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HOW I CAME TO KNOW DALE

➤ ~1990, I knew of Dale’s: 

➤ expansion tree proofs 

➤ uniform proofs 

➤ higher-order patterns 

➤ 𝝀-Prolog 

➤ etc. 

➤ but we had never got in touch.



HOW I CAME TO KNOW DALE

➤ February 14th, 2002 

➤ The same day (we had never met):



THE ∇ QUANTIFIER



THE ∇ QUANTIFIER [MILLER, TIU 2005]
➤ ∇x . F(x) meant to say « F(x) holds for generic x » 

➤ Solves similar problem as Gabbay and Pitts’ И (« new ») quantifier 
[1999] 

➤ Distinctive features: 

➤ ∇x applies at all types, Иx only to names 

➤ Various obvious equivalences do not hold, e.g. 

➤ ∇x . ∇y . F(x,y) ≉ ∇y . ∇x . F(x,y) 

➤ ∇x . F ≉ F where x is not free in F 

(except in Abella [Gacek 2008]) 

➤ Semantics by Schöpp [2006]… 
where however ∇x applies only at specific base types.



OUR VARIANT OF ∇
➤ ∇x will quantify at all types 

➤ Our semantics will still verify: 

➤ ∇x . ∇y . F(x,y) ≉ ∇y . ∇x . F(x,y) 

➤ ∇x . F ≉ F where x is not free in F 

➤ But it will enforce the following, valid in Abella, not in Dale 
and Alwen’s original proposal: 

➤ ∇x . F ≈ ∇y . F 
where x, y not free in F. 

➤ Our logic will be classical, not intuitionistic 
(out of laziness?).



CLASSICAL FOΛ∇

Here σ is a local signature x1:τ1, …, xn:τn  
σ▷F means «F where x1, …, xn are generic»



➤ Defn. A nabla-set D is: 

➤ a family (Dn)n ∈ N of non-empty sets 

➤ injective maps oldn : Dn → Dn+1 

➤ elements newn+1 ∈ Dn+1, ∉ Im oldn. 

➤ Idea: Dn is set of values in D after ≤n calls to ∇.

NABLA-SETS

D0
D1

D2
D3

new1new2
new3



NABLA-MAPS

➤ Defn. A nabla-map f : D → E is 

➤ a collection of maps fn: Dn → En, n ∈ N 

➤ such that oldn o fn = fn+1 o oldn 

➤ We do not require that fn  preserve newn. 

➤ In particular, the following variants are isomorphic (on purpose!)

D0
D1

D2
D3

new1new2
new3

D0
D1

D2
D3

new’1

new’2
new’3



➤ Prop. In the category ∇ of nabla-sets: 

➤ All non-empty products exist. 

➤ Every object is exponentiable. 

➤ Exponentials [D → E] can be built by imitating exponentials in 
the category SetN of presheaves over the poset N: 

➤ [D → E]n = families of maps (fm)m≥n that commute with old 

➤ App : (fm)m≥n, x ∈ Dn ↦ fn(x) 

➤ For f=(fn)n ∈ N:C×D→E, Lam(f)n(c)=(fm(oldn→m(c), _))m≥n 

➤ newn elements: slightly subtle, needs old to be injective. 

➤ Will serve to interpret simply-typed lambda-calculus.

EXPONENTIAL OBJECTS



∇ HAS ENOUGH MAPS

➤ Prop. For every e ∈ En+1, there is a nabla-map f : D → E such 
that fn+1(newn+1) = e. 

➤ This is a curious property for a presheaf-related category 

➤ This will be required for soundness.



➤ Seemingly related, but really strong, and bad news actually: 

➤ Prop (Choice). Every epi splits in ∇. 

➤ Prop (Weak Choice).  Let R ⊆ Dn × En. 
Assume that for every d, there is an e such that (d,e) ∈ R. 
Then there is an (fm)m≥n ∈ [D → E]n such that 
for every d, (d,fn(d)) ∈ R.

CHOICE



SOUNDNESS



SEMANTICS

➤ Standard structure S: provide nabla-sets for base types, all 
others S⟦τ⟧ are given as exponentials. 

