program takes this opportunity to attach
the modprobe process through the standard Unix debugging API function ptrace,
inserting a shellcode (malicious code) inside modprobe’s code. When modprobe
resumes execution, it will execute any code chosen by the intruder, with full root privi-
leges. This is summed up in Figure 1(b).

2 Challenges in On-Line, Real-Time Model-Checking

Intrusion detection requires specific logics to describe attack signatures, and specific
model-checking algorithms: see [5].

Compared to standard misuse detection tools, a temporal logic allows one to de-
scribe behavior involving several events over time: standard misuse detection tools (e.g.,
anti-virus software or simple network intrusion detection systems) match a library of
patterns against single events, and emit an alert once single so-called dangerous events
occur. More and more attacks nowadays involving complex, correlated sequences of
events, which are usually individually benign. In the ptrace attack, no individual

2

event (calling an unimplemented system call, calling ptrace, etc.) is dangerous per
se.

The second logic of [5], which is the basis for the signature language of ORCHIDS,
allows one to write temporal formulas of the typical form ���
	��������	���������������������� 	���� �� ��������� in particular, where � is the strict “there exists in the future” operator. In
general, more complex formulae can be written, using operators resembling Wolper’s
ETL [6]—except going through a transition denotes either no time-passing at all (� -
transitions), or � (not � as in ETL). Such formulae are described as finite automata;
we just give a signature for the ptrace exploit as an illustration.

A formula matching the ptrace exploit is the following automaton, described in
slightly idealized form:

 "!"!�#%$'&)(+*�,.-/,.021 3 4"5�6%$7(8-�1 3 9�:7;<$<#<="=>(+*�,.-?1
3

3 @%6�!<A�6�B7;�(+*�,.-C1
3

D�E�F 6�!%6�5"!G(+*�,.-�1 3 H�6�!�#%$'&)(+*�,.-�1

(1)

where I , J , K are existentially quantified first-order variables meant to match the
attacker’s pid, the target’s pid (i.e., modprobe’s pid), and the attacker’s effective uid
respectively; where L>M
MGNPO�QRSIUTVJWT'K�� abbreviates a formula (not shown) matching any
single event displaying a call to XPM
Y�NPO�Z by process I owned by K , on process J , with
the ATTACH command, [>\GZGOP�J]� matches single events where /sbin/modprobe is
Z�\PZGO ed with pid J , and the remaining formulas match single events where process I
issues a call to XPM
Y�NPO�Z on target J , with respective commands SYSCALL, GETREGS,
POKETEXT (used to insert the shellcode), and DETACH.

Compared to other more standard uses of model-checking in verification, the logic
of ORCHIDS is constrained to only specify eventuality properties. This is because the
model-checker needs to to work on-line, that is, by always working on some finite (and
expanding over time) prefix of an infinite sequence of events. Accordingly, formulae
such as (1) are built using 	 , � , and � only, and no negation.

Compared to standard model-checking algorithms, e.g., based on Büchi automata
for LTL, the model-checker is not allowed to make multiple passes over the sequence
of events (e.g., we cannot rebuild a product automaton each time a new event is added);
in general, intrusion detection tasks are submitted to very stringent efficiency require-
ments, both in time and in space.

Second, the logic of ORCHIDS includes some first-order features. As witnessed by
the use of variables I , J , K in (1), this logic can be seen as an existential fragment of
a first-order temporal logic.

Finally, such a model-checker cannot just report the existence of matches, but must
enumerate all matches among a given representative subset, with the corresponding
values of the existential variables, build an alert for each match and possibly trigger
countermeasures. This is the raison d’être behind the ^>Z7M
YPZ�_)`GSIUTVJa� formula in (1);
if we only wanted a yes/no answer, this would just be redundant, and could be erased
from the automaton; here, this is used to be able to report whether the attacker issued at
least one call to XGM
YGNPO�Z (PTRACE_GETREGS) or not during the attack.

3

The model-checking task for the logic of ORCHIDS is NP-complete, but can be done
using an efficient, on-line and real-time algorithm [5, 2, 1]. Moreover, this algorithm is
optimal [5, Theorem 4.11] in the following sense: for every attack signature (formula
�), if at least one attack (sequence of possibly non-contiguous events) is started at
event b<c that matches � , then exactly one attack is reported amongst these, the one with
the so-called shortest run. In practice, the latter is always the most meaningful attack
among all those that match.

3 Implementation

The ORCHIDS engine is implemented in C. At the core of ORCHIDS lies a fast vir-
tual machine for a massively-forking virtual parallel machine, and a bytecode compiler
from formulae (such as (1)) to this virtual machine. ORCHIDS uses a hierarchy of in-
put modules to subscribe to, and to parse incoming events, classified by input source
and/or event format. A main event dispatcher reads from polled and real-time I/O, reads
sequences of events in syslog format, snare, sunbsm, apache and other various
formats, coming from log files or directly through dedicated network connections, and
feeds the relevant events to the core engine. ORCHIDS is able to do both system-level
and network-based intrusion detection, simultaneously.

