DOMAIN-COMPLETE AND LCS-COMPLETE SPACES

Matthew de Brecht

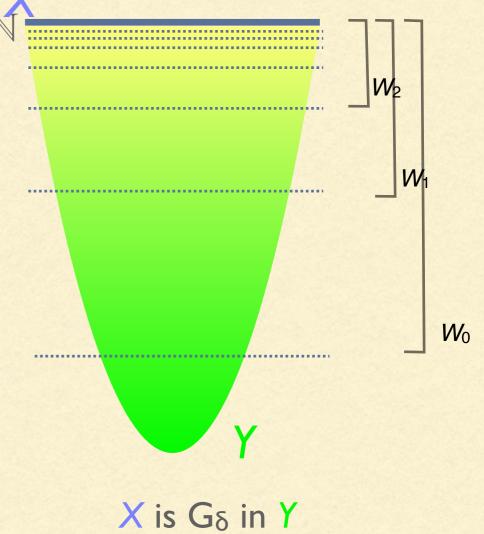
Graduate School of Human and Environmental Studies Faculty of Integrated Human Studies

Jean Goubault-Larrecq Xiaodong Jia Zhenchao Lyu

- Beyond domains and quasi-Polish spaces
- Motivating example: measure extension theorems
- Locating LCS-complete spaces
- If time permits: Stone duality, consonance, ...

G-DELTA SUBSETS

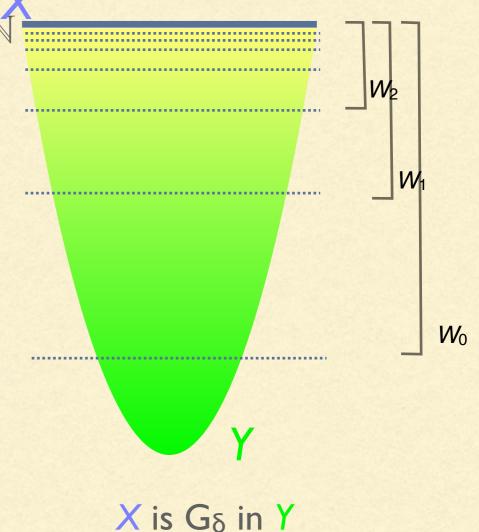
• G_{δ} = countable intersection of opens $W_n, n \in \mathbb{N}$ (with the subspace topology)



G-DELTA SUBSETS

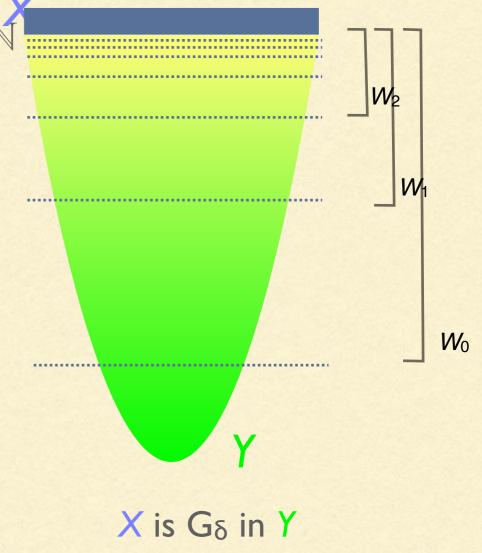
• G_{δ} = countable intersection of opens $W_n, n \in \mathbb{N}$ (with the subspace topology)

 Every Polish space X is G_δ in its space Y of formal balls and Y is an <u>ω-continuous dcpo</u> [Edalat,Heckmann98]



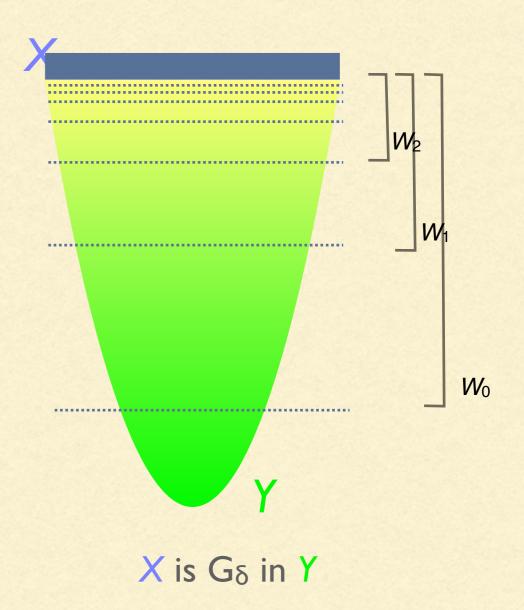
G-DELTA SUBSETS

- G_{δ} = countable intersection of opens $W_n, n \in \mathbb{N}$ (with the subspace topology)
- Every Polish space X is G_δ in its space Y of formal balls and Y is an <u>ω-continuous dcpo</u> [Edalat,Heckmann98]
- Same for quasi-Polish spaces = topological space underlying separable Smyth-complete quasi-metric [deBrecht]3]



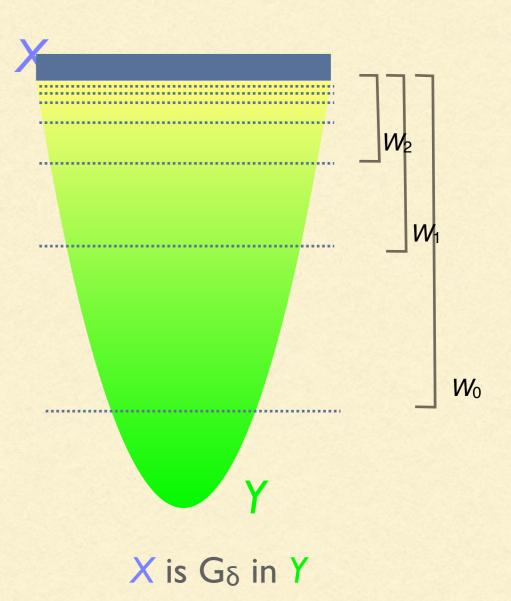
*-COMPLETE SPACES

- In fact:
 - G_{δ} subsets of <u> ω -continuous dcpos</u> = quasi-Polish spaces [GL,Ng17]



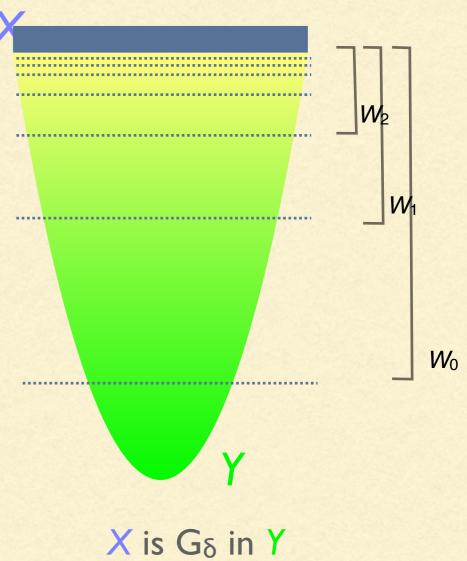
*-COMPLETE SPACES

- In fact:
 G_δ subsets of <u>ω-continuous dcpos</u>
 = quasi-Polish spaces [GL,Ng17]
- Defn. X is domain-complete iff
 X is G_δ in a <u>continuous dcpo</u> Y



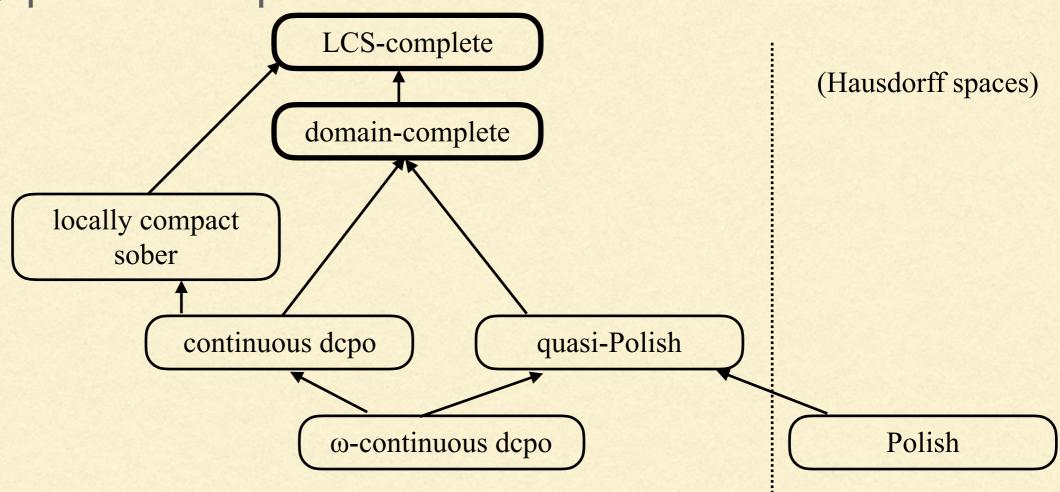
*-COMPLETE SPACES

- In fact:
 G_δ subsets of <u>ω-continuous dcpos</u>
 = quasi-Polish spaces [GL,Ng17]
- Defn. X is domain-complete iff
 X is G_δ in a <u>continuous dcpo</u> Y
- Defn. X is LCS-complete iff
 X is G_δ in a locally compact sober space Y