➤ Terms: 

➤ Formulas:



IMPORTANT EQUIVALENCES

➤ Lemma.  The following semantic equivalences hold: 

➤ ∇xτ . (F ⊃ G) ≡ (∇xτ . F) ⊃ (∇xτ . G) 

➤ ∇xτ . F ≡ ∇yφ . F       (x, y not free in F) 

➤ ∇xτ . ∀yφ . F ≡ ∀hτ → φ . ∇xτ . F[hx/y]   (« raising »). 

➤ Note: raising is valid because ∇ 
has enough maps: 
 
 If ∀hτ → φ . ∇xτ . F holds, we want to show ∇xτ . ∀yφ . F. 
 Interpret xτ as newn+1. For every value e for yφ: 
   find f=(fm)m ∈ N s.t. fn+1(newn+1)=e 
   Now interpret hτ → φ as fn, satisfying F. 
 So ∇xτ . ∀yφ . F holds.



➤ Lemma.  The following semantic equivalences hold: 

➤ ∇xτ . (F ⊃ G) ≡ (∇xτ . F) ⊃ (∇xτ . G) 

➤ ∇xτ . F ≡ ∇yφ . F       (x, y not free in F) 

➤ ∇xτ . ∀yφ . F ≡ ∀hτ → φ . ∇xτ . F   (« raising »). 

➤ Corollary. Standard structures 
are sound for FOλ∇: 
Every derivable sequent 
is valid.

SOUNDNESS (FOR STANDARD STRUCTURES)



INCOMPLETENESS
… for standard structures



THE AXIOM OF CHOICE

➤ Consider (∀xφ . ∃yτ . F) ⊃ (∃hτ → φ . ∀xτ . F[hx/y])              (AC) 

➤ Fact.  (AC) is valid. 

➤ This is exactly what Weak Choice says.  Remember:



➤ Consider (∀xφ . ∃yτ . F) ⊃ (∃hτ → φ . ∀xτ . F[hx/y])              (AC) 

➤ Fact.  (AC) is valid. 

➤ Lemma. (AC) is not provable. 

➤ Proof.  Anticipating slightly, there is a Henkin structure 
       with enough maps that invalidates (AC), 
built by a diagonal argument. 
 
(We take F=P(x,y), and build the interpretation of P so that 
 for each x there is a y satisfying P, 
 but no lambda-term h maps every x to such a y.)

THE AXIOM OF CHOICE



➤ Consider (∀xφ . ∃yτ . F) ⊃ (∃hτ → φ . ∀xτ . F[hx/y])              (AC) 

➤ Fact.  (AC) is valid. 

➤ Lemma. (AC) is not provable. 

➤ Corollary.  Standard structures are incomplete for FOλ∇. 

➤ Note. This has nothing to do with nabla. 
The same thing happens for any logic of higher-order terms.

THE AXIOM OF CHOICE



COMPLETENESS
… for Henkin structures



➤ A standard cure [Henkin 1950]: instead of considering all nabla-
maps, restrict to subclasses of nabla-maps so that everything is still 
defined. 
(A horrible definition.) 

➤ We must require compatibility 
with βη, etc. 

➤ We must also require that those 
subclasses have enough maps, 
i.e.: 
for all types φ, τ, for every d ∈ S⟦τ⟧n+1, 
there is an f ∈ S⟦φ→τ⟧n such that Appn+1(oldn(f),newn+1)=d. 

➤ All such models are sound. 
Standard structures are a particular case.

HENKIN STRUCTURES



TERM (HERBRAND) STRUCTURES

➤ Assume a unique base type ι. 

➤ Consider nominal λ-terms, obtained by adjoining countably 
many constants ai : ι (« names »), i=1, 2, …, up to βη. 

➤ Let S⟦τ⟧n be {M nominal : τ | FreeNames(M) ⊆ {a1, …, an}} 
oldn is identity 
newn+1 is λx1,…, xm . an+1 , where τ=τ1→…→τm→ι. 

➤ Application is syntactic application. 

➤ Crucially, this has enough maps, meaning that: 
for every N ∈ S⟦τ⟧n+1, 
there is an M ∈ S⟦φ→τ⟧n such that M(newn+1)=N. 
(Take M=λx:τ.N[xM1…Mm/an+1] where Mi:τi are dummy terms.)



