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HOW | CAME TO KNOW DALE

» February 14th, 2002

De Jean Goubault-Larrecqi
Sujet pi-calculus as a theory in linear logic
Pour dale@cse.psu.edu?
Copie 2 roger@Isv.ens-cachan.frid

Dear Dale,

I was recently reading your 1992 paper
"The pi-calculus as a theory in linear logic",
and I was wondering whether you had pursued this
line of research, in particular for the pi-calculus.

» The same day (we had never met):

There are two lines that seems natural to follow here. One where you
map processes to terms and one where you map them to formulas (of, say,
linear logic). The former seems to work well. There is that paper you
mentioned about definitions. A recent paper on my web site discusses an
approach to doing the pi-calculus in that style as well (Encoding
Generic Judgments: Preliminary results). I'll assume, however, that
this style encoding is not what you are asking about.

If you map processes to logical formulas directly, you have a lot of
exciting things that can happen. My original efforts (an experiment, Iq to
really) failed, however, for at least two reasons (referring to the
paper "1he pi-calculus as a theory in (inear logic").




THE V QUANTIFIER



THE V QUANTIFIER [MILLER. TIU 2005]

> Vx . F(x) meant to say « F(x) holds for generic x »

» Solves similar problem as Gabbay and Pitts’ 11 (« new ») quantifier
[1999]

» Distinctive features:
> Vx applies at all types, Mx only to names
» Various obvious equivalences do not hold, e.g.
» Vx.Vy.F(xy) = Vy.Vx.F(x,y)
» Vx . F % F where x is not free in F

(except in Abella [Gacek 2008])

» Semantics by Schopp [2006]...
where however Vx applies only at specific base types.



OUR VARIANT OF V

» Vx will quantity at all types

» Our semantics will still verify:
> Vx.Vy.F(xy) = Vy.Vx.F(x,y)
> Vx . F = F where x is not free in F

» But it will enforce the following, valid in Abella, not in Dale
and Alwen’s original proposal:

> Vx.F=Vy.F
where x, y not free in E

» QOur logic will be classical, not intuitionistic
(out of laziness?).



CLASSICAL FOAY

(LL) (Az) — — (Cut)
Ic>1)— A IJ— JA LI — AA
rJJ—A — A I'—=A,JJ = A
(cL) (wL) (cR) (wR)
r,J— A r,J A I A,J I A,J
rLJ— A Jad) (= 1) I'—A,J (Jmd) (=)
g s A - r—AJ -
' — A (o> F) 1',(m>G')—>A( I o F)— A, (0>G) R)
2 D
op FOC)— A ' > A (e>FDOG)
M:m Ty F[M/z,]) — A ' — A, (e> Flho/z;])
(VL) (hg—r [resh) (VR)
I'(eoVr..F) — A ' — A (o> V2, . F)
C(oye:mo F) — A ' — A (o,z:70 F)
(VL) (VR)
Ly(o>Va,. F) — A I — A, (c>Vez, . F)

Here o is a local signature x1:71, ..., Xn!Tn
o[> F means «F where x1, ..., x,are generic»



NABLA-SETS

» Idea: D, is set of values in D after <n calls to V.




NABLA-MAPS

» We do not require that f, preserve new,.

» In particular, the following variants are isomorphic (on purpose!)




EXPONENTIAL OBJECTS

» Exponentials [D — E]| can be built by imitating exponentials in
the category Set' of presheaves over the poset |\:

» [D — E], = families of maps (fn)m=» that commute with old
> APD : (fw)m=n, X € Dy fo(x)

> For f=(fy)ne :CXD—E, Lam(f),(€) = (fn(0lduom(©), ))men

> new, elements: slightly subtle, needs old to be injective.

» Will serve to interpret simply-typed lambda-calculus.



V HAS ENOUGH MAPS

» This is a curious property for a presheaf-related category

» This will be required for soundness.



CHOICE

» Seemingly related, but really strong, and bad news actually:
» Prop (Choice). Every epi splits in V.

>




SOUNDNESS



SEMANTICS

» Standard structure S: provide nabla-sets for base types, all
others S[r] are given as exponentials.

» Terms:

Slz,]
S[MN]

S[Az,.M]

» Formulas:

S;p

Ty

T

App o (S[M], S[N])
A, (S[M])

iff (Sﬂjwl]]n(p)a’ e aS[[Mk]]n(p)) = S[[P]]n

never
iff (S;p W F or S;pEn G)
ift (for every d € S|7],, S;plr— d] =, F)
iff S;0ld=™ (p)[z — newi_"flﬂ)] =n+1 F.




IMPORTANT EQUIVALENCES

> Note: raising is valid because V
has enough maps:

If Vh,~,. Vx; . F holds, we want to show Vx; . Vy, . F.
Interpret x;as new,.1. For every value e for y,:

find f=(fw)me s S.t. far1(NeWny1) =€ e B S

Now interpret h, ., as f,, satisfying F. e m e

> This is 2 curious property for a presheat-related catego)

So VXT . Vy(P . F holds. > This will be required for soundness.