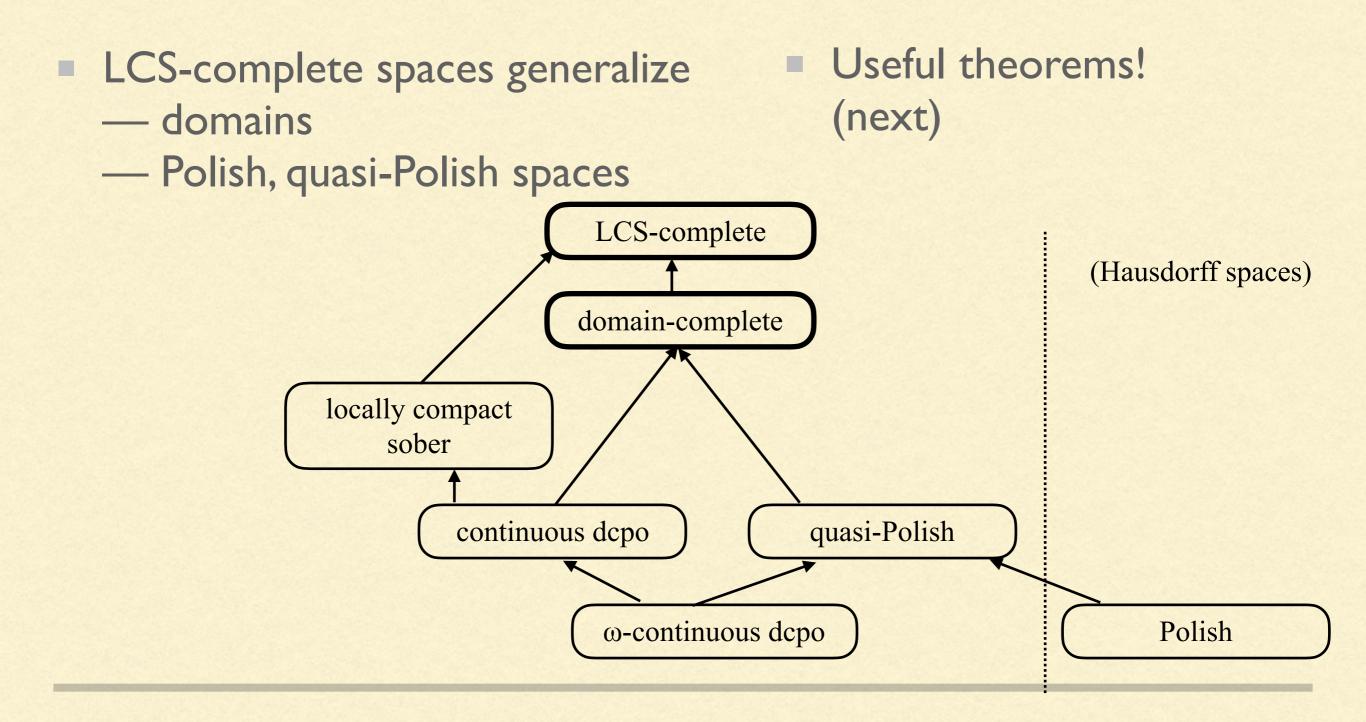


MOTIVATION

- LCS-complete spaces generalize
 - domains
 - Polish, quasi-Polish spaces



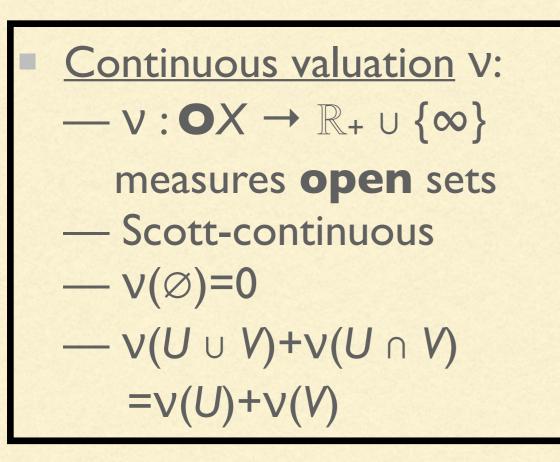
MOTIVATION



- Beyond domains and quasi-Polish spaces
- Motivating example: measure extension theorems
- Locating LCS-complete spaces
- If time permits: Stone duality, consonance, ...

- Beyond domains and quasi-Polish spaces
- Motivating example: measure extension theorems
- Locating LCS-complete spaces
- If time permits: Stone duality, consonance, ...

VALUATIONS AND MEASURES

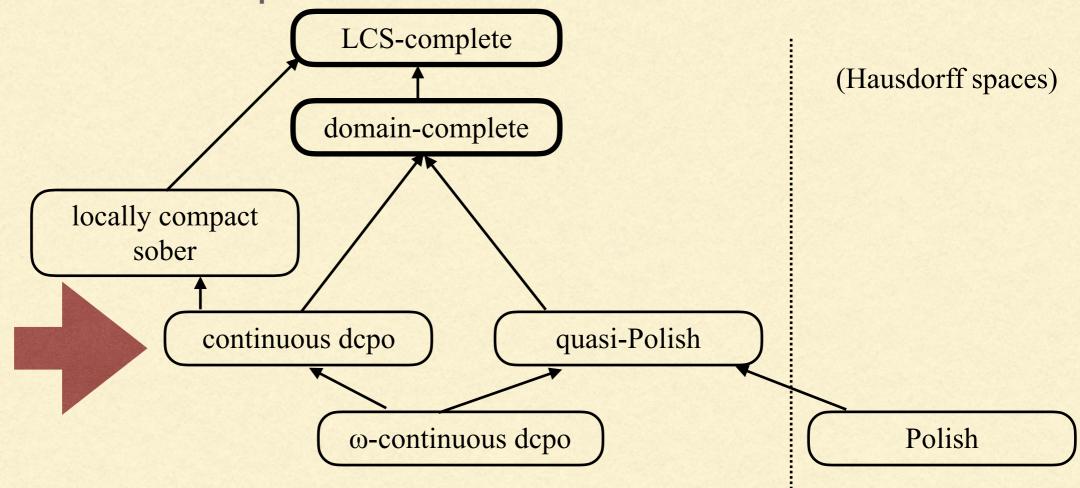


• Measure
$$\mu$$
:
 $-\mu : \mathcal{B}(X) \rightarrow \mathbb{R}_+ \cup \{\infty\}$
measures **Borel** sets
 $-\mu(\emptyset)=0$
 $-(E_n)_{n\in\mathbb{N}}$ pairwise disjoint
 $\Rightarrow \mu(\bigcup_n E_n)=\sum_n \mu(E_n)$

 Fact. Every measure on a countably-based space X restricts to a continuous valuation.

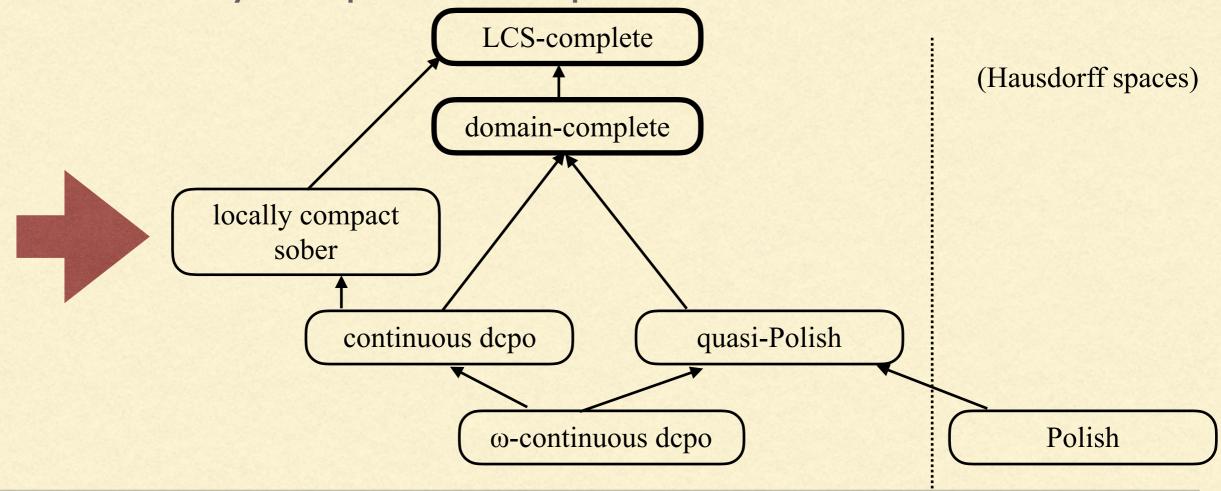
Conversely...

 Thm [Alvarez-Manilla,Edalat,Saheb-Djahromi00 + Jones90] Every (finite) continuous valuation extends to a measure — on a continuous dcpo.



Thm [Alvarez-Manilla00; Keimel, Lawson05]
 Every (loc. finite) continuous valuation extends to a measure

 on a locally compact sober space.

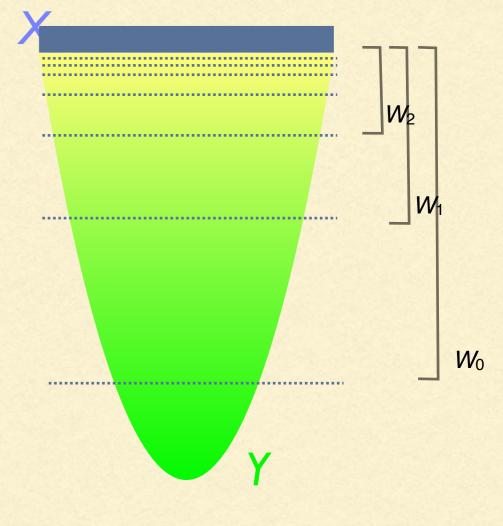


Thm [this paper] Every continuous valuation extends to a measure — on an LCS-complete space. LCS-complete (Hausdorff spaces) domain-complete locally compact sober continuous dcpo quasi-Polish

ω-continuous depo

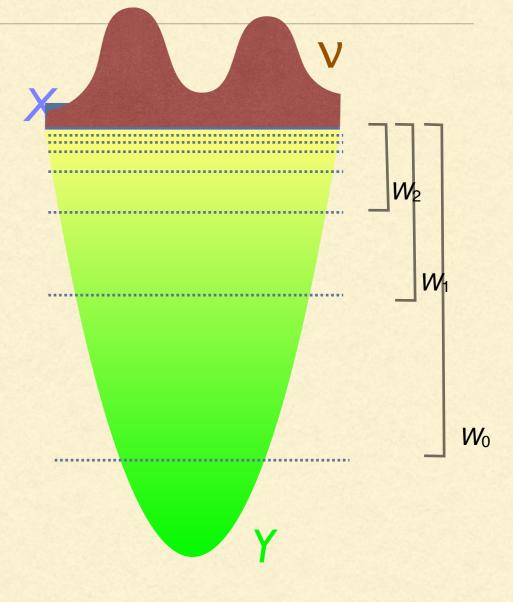
Polish

 Thm. Every continuous valuation V extends to a measure
 — on an LCS-complete space X.



X is G_{δ} in Y (loc. compact sober)

 Thm. Every continuous valuation V extends to a measure
 — on an LCS-complete space X.