HINTIKKA THEORIES

➤ A signed judgment is ±J = ±σ▷F (meaning «J is true/false») 

➤ A theory T is a set of signed judgments. 
T is consistent iff one cannot derive J1, …, Jm →J’1, …, J’n by a cut-free proof, 
for any +J1, …, +Jm, –J’1, …, –J’n in T. 

➤ Defn. A Hintikka theory is a consistent theory T such that: 

➤ if +σ▷F ⊃ G is in T, then –σ▷F or +σ▷G is in T 

➤ if –σ▷F ⊃ G is in T, then +σ▷F and –σ▷G is in T 

➤ if +σ▷∀xτ . F is in T,  then +σ▷F[M/x] is in T for every M:τ 

➤ if –σ▷∀xτ . F is in T,  then –σ▷F[hσ/x] is in T for some variable h that does 

not occur in σ 

➤ etc. (Essentially, follow the deduction rules.)



THE HINTIKKA LEMMA

➤ Lemma. Every finite consistent theory is contained in some 
Hintikka theory. 

➤ Proof.  Standard: add all missing signed judgments one by 
one, using an enumeration of those that should be considered 
that lists each of them infinitely often.



HERBRAND MODELS FROM HINTIKKA THEORIES

➤ For every local signature σ=x1:τ1, …, xn:τn, 
let θσ=[new1/x1, …, newn/xn]       (with all newi's of the right type) 

➤ Prop. Assume a unique base type ι. 

➤ Every Hintikka theory T describes a Herbrand structure H 
where each relation symbol P holds of those tuples 
(M1θσ, …, Mkθσ) such that +σ▷P(M1, …, Mk) is in T. 

➤ Then, for every +J in T, J holds in H; 
          for every –J in T, J does not hold in H. 

➤ In other words, 
we interpret x1:τ1, …, xn:τn▷F(x1, …, xn) as F(new1, …, newn).



COMPLETENESS

➤ Thm. Assume a unique base type ι. 
Every sequent that holds in every Herbrand structure 
(a fortiori if it holds in every Henkin structure 
with enough maps) is provable, by a cut-free proof. 

➤ Proof.  Assume J1, …, Jm →J’1, …, J’n is not cut-free provable. 
{+J1, …, +Jm, –J’1, …, –J’n} is a finite consistent theory. 
  Extend that to a Hintikka theory T. 
  T describes a Herbrand structure H. 
   In H, J1, …, Jm hold, but J’1, …, J’n do not. 
Hence H invalidates J1, …, Jm →J’1, …, J’n. 

➤ Corollary.  Every provable FOλ∇ sequent has a cut-free proof.



Π1-COMPLETENESS
… for standard structures



RELATING HERBRAND AND STANDARD STRUCTURES

➤ Let T⟦τ⟧n be the nabla-set of nominal terms of type τ at level n. 

➤ Define a standard structure S0 by letting S0⟦ι⟧=T⟦ι⟧ 
(extended to all types using exponential objects). 

➤ In general, S0⟦τ⟧ and T⟦τ⟧ are very different: 
e.g., T⟦ι→ι⟧ is countable, S0⟦ι→ι⟧ is not. 

➤ We can relate S0⟦τ⟧ and T⟦τ⟧ by a Kripke logical relation: 

➤ Defn.  Let R[τ]n ⊆ T⟦τ⟧ × S0⟦τ⟧ be defined by: 

➤ R[ι]n is equality 

➤ M R[φ→τ]n f iff for every m≥n, 
                         for all N R[φ]m d, MN R[τ]m f(d).



PROPERTIES OF THE KRIPKE LOGICAL RELATION

➤ Basic Lemma. If θ(xφ)R[φ]n ρ(xφ) for every variable, then  
                         Mθ   R[τ]n  S0⟦M⟧n(ρ),     for every M:τ. 

➤ Proof.  Standard.



PROPERTIES OF THE KRIPKE LOGICAL RELATION

➤ Basic Lemma. If θ(xφ)R[φ]n ρ(xφ) for every variable, then  
                         Mθ   R[τ]n  S0⟦M⟧n(ρ),     for every M:τ. 

➤ Proof.  Standard. 