SOUNDNESS (FOR STANDARD STRUCTURES)

» Lemma. The following semantic equivalences hold:
» Vx;: . (FOG) =(Vx;. F) D (Vx;. G)
» Vx;.F=Vy,.F (x, y not free in F)
» Vx;.Vy, . F=VYh~,. Vx; . F (« raising »).

r—JA T, J— A

(LL) (Ax) p - (Cut)
I(e>Ll)— A IJ—JA O, — AA
T,J,J = A A T = AT A
(eL) (wL) (cR) (wR)
r,.—A rJ—A — A = AJ
rJ—A UaT) (~D) r—A,J (Ut (=B
rJ AT - r A -
F —A(e>F) T,(opG)— A T, (e F)— A (o>G)
(> 1) (> R)
IopFDOC)— A I A (e>FDGQ)
M:r T(oeF[M/z,]) — A I' — A, (e> Flho/z.;])
(VL) (hg—sr fresh) (VR)
I (epVr. . F) — A ' — A, (o>Vz,.F)
I(oyz:7 F) — A ' —A(o,z:70F)
(VL) (VR)
Iy(oxVa, F) — A I — A, (o> Ve, .F)

—— —*



INCOMPLETENESS



THE AXIOM OF CHOICE

» Consider (Vx, . 3y, . F) D (3h; -, . Vx; . Flhx/y]) (AC)

>—

» This is exactly what Weak Choice says. Remember:

CHOICE

0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

» Seemingly related, but really strong, and bad news actually:

» Prop (Choice). Every epi splits in V.

»




THE AXIOM OF CHOICE

» Consider (Vx, . 3y, . F) D (3h; -, . Vx; . Flhx/y]) (AC)
» Fact. (AC) is valid.

>_

» Proof. Anticipating slightly, there is a Henkin structure
with enough maps that invalidates (AC),
built by a diagonal argument.

(We take F=P(x,y), and build the interpretation of P so that
for each x there is a y satistying P,
but no lambda-term h maps every x to such a y.)



THE AXIOM OF CHOICE

» Consider (Vx, . 3y, . F) D (3h; -, . Vx; . Flhx/y]) (AC)
» Fact. (AC) is valid.

» Lemma. (AC) is not provable.

>—

» Note. This has nothing to do with nabla.
The same thing happens for any logic of higher-order terms.



COMPLETENESS



HENKIN STRUCTURES

» A standard cure [Henkin 1950]: instead of considering all nabla-

maps, restrict to subclasses of nabla-maps so that everything is still
defined.

Definition 4.1 [Henkin Universe). A Henkin universe £ for nabia ic the following data:

o for ecch type v, a nebiz-set S[r];

(A hor r ibl e deﬁnition o) """"""""""" We wrile Env for the provdvnct [ [ S[7], whers 2o ranges aver ol naricbles: Eng i the

of environments p ac level nn, nemely funcions mepping ceek variacle z- o an dem

pix.) € 8[r].:

o for rach lypc 7, @ sct S(T) of nable-maps fem Env Lo 7, conlansug ol the project

) We mUSt reqU.iI'e COmpatibﬂity w,, —where (n. b (p) = plx. ) Jor every envirenment p ot ievel n;

o for each pair of tupes o, 7, 2 nable-map App: Slp = 7| % Sl¢] =+ S| 7|, with &ie prop:

that for svery f € Sty = 7) and for cvery g € S(), Appc (f, g} is in S(7);

with f3n, etc.

o for every vaniable x; and each type T, o function Ay . S(7) — Slp = 7);

» We must also require that those e D
ShapM] = A SIML
subclasses have enough maps, o

1. for all Bn-converiible A-tevms M N @7, S|M] = S|N];

[ 2
L J » .
1 . e .o 2 for every Alervie M v Jor evmy n € M, S|IM), 6 dors wol depend on ply) ¥ ¥ s not

in M, namely: if plz) = p'(2) jor every 2 £y, then S[M[ap = S5[M].p';

for all types (p’ T, for every d E S[[T]]n-l— 1 2. {‘:«O{NT;{),.:_?].':; 2’61;;';'%{ »—f:sﬁ;]c‘b:]? n &€ N, for every environmen! p ot leve

there is an f € S[p—1], such that App, 1 (old,(f),new, ) =d.

» All such models are sound.
Standard structures are a particular case.



TERM (HERBRAND) STRUCTURES

» Assume a unique base type 1.

» Consider nominal A-terms, obtained by adjoining countably
many constants a; : t (« names »),1=1,2, ..., up to

» Application is syntactic application.

» Crucially, this has enough maps, meaning that:
for every N € S[t]+1,

there is an M € S[¢—T1], such that M(new,+1)=N.
(Take M=Ax:T.N[xM;...My/a,+1] where M;:t; are dummy terms.)