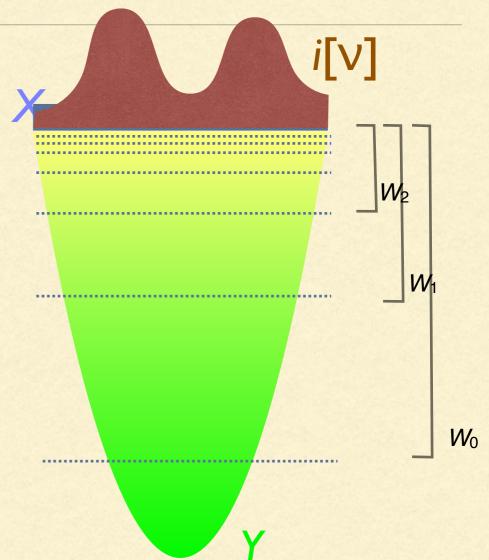


X is G_{δ} in Y (loc. compact sober)

 Thm. Every continuous valuation V extends to a measure
 — on an LCS-complete space X.

Proof.

Let $i: X \rightarrow Y =$ inclusion map i[v] is a continuous valuation on Y $i[v](V) = v(V \cap X)$

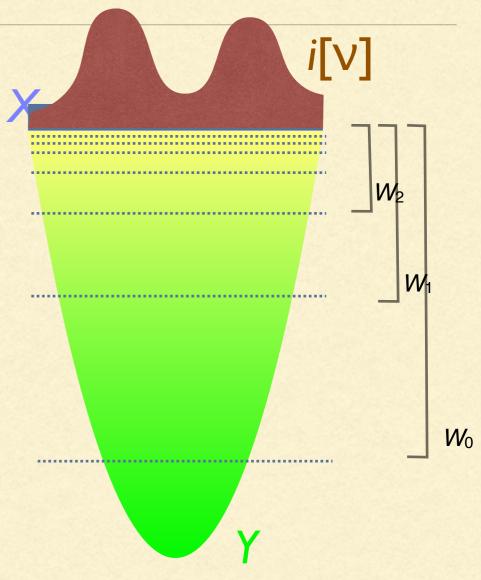


X is G_{δ} in Y (loc. compact sober)

 Thm. Every continuous valuation V extends to a measure
 — on an LCS-complete space X.

Proof.
$$i[v](V) = v(V \cap X)$$

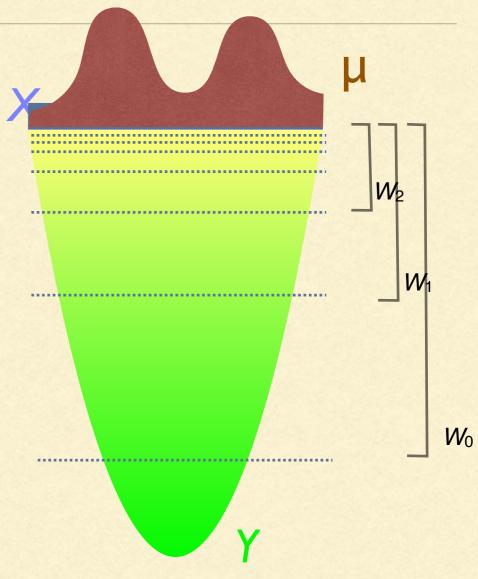
- *i*[V] extends to a measure µ on Y by [AM00,KL05]
- hence on X, which is Borel in Y



 Thm. Every continuous valuation V extends to a measure
 — on an LCS-complete space X.

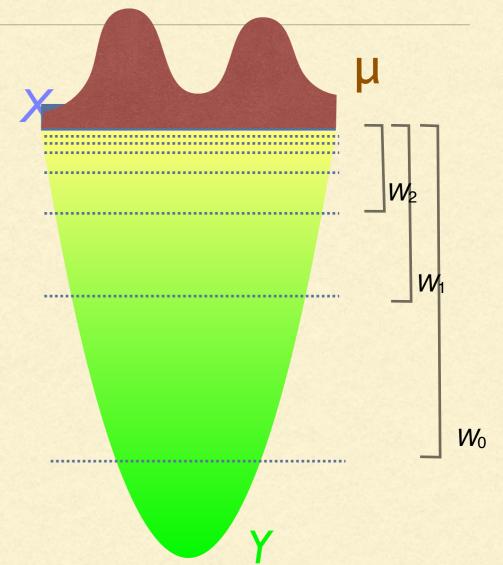
Proof.
$$i[v](V) = v(V \cap X)$$

- *i*[V] extends to a measure µ on Y by [AM00,KL05]
- hence on X, which is Borel in Y



- Thm. Every continuous valuation V extends to a measure — on an LCS-complete space X.
- Proof. *i*[V] extends to a measure µ on Y by [AM00,KL05] hence on X

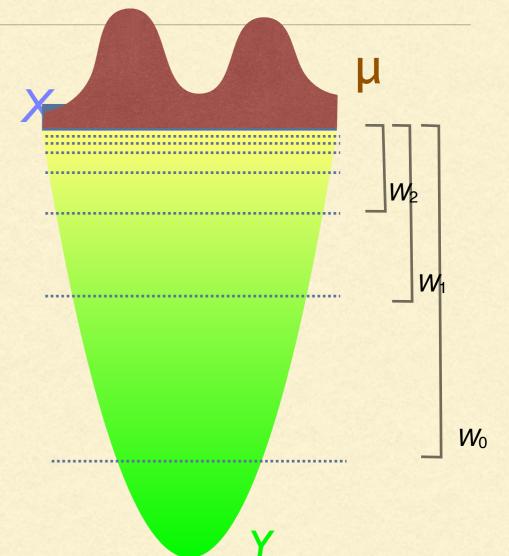
• for every open U of X, $U = V \cap X$ for some open V of Y $= \bigcap_n (V \cap W_n)$, so $\mu(U) = \inf_n \mu(V \cap W_n) = \inf_n \nu(U) = \nu(U)$. \Box



- Thm. Every continuous valuation V extends to a measure — on an LCS-complete space X.
- Proof. *i*[V] extends to a measure µ on Y by [AM00,KL05] hence on X

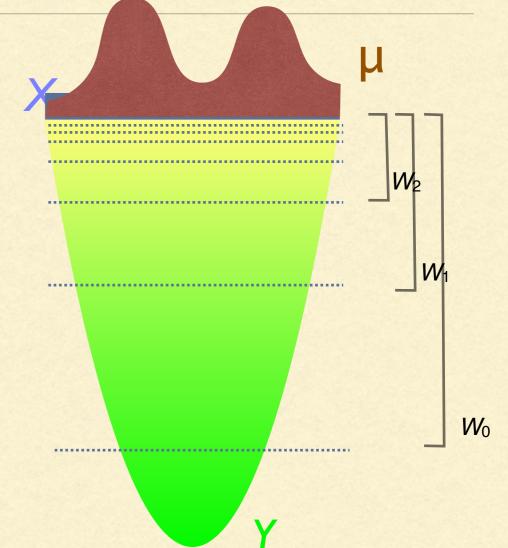
• for every open U of X, $U = V \cap X$ for some open V of Y $= \bigcap_n (V \cap W_n)$, so $\mu(U) = \inf_n \mu(V \cap W_n) = \inf_n \nu(U) = \nu(U)$. \Box

works only if V (hence μ) bounded...



- Thm. Every continuous valuation V extends to a measure — on an LCS-complete space X.
- Proof. *i*[V] extends to a measure µ on Y by [AM00,KL05] hence on X

• for every open U of X, $U = V \cap X$ for some open V of Y $= \bigcap_n (V \cap W_n)$, so $\mu(U) = \inf_n \mu(V \cap W_n) = \inf_n \nu(U) = \nu(U)$. \Box



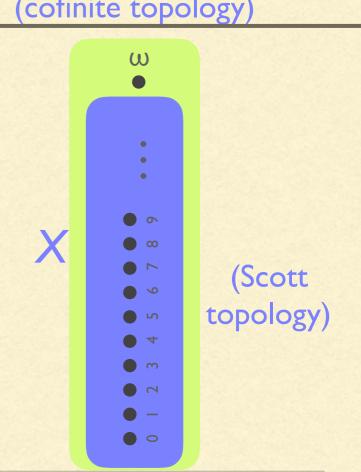
... otherwise use tricks introduced by Heckmann (1996)

Thm. Every continuous valuation V extends to a measure — on an LCS-complete space X. This is tight [deBrecht95]

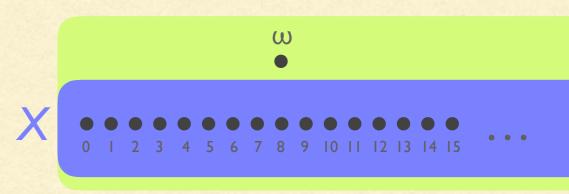
ω

(cofinite topology)

• (Right) both X are F_{σ} in their sobrifications

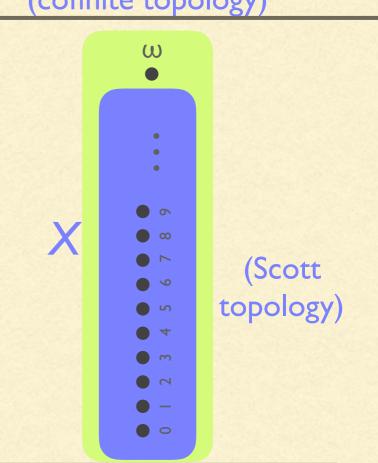


Thm. Every continuous valuation V extends to a measure — on an LCS-complete space X. This is tight [deBrecht95]



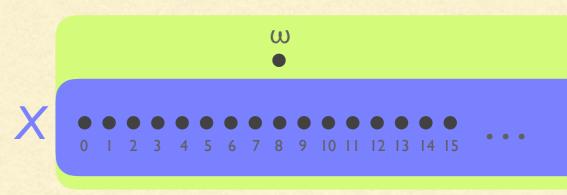
(cofinite topology)

- (Right) both X are F_{σ} in their sobrifications
- Take v / v(U) = I for every non-empty U