4 Conclusion

The XPM>YGNPO�Z attack above is one of the typical attacks that ORCHIDS can detect. Exper-
iments are going on at LSV to test ORCHIDS on actual network traffic and system event
flows. For more information, see the Web page [3].

References

1. J. Goubault-Larrecq. Un algorithme pour l’analyse de logs. Research Report LSV-02-18, Lab.
Specification and Verification, ENS de Cachan, Cachan, France, Nov. 2002. 33 pages.

2. J. Goubault-Larrecq, J.-P. Pouzol, S. Demri, L. Mé, and P. Carle. Langages de détection
d’attaques par signatures. Sous-projet 3, livrable 1 du projet RNTL DICO. Version 1, June
2002. 30 pages.

3. J. Olivain. ORCHIDS—real-time event analysis and temporal correlation for intrusion detec-
tion in information systems. http://www.lsv.ens-cachan.fr/orchids/, 2004.

4. W. Purczyński. Linux kernel privileged process hijacking vulnerability. http://www.
securityfocus.com/bid/7112, Mar. 2003. BugTraq Id 7112.

5. M. Roger and J. Goubault-Larrecq. Log auditing through model checking. In Proc. 14th IEEE
Computer Security Foundations Workshop (CSFW’01), Cape Breton, Nova Scotia, Canada,
June 2001, pages 220–236. IEEE Comp. Soc. Press, 2001.

6. P. Wolper. Temporal logic can be more expressive. Information and Control, 56(1/2):72–99,
1983.

4

A Appendix

A.1 Tool demonstration

The demonstration will emphasize the most important aspects of the intrusion detection
tool ORCHIDS. In addition to the points stressed in the tool paper itself, and in partic-
ular the challenges that have to be met for an on-line, real-time model-checker in such
specific environments, we want to show:

The large range of data sources and types: ORCHIDS can extract data and events from
multiple distributed sources (kernel system calls, network firewall actions, web
server, mail server, etc.) This wide variety of events enables ORCHIDS to corre-
late many events over time and over different event sources, a particularly wel-
come asset in a modern intrusion detection system. The demonstration shows the
modularity of ORCHIDS; it currently recognizes 400 data fields from about 50 data
sources.

On-line analysis: ORCHIDS continuously receives events from sources, as soon as
possible after their creation date (the delay depends of the communication method
for reporting events, either local or remotely, through udp). The analysis has to be
done in one pass, incrementally, over the event flow. The event flow, as seen by the
analyzer, will be shown during the demonstration.

Real-time detection and coutermeasure: ORCHIDS collects data, computes informa-
tion, and executes actions at any given instant of the detection process. ORCHIDS
is organized so as to react as quickly as possible to an attack, and must therefore
announce that an attack has been detected as soon as the last characteristic event of
the attack has been received. Additionally, ORCHIDS is able to generate interme-
diate reports, when only part of a temporal formula has been matched, i.e., when
it is only likely that a given attack is currently being perpetrated. If the temporal
formula eventually matches in whole, ORCHIDS will eventually confirm that the
attack occurred, through a complementary report.
Moreover, we shall demonstrate that ORCHIDS is able to take countermeasures
against attackers by killing compromised processes, closing suspect user accounts,
or blocking network connections by inserting new rules into a firewall.

These features will be demonstrated by running ORCHIDS itself, and by inspecting
the formulae, the currently monitored instances of these formulae (the threads), the
current event flow, through ORCHIDS’ administration interface (see Figure 2).

It is to be noted, too, that the attacks we shall demonstrate are no toy examples.
They are recent, sophisticated attacks, which have already been used in practice (by
hackers), and whose detection is particularly challenging.

The demonstration is done on a single laptop. Demonstrating a distributed intru-
sion detection system working on just one computer entails some specific difficulties or
deviations from real behavior:

– The analyzer runs on the audited computer; so it will analyze its own event flow, as
well as its sensors’. Some precautions have to be taken to avoid the analyzer to loop,
analyzing itself and therefore generating new events that have to be monitored, . . . ,
recursively.

5

Fig. 2. The ORCHIDS administration interface

6

– The real attacks we shall demonstrate are launched against the operating system
kernel, which can then end up in an unstable state. We have been careful to craft
our attacks so as to be perfect (from the attacker point of view), i.e., to steal the
target resource without crashing the whole system. In actual deployments (and in
our testbed at LSV), ORCHIDS would naturally be running on a remote machine
with only in connections to receive event flows, so that crashing an audited system
would not crash ORCHIDS.

– The activity of a single host is much less intense than that of an entire network.
To simulate the event flow in a realistic network environment, we shall use the
EvtGen tool (which we designed specifically to this end) to generate fake events,
too, simulating normal behaviour with randomly interspersed errors or anomalies.

The figure on the right shows how differ-
ents components interact on the demon-
stration computer.