➤ Prop (Sandwich.) There are nabla-maps 
           s[τ] : T⟦τ⟧ → S0⟦τ⟧ and r[τ] : S0⟦τ⟧ → T⟦τ⟧ 
such that: 
           s[τ]n(M)=d  ⇒  M R[τ]n d  ⇒  M=r[τ]n(d) 

➤ Proof. (Rough sketch.) By induction on types. 
We build s[φ→τ]n as M ↦ (a ↦ s[τ]m(M (r[φ]m(a))))m≥n. 
We then note that for every f, there is at most one M 
                                      such that M R[φ→τ]n f. 
We build r[φ→τ]n by mapping f to the unique such M if it exists.



INCIDENTALLY…

➤ The Sandwich Lemma implies equational completeness for 
nabla-sets, in the manner of [Friedman 1975] for sets: 

➤ Thm. There is a standard structure S0 in which, 
for all closed terms M, N:τ, 
                                  M and N are βη-convertible 
if and only if       S0⟦M⟧0= S0⟦N⟧0. 

➤ Proof. Assume S0⟦M⟧0= S0⟦N⟧0. 
By the Basic Lemma, M R[τ]0 S0⟦M⟧0 and N R[τ]0 S0⟦N⟧0. 
By the Sandwich Lemma, 
             M=r[τ]0(S0⟦M⟧0) and N=r[τ]0(S0⟦N⟧0)   (up to βη). 
So M=N (up to βη).



FROM A HERBRAND STRUCTURE TO A STANDARD STRUCTURE

➤ Modify S0 to S1, obtained by changing the new elements: 
define newn of S1⟦τ⟧ as s[τ]n(newn of T⟦τ⟧). 

➤ Then S1⟦τ⟧ is a variant of S0⟦τ⟧. 

➤ Everything we have said  
of S0 holds of S1. 

➤ Given a Herbrand structure T, 
define a standard structure S1T 

by letting P be true of (d1, …, dk) in S1T at level n iff  
     P is true of (r[τ1]n(d1), …, r[τk]n(dk)) in T at level n.



Δ0-FORMULAE

➤ Defn. A Δ0-formula is one in which 
the only ∀ and ∃ quantifications are first-order. 
      The ∇ quantifications can be any order you wish. 
      The relation symbols can be higher-order as well. 

➤ Prop.  If θ(xφ)R[φ]n ρ(xφ) for every variable, 
           and F is a Δ0-formula, then  
                    T; θ ⊨n F if and only if S1T; ρ ⊨n F 

➤ Proof.  Structural induction on the formula, 
            using the previous results.



Π1-FORMULAE

➤ Defn. A Δ0-formula is one in which the only ∀ and ∃ 
quantifications are first-order. 
The ∇ quantifications can be any order you wish. 

➤ Defn. A Π1-Formula is a formula ∀x1:τ1, …, xn:τn . G,  
             where G is a Δ0-formula. 

➤ Prop.  If θ(xφ)R[φ]n ρ(xφ) for every variable, 
           and F is a Π1-formula, then  
                   S1T; ρ ⊨n F implies T; θ ⊨n F.



Π1-COMPLETENESS FOR STANDARD STRUCTURES

➤ Prop.  If θ(xφ)R[φ]n ρ(xφ) for every variable, 
           and F is a Π1-formula, then  
                   S1T; ρ ⊨n F implies T; θ ⊨n F. 

➤ Thm. Assume a unique base type ι. 
Every valid Π1-formula (in standard structures) is provable, 
with a cut-free proof. 

➤ Proof. If F is valid, the previous proposition shows that 
           it holds in every Herbrand model.  
Now apply Henkin completeness. 

➤ Note. That includes every first-order formula, possibly 
extended with ∇ quantifications at every type.



CONCLUSION



OPEN PROBLEMS

➤ Is FOλ∇ + (AC) complete for standard structures? 
                    Π1-completeness is meant to be a stepping stone for that. 

➤ Can we dispense with the assumption that there is only one 
base type ι? 
                                                                             I don’t think so,  
                                  probably requires modifying the notion of nabla-set. 

➤ What about the intuitionistic cases? 
                                   Easy exercises, using Kripke models, in my opinion. 

➤ Can we extend those results to the logic of Abella? 
     Should be doable: nabla-sets with an action of symmetric groups Sn 

                                                                     on Dn, with equivariant maps as morphisms;  
                                             relations should be required to be equivariant  
                                           and to satisfy d ∈ S⟦P⟧n iff oldn(d) ∈ S⟦P⟧n+1.



CONCLUSION

Happy th, Dale!