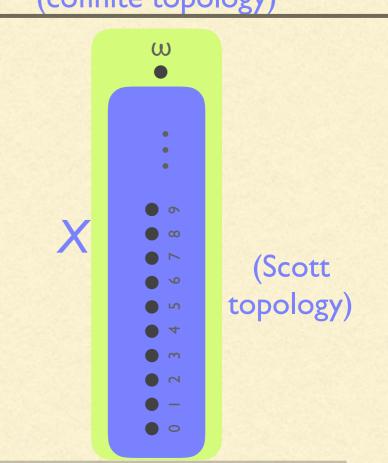
 Thm. Every continuous valuation V extends to a measure

 — on an LCS-complete space X.
 This is tight [deBrecht95]



(cofinite topology)

- (Right) both X are F_{σ} in their sobrifications
- Take v / v(U) = I for every non-empty U
- Any µ extending ∨ must satisfy µ({n})=0 hence µ=0... which does not extend ∨. □



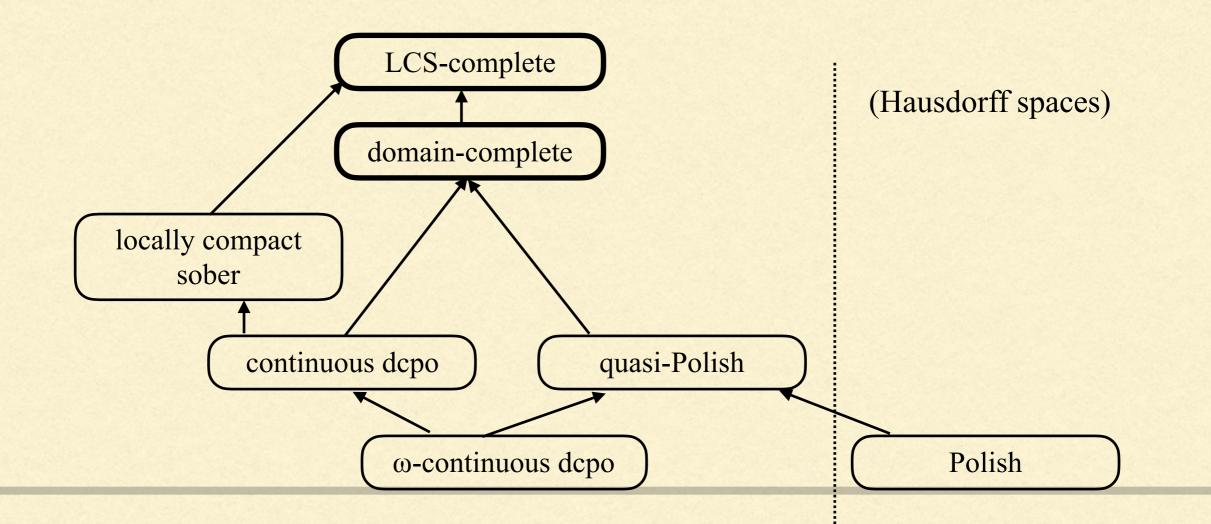
- Beyond domains and quasi-Polish spaces
- Motivating example: measure extension theorems
- Locating LCS-complete spaces
- If time permits: Stone duality, consonance, ...

- Beyond domains and quasi-Polish spaces
- Motivating example: measure extension theorems
- Locating LCS-complete spaces

If time permits: Stone duality, consonance, ...

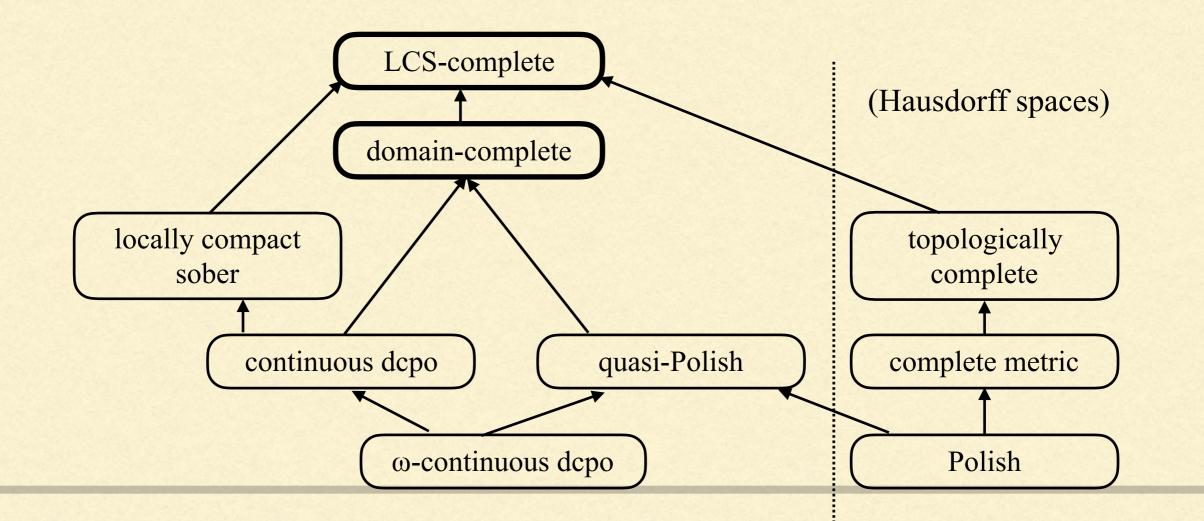
LOCATING *-COMPLETE SPACES

Čech's topologically complete spaces [1937] = G_δ of compact T₂ spaces contain all completely metrizable spaces



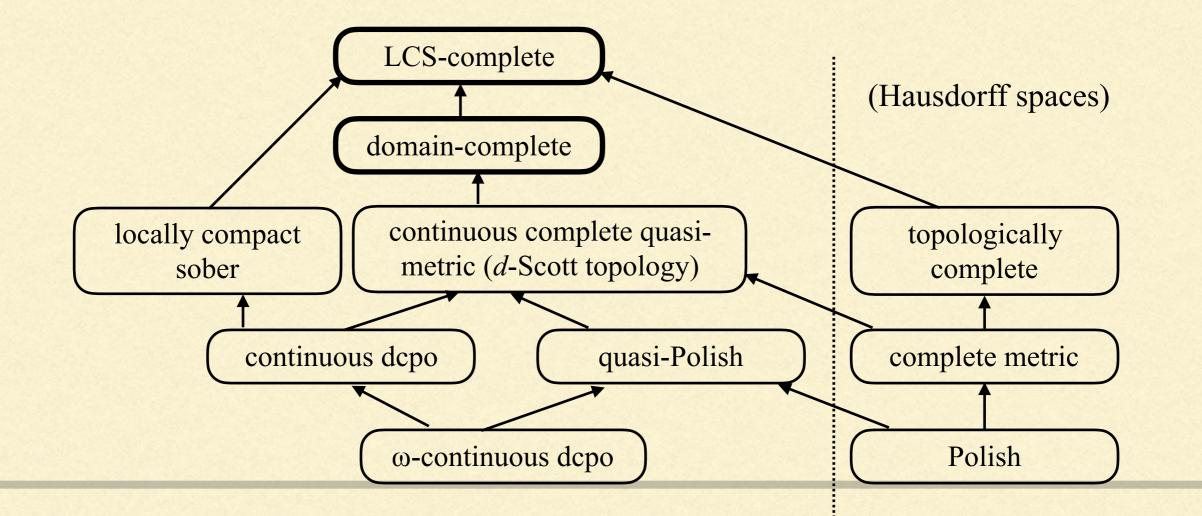
LOCATING *-COMPLETE SPACES

Čech's topologically complete spaces [1937] = G_δ of compact T₂ spaces contain all completely metrizable spaces