HINTIKKA THEORIES

> A signed judgment is =] = +o[>F (meaning «f is true/false»)

> A theory Tis a set of signed judgments.
T is consistent iff one cannot derive Jy, ..., J,, —=J’1, ..., J', by a cut-free proof,
for any +Jy, ..., +J,», -J'1, ..., S In T,




THE HINTIKKA LEMMA

» Proof. Standard: add all missing signed judgments one by
one, using an enumeration of those that should be considered
that lists each of them infinitely often.



HERBRAND MODELS FROM HINTIKKA THEQRIES

» For every local signature o=x1:71, ..., Xn:Tn,
let 0,= [newl/ X1, ..., New,/ xn] (with all new;'s of the right type)

» In other words,
we interpret x1:71, ..., Xu:Tn D F(x1, ..., Xn) as F(newy, ..., new,).



COMPLETENESS

» Proof. Assume Ji, ..., Ju —J’1, ..., ]’n 1s not cut-free provable.

{+J1, ..o, ¥Jm, —J’1, ..., =J’n} 1s a finite consistent theory.
Extend that to a Hintikka theory T.

T describes a Herbrand structure H.
InH, ], ..., Jm hold, but J’4, ..., J’»do not.
Hence H invalidates J1, ..., Jm —=J’1, ..., ['n.

» Corollary. Every provable FOA" sequent has a cut-free proof.



I'I1-C0MPLETENESS




RELATING HERBRAND AND STANDARD STRUCTURES

» Let T[r], be the nabla-set of nominal terms of type 1 at level n.

» Define a standard structure Sp by letting So[1]=TT:]
(extended to all types using exponential objects).

» In general, So[r] and T[r] are very different:
e.g., T[1—1] is countable, Sp[1—1] is not.

» We can relate So[7] and T[] by a Kripke logical relation:

>



PROPERTIES OF THE KRIPKE LOGICAL RELATION

» Proof. Standard.



PROPERTIES OF THE KRIPKE LOGICAL RELATION

» Basic Lemma. If 0(x,)R[¢]. p(x,) for every variable, then
M6 RIt], SolMI.(p), for every M:r.

» Proof. Standard.

>

> Proof. (Rough sketch.) By induction on types.
We build s[p—t1],as M~ (a » s[t]n(M (r[@]n(a))))m=n-
We then note that for every f, there is at most one M
such that M R[p—T], f.
We build r[¢—rt], by mapping f to the unique such M if it exists.



INCIDENTALLY. ...

» The Sandwich Lemma implies equational completeness for
nabla-sets, in the manner of [Friedman 1975] for sets:

» Proof. Assume So[MJo= Sol[NTo.
By the Basic Lemma, M R[t]o So[MTo and N R[t]o So[NTo.
By the Sandwich Lemma,
M=r[t]o(SolM]o) and N=r[r]o(So[NTo) (up to /317)
So M=N (up to fin).



FROM A HERBRAND STRUCTURE TO A STANDARD STRUCTURE

» Modify Sp to S, obtained by changing the new elements:
define new, of Si[7] as s[t].(new, of T[z]).

» Then Si[r] is a variant of So[r].

» We do not require that f, preserve new,.

> Everythin g we have said » In particular, the following variants are isomorphic

of So holds of S;.




A-FORMULAE

» Defn. A Ap-formula is one in which
the only V and 3 quantifications are first-order.
The V quantifications can be any order you wish.
The relation symbols can be higher-order as well.

» Proof. Structural induction on the formula,
using the previous results.



I'1,-FORMULAE

» Defn. A Ao-formula is one in which the only V and 3
quantifications are first-order.
The V quantifications can be any order you wish.

» Defn. A I'1;-Formula is a formula Vxi:11, ..., x.:7,. G,
where G is a Ao-formula.




I'1,-COMPLETENESS FOR STANDARD STRUCTURES

» Prop. If 6(x,)R[¢p]. p(xy) for every variable,
and F is a [1;-formula, then
S1%; p =, F implies T; 6 =, F.

» Proof. If F is valid, the previous proposition shows that
it holds in every Herbrand model.
Now apply Henkin completeness.

» Note. That includes every first-order formula, possibly
extended with V quantifications at every type.



CONCLUSION



OPEN PROBLEMS

v
» Is FOA + (AC) complete for standard structures?
I1;-completeness is meant to be a stepping stone for that.

» Can we dispense with the assumption that there is only one

base type 1?
I don’t think so,

probably requires modifying the notion of nabla-set.

» What about the intuitionistic cases?
Easy exercises, using Kripke models, in my opinion.

» Can we extend those results to the logic of Abella?
Should be doable: nabla-sets with an action of symmetric groups S,
on D,, with equivariant maps as morphisms;
relations should be required to be equivariant

and to satisfy d € S[P], iff old,.(d) € S[PJ,+1-



CONCLUSION
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th, Dale!