Real
attacks

Generic
simulator

Admin
interface

Event flow

Orchids
analyzer

Sensors

Fig. 3. Running a ptrace attack without ORCHIDS

The complete presentation of the tool consists in launching a few attacks, once with
ORCHIDS disabled to show that the attacks really work and allow us to gain illegiti-
mate root access; and a second time to show that the same attacks will be detected
and countered by ORCHIDS. We do not require any specific equipment other than a
videoprojector; we shall use a laptop of our own, with all necessary tools installed.

7

We illustrate just one attack here, corresponding to the one described in the paper.
Figure 3 shows an intruder logging in through ssh on a machine (which will just be
localhost in the demonstration), compiling a ptrace attack and getting root priv-
ileges. (As the # sign at the final prompt shows.) Note that the attack is particularly
verbose, for pedagogical reasons, and explains every step it does: see the lines starting
with [+]. (An actual attack would not be as verbose.)

Fig. 4. ORCHIDS counters the ptrace attack

When ORCHIDS is enabled, the same attack produces the response shown in Fig-
ure 4. The illegal connection is closed, and the account is closed (the intruder cannot
log in again). The reason for the latter is that the attack actually succeeded, and there is
a risk that the intruder managed to install a setuid bit shell, which would allow him to
regain root privileges without even replaying an attack.

Figure 5 shows excerpts from the detailed report that ORCHIDS produces. Look at
the first event that matched the attack (top). This is the call to ptrace (see field 23,
rawsnare.syscall) using the ATTACH command (see field 50, rawsnare.ptrace_req)
by process 2987 (field 28, rawsnare.pid) with effective uid 501 (field 24, rawsnare.euid)
on process 2988 (field 51, rawsnare.ptrace_pid). The last event matching the at-
tack, namely, the DETACH event is event 6 in the report (not shown).

Compared to the idealized formula (1), the formula contains additional transitions to
track actions that follow the last characteristic event of the attack. Event 7 (not shown)
in particular is a call from the (malicious) shellcode to chown, and event 8 (shown)
is a call from the shellcode to chmod, indicating that the intruder managed to install
the setuid bit on some (now root-owned) file before it got kicked out by ORCHIDS:
the value of the protection bits (field 35, rawsnare.createmode) is decimal 3565,
i.e. octal 6755, aka. -rwsr-sr-x in more readable Unix notation. This confirms our
guess (above) that the intruder produced a setuid bit shell.

8

...

Fig. 5. Report on the ptrace attack

9

A.2 Status

ORCHIDS is currently in a prototype status. It is deployed experimentally in the network
of the laboratory where it was designed and implemented (LSV), consisting of about
150 equipments (servers, workstations and routers). It supports common standards to
make deployment easier (Unix syslog, sendmail, apache logs, snmp protocol, etc.) OR-
CHIDS is designed so as to run as autonomously as possible. Naturally, it still requires
a systems or security administrator.

It has been deployed for local, real-conditions testing on the network of the lab since
September, 2004. We do not want to publicize this yet, as this kind of announcement
invariably attracts script kiddies. Since ORCHIDS is still a prototype, this would only
augment the chances that our network be hacked into.

A.3 Availability

ORCHIDS is not available in source form. The single-laptop demonstration version is
however available free of charge for academic use only, in binary form (compiled for
Linux with glibc; current version is known to work on Linux 2.4.18-3, 2.4.20-20.7, and
2.4.20-24.7), upon request to the authors. This is subject to a specific licence.

Installation requires root privileges (for, e.g., modifying certain configuration files,
and installing the ORCHIDS in-kernel audit daemon). Additionally, to detect ptrace
attacks, the Snare in-kernel audit module should be installed, too. Several past ver-
sions of Snare are known not to report some of the events that we require, e.g., calls to
execve. To get around this kind of problem, the current version of ORCHIDS uses a
hacked-up version of Snare, which additionally reports system events in binary format
(while Snare outputs formatted text), for added efficiency.

The attacks demonstrated are known to work on Linux 2.4.18-3, Red Hat release 7.3
(Valhalla). The ptrace attack will not work on higher versions. In general, the demon-
strated versions will not work on up-to-date versions of Linux: we will not demonstrate
attacks that have not been countered already.

The mod_ssl attack (a network attack allowing an intruder to gain access to a
remote computer, which we shall demonstrate as a preparation for launching a ptrace
attack; not described here for space reasons) requires the Apache Web server v.1.3.23-
11 (exactly), the mod_ssl-2.8.7-4 Apache SSL extension (exact version again),
and the cryptographic package openssl-0.9.6b-18 (again, exact version).

We do not wish to distribute the attacks, whether in source or binary code. While
there is no jurisprudence yet, distributing the attacks might be interpreted as a felony on
our part under recent French laws (specifically, the LEN, i.e., the “Loi sur l’Electronique
Numérique”, Loi 2004-575 of June 21, 2004, see http://www.iris.sgdg.org/
actions/len/).

See the Web page http://www.lsv.ens-cachan.fr/orchids/ for more
information on ORCHIDS.

10