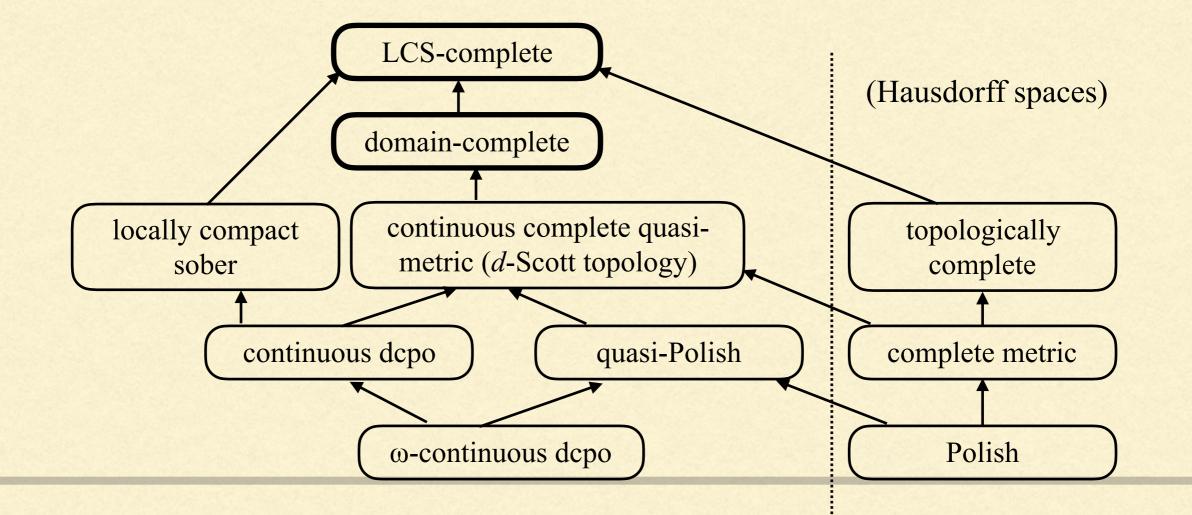


LOCATING *-COMPLETE SPACES

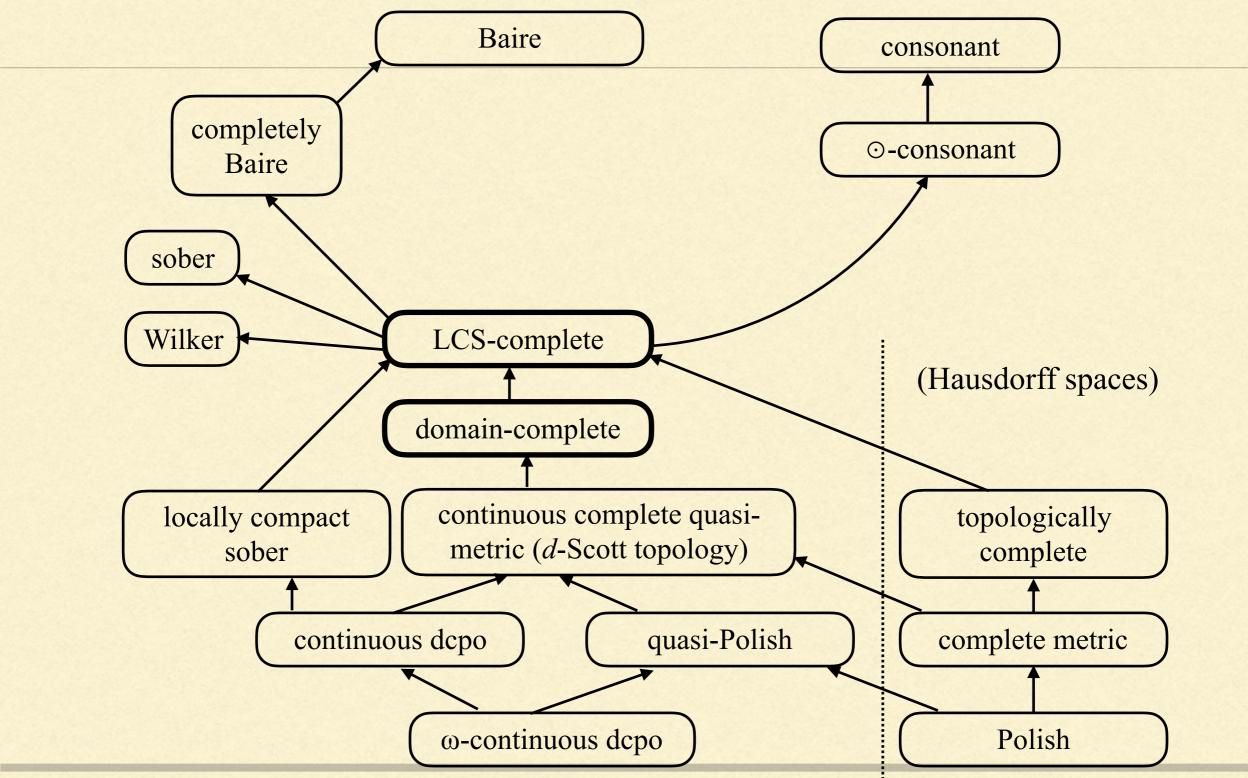
 Continuous complete quasi-metric spaces [Kostanek, Waszkiewicz10] embed as Gδ subsets of their poset of formal balls — a continuous dcpo.



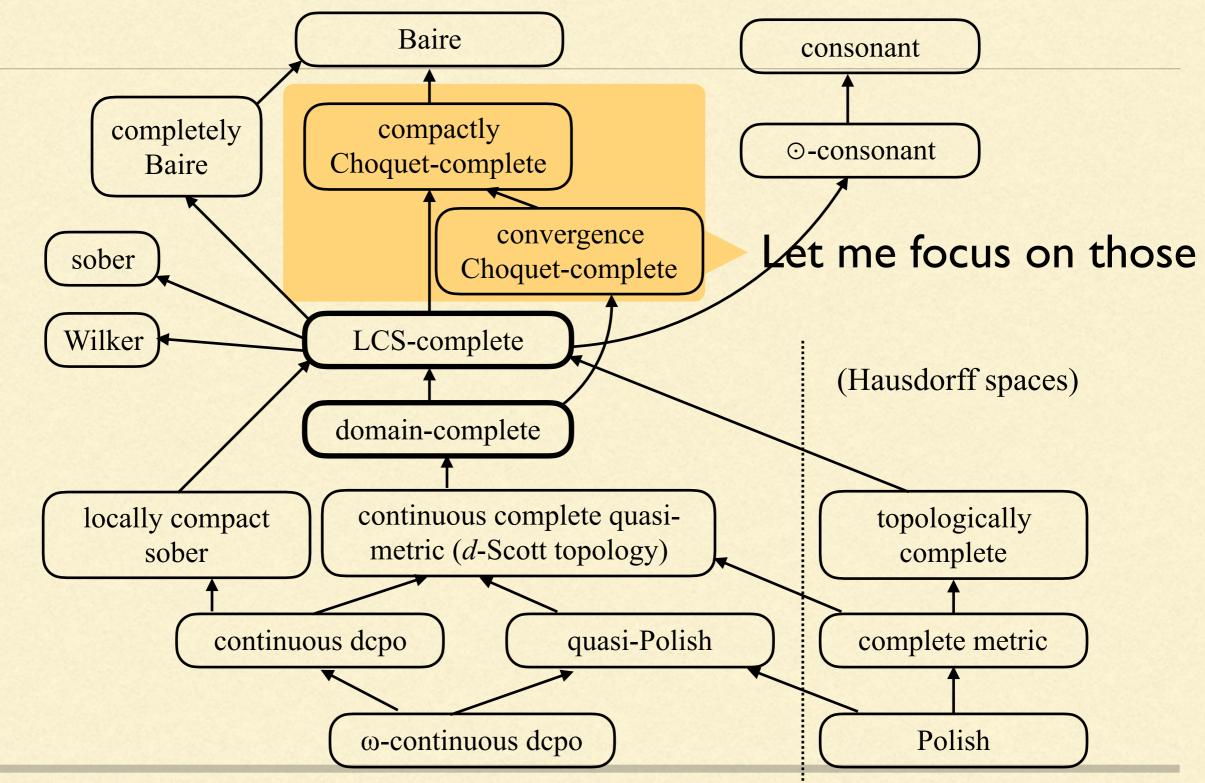
PROPERTIES



PROPERTIES

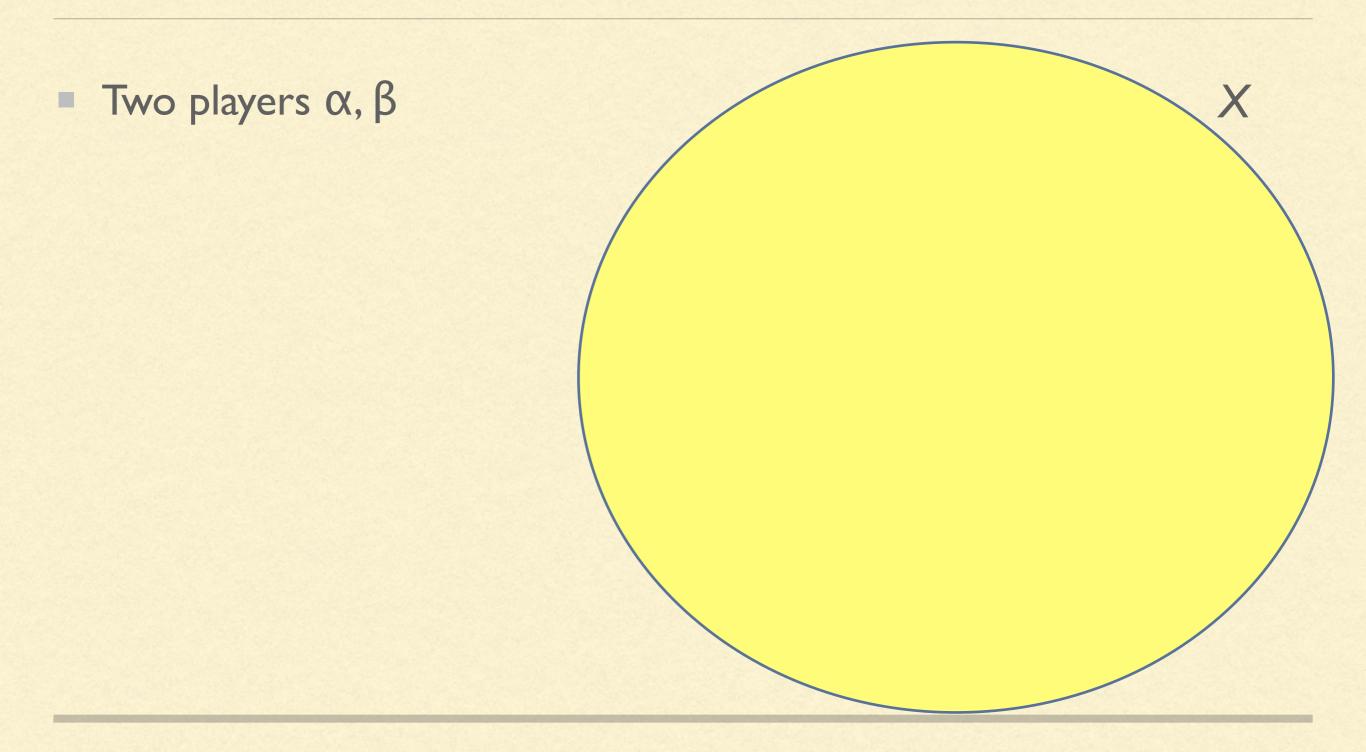


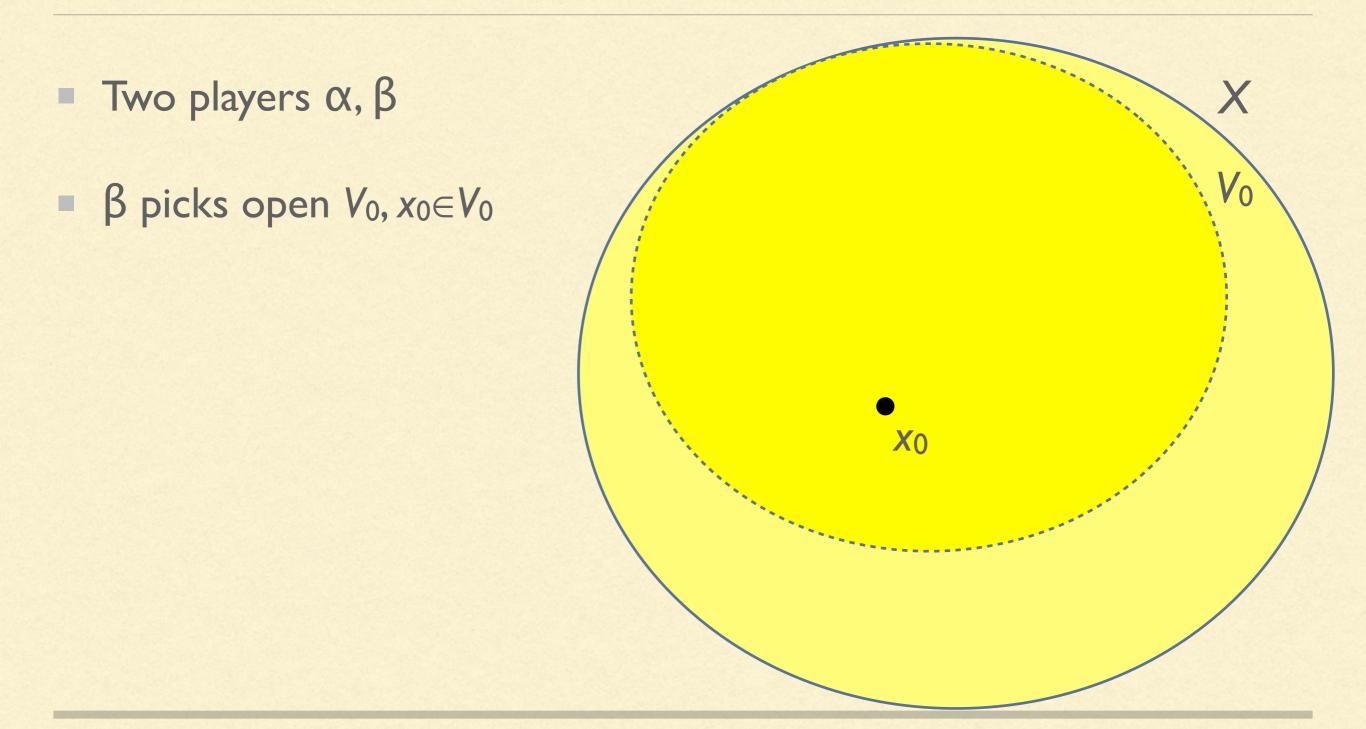
PROPERTIES



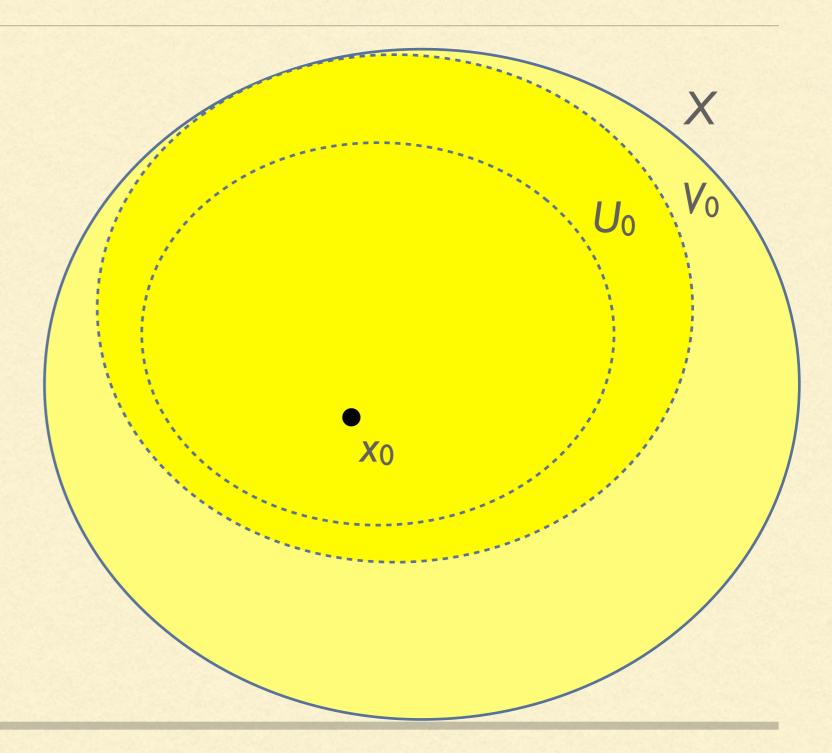
THE STRONG CHOQUET GAME

Two players α, β

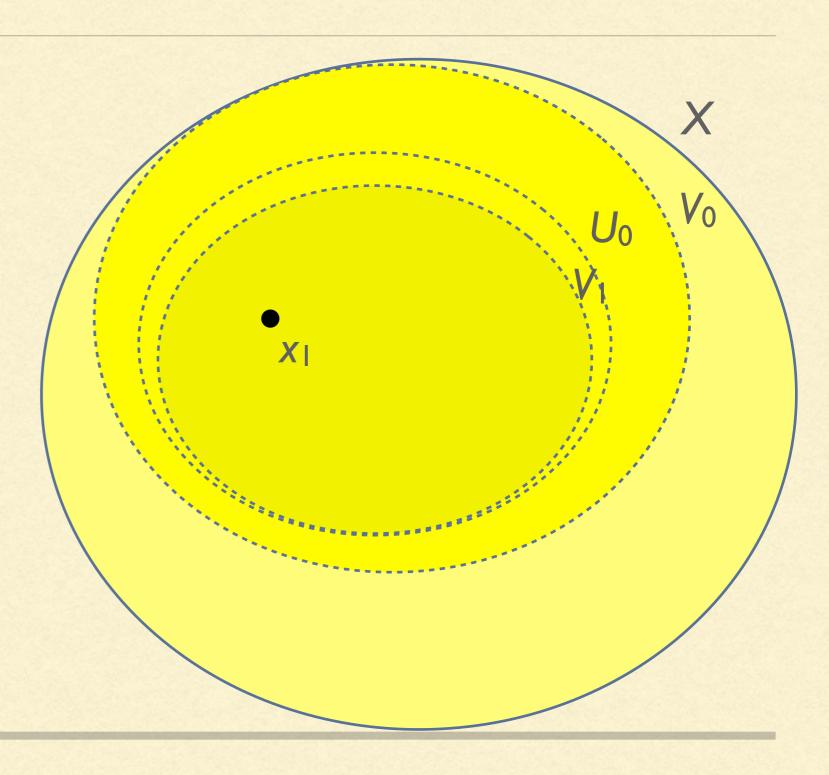




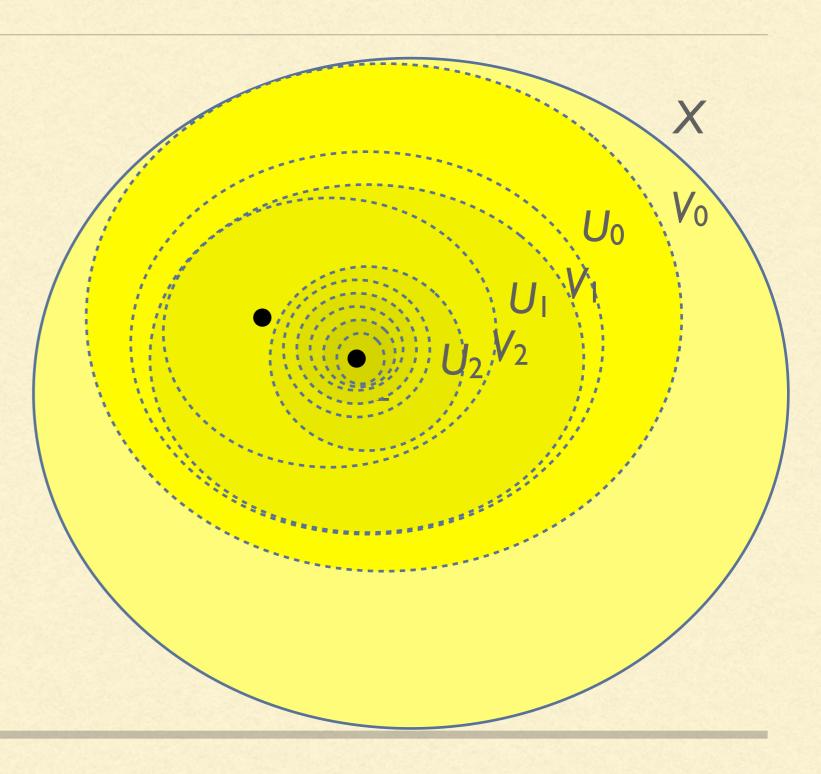
- Two players α, β
- β picks open $V_0, x_0 \in V_0$
- α picks smaller open U₀
 containing x₀



- Two players α, β
- β picks open $V_0, x_0 \in V_0$
- α picks smaller open U₀
 containing x₀
- β picks smaller open V_1 , $x_1 \in V_1$



- Two players α, β
- β picks open $V_0, x_0 \in V_0$
- α picks smaller open U₀
 containing x₀
- β picks smaller open V_1 , $x_1 \in V_1$

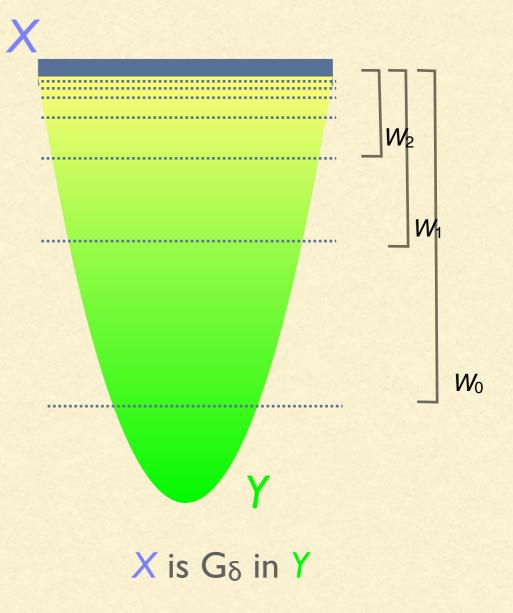


• X Choquet-complete iff whatever β 's strategy, α can ensure $\bigcap_n U_n \neq \emptyset$

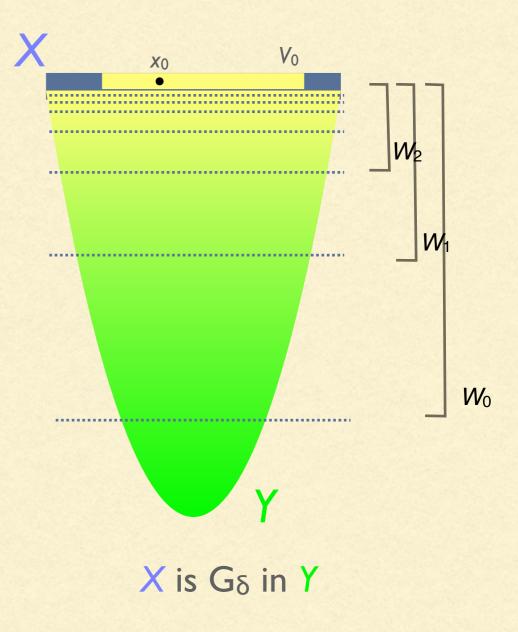


- X Choquet-complete iff whatever β 's strategy, α can ensure $\bigcap_n U_n \neq \emptyset$
- X convergence Choquetcomplete [Dorais,Mummert]0]
 iff α can ensure that (U_n)_n is a base of neighborhoods of some point.

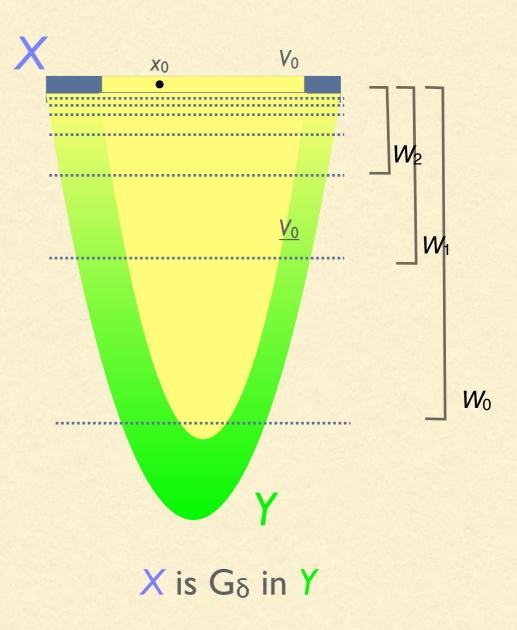
- X Choquet-complete iff whatever β 's strategy, α can ensure $\bigcap_n U_n \neq \emptyset$
- X convergence Choquetcomplete [Dorais,Mummert]0]
 iff α can ensure that (U_n)_n is a base of neighborhoods of some point.
- Thm [deBrecht13]. Quasi-Polish
 = convergence Choquet-complete
 - + countably-based



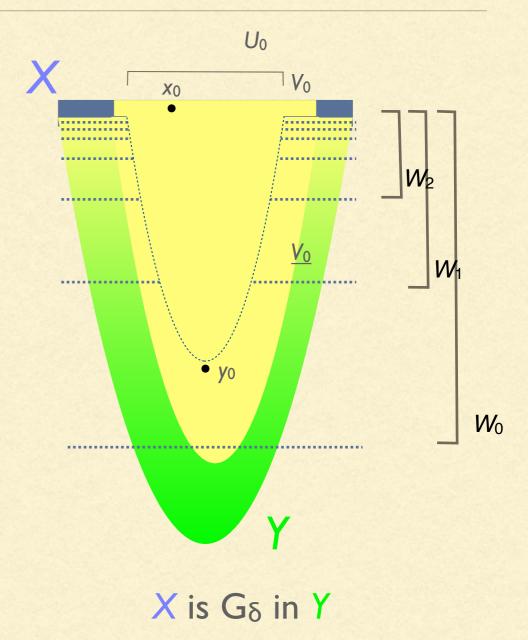
• β picks open $V_0, x_0 \in V_0$

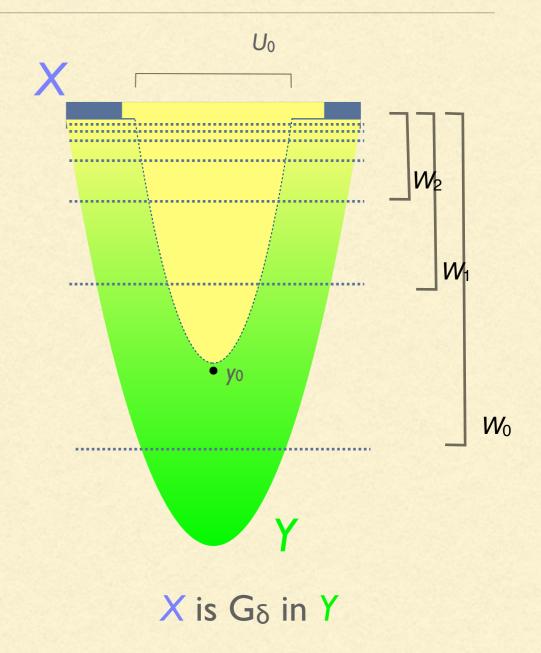


• β picks open $V_0, x_0 \in V_0$

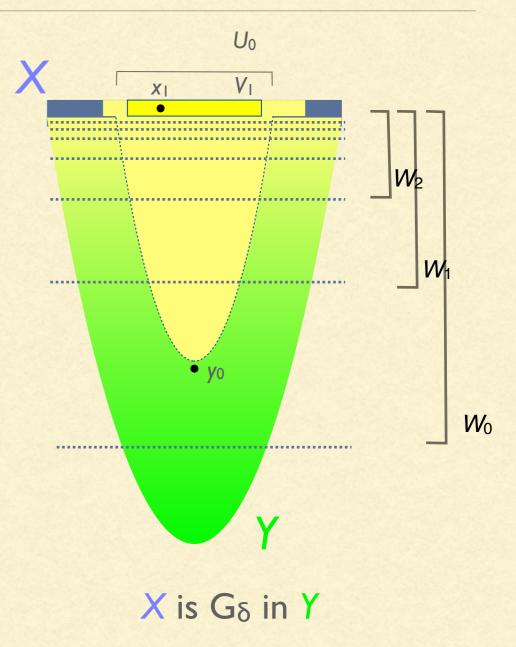


- β picks open $V_0, x_0 \in V_0$
- α finds $y_0 \ll x_0$, in $\underline{V_0} \cap W_0$, and plays $U_0 = \uparrow y_0 \cap X$.

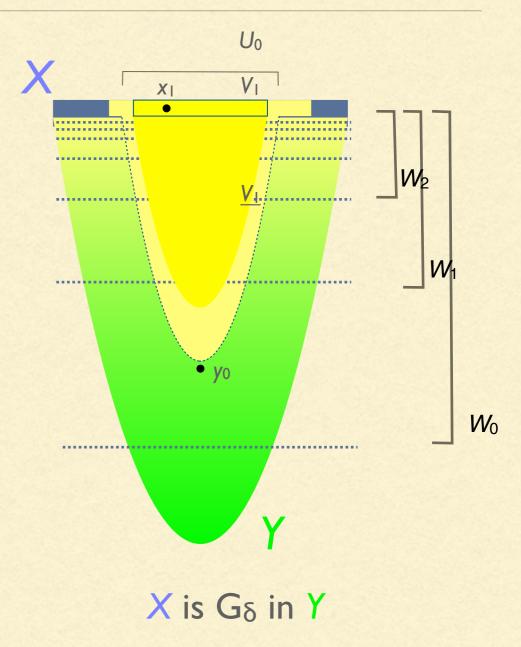




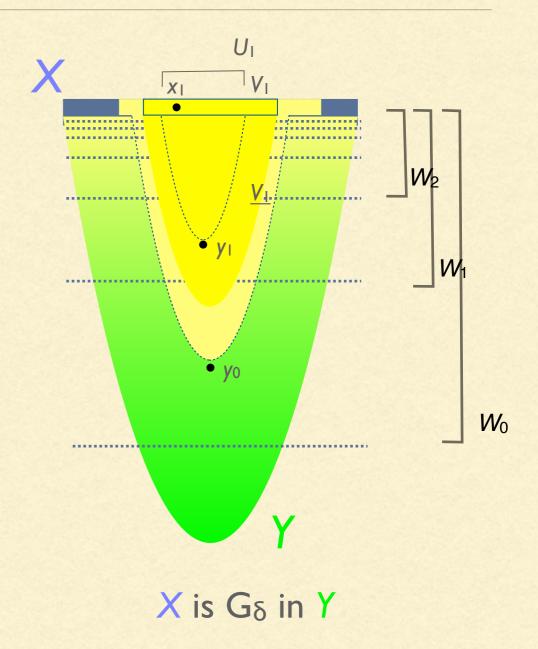
• β picks smaller open V_1 , $x_1 \in V_1$



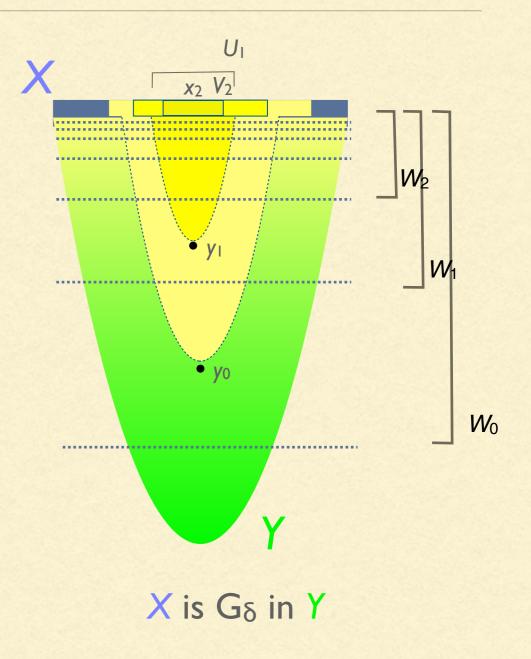
• β picks smaller open V_1 , $x_1 \in V_1$



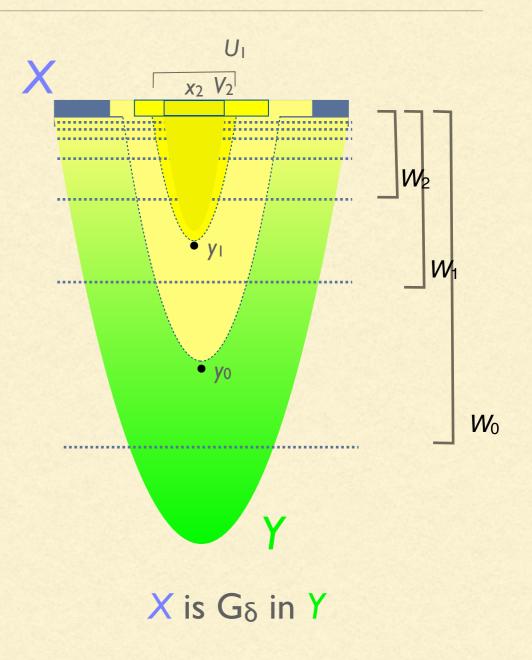
- β picks smaller open V_1 , $x_1 \in V_1$
- α finds $y_1 \ll x_1$, in $V_1 \cap W_1$, and plays $U_1 = \uparrow y_1 \cap X$.



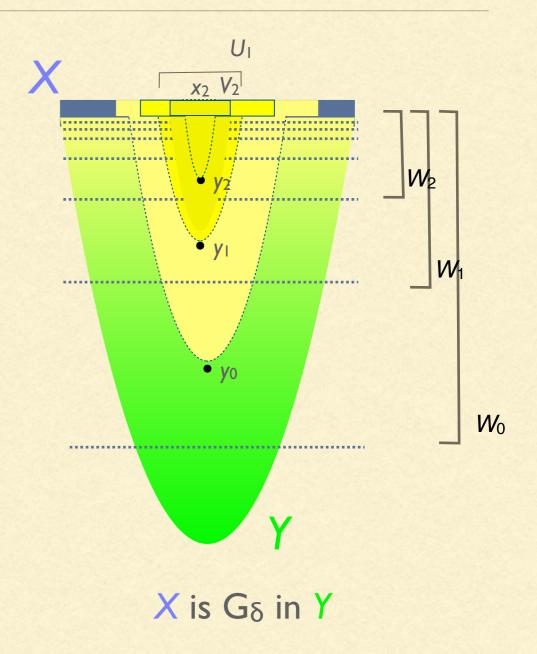
• β picks smaller open V_2 , $x_2 \in V_2$



• β picks smaller open V_2 , $x_2 \in V_2$

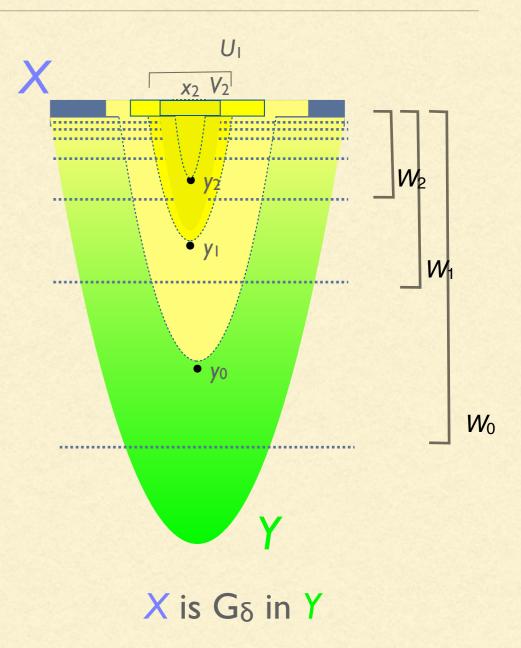


- β picks smaller open V_2 , $x_2 \in V_2$
- α finds $y_2 \ll x_2$, in $V_2 \cap W_2$, and plays $U_2 = \uparrow y_2 \cap X$

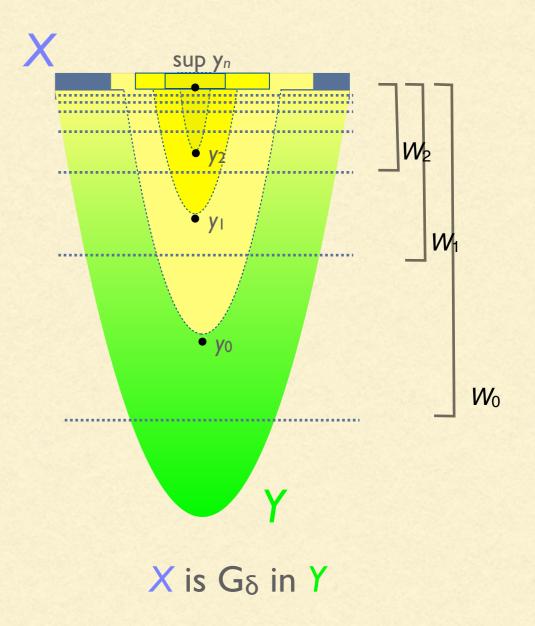


- β picks smaller open V_2 , $x_2 \in V_2$
- α finds $y_2 \ll x_2$, in $V_2 \cap W_2$, and plays $U_2 = \uparrow y_2 \cap X$

etc.

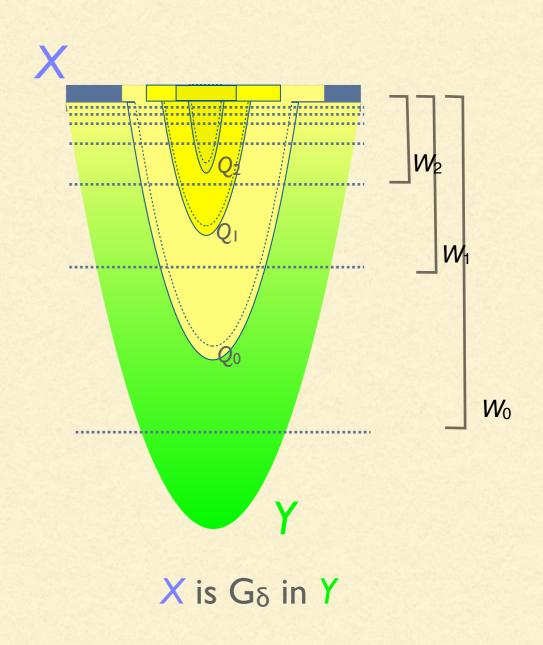


- For every $n, U_n = \uparrow y_n \cap X$
- In the end, $(U_n)_n$ is a base of neighborhoods of sup y_n .



LCS-COMPLETE ⇒ COMPACTLY CHOQUET-COMPLETE

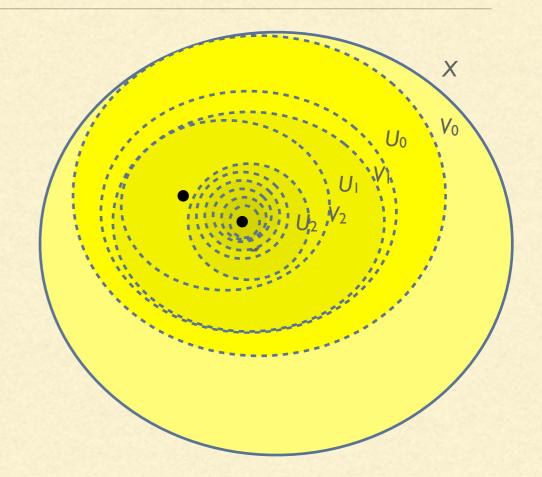
- For LCS-complete spaces, replace 1 yn by compact saturated sets Qn
- $U_n = int(Q_n) \cap X$
- In the end, (U_n)_n is a base of neighborhoods of sup y_n
 a non-empty compact
 saturated set Q. □



COMPACT CHOQUET-COMPLETENESS

X is compactly Choquet-complete iff α can ensure that (U_n)_n is a base of neighborhoods

of some non-empty compact sat. set Q.



COMPACT CHOQUET-COMPLETENESS

X is compactly Choquet-complete iff α can ensure that (U_n)_n is a base of neighborhoods of some non-empty compact sat. set Q.

Thm (recap).
 domain-complete ⇒ convergence Choquet-complete
 LCS-complete ⇒ compactly Choquet-complete

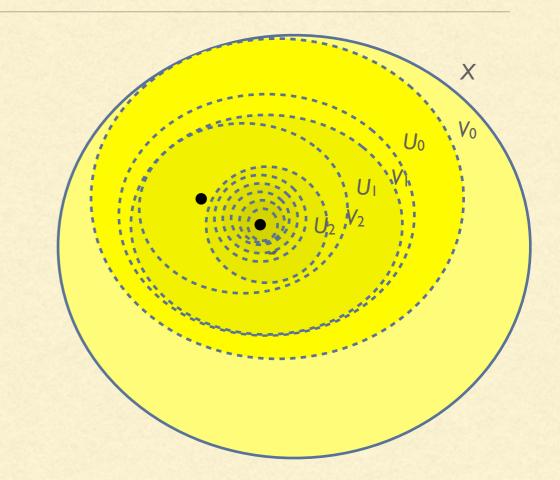
COMPACT CHOQUET-COMPLETENESS

X is compactly Choquet-complete iff α can ensure that (U_n)_n is a base of neighborhoods of some non-empty compact sat. set Q.

• Thm (recap). domain-complete \Rightarrow convergence Choquet-complete

LCS-complete \Rightarrow compactly Choquet-complete

Used everywhere in the theory.



Х

Thm. Every metrizable LCS-complete space is completely metrizable (because Choquet-complete)

Х

Thm. Every metrizable LCS-complete space is completely metrizable (because Choquet-complete)

Thm. LCS-complete ≠ domain-complete

({0,1}^{*I*}, with *I* uncountable, is compact T₂, but not convergence Choquet-complete)

Thm. Every metrizable LCS-complete space is completely metrizable (because Choquet-complete)

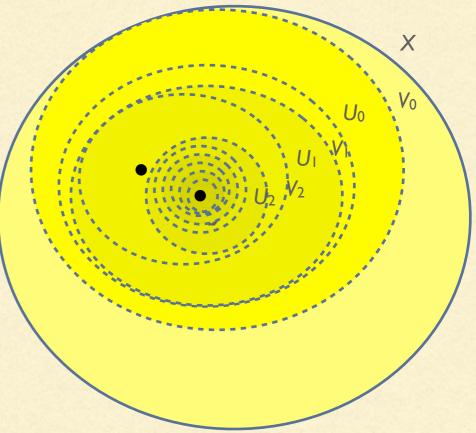
Thm. LCS-complete ≠ domain-complete

({0,1}^{*I*}, with *I* uncountable, is compact T₂, but not convergence Choquet-complete)

Prop. Q is not LCS-complete

(not Choquet-complete: let β remove the first point of U_n in some fixed enumeration of \mathbb{Q} ; α cannot win)

- Thm. LCS-complete + countably-based
 = quasi-Polish
- **Proof.** Let B_n form a countable base. Instead of playing U_n , α plays the intersection of U_n with the B_i s that contain x_n , $i \le n$

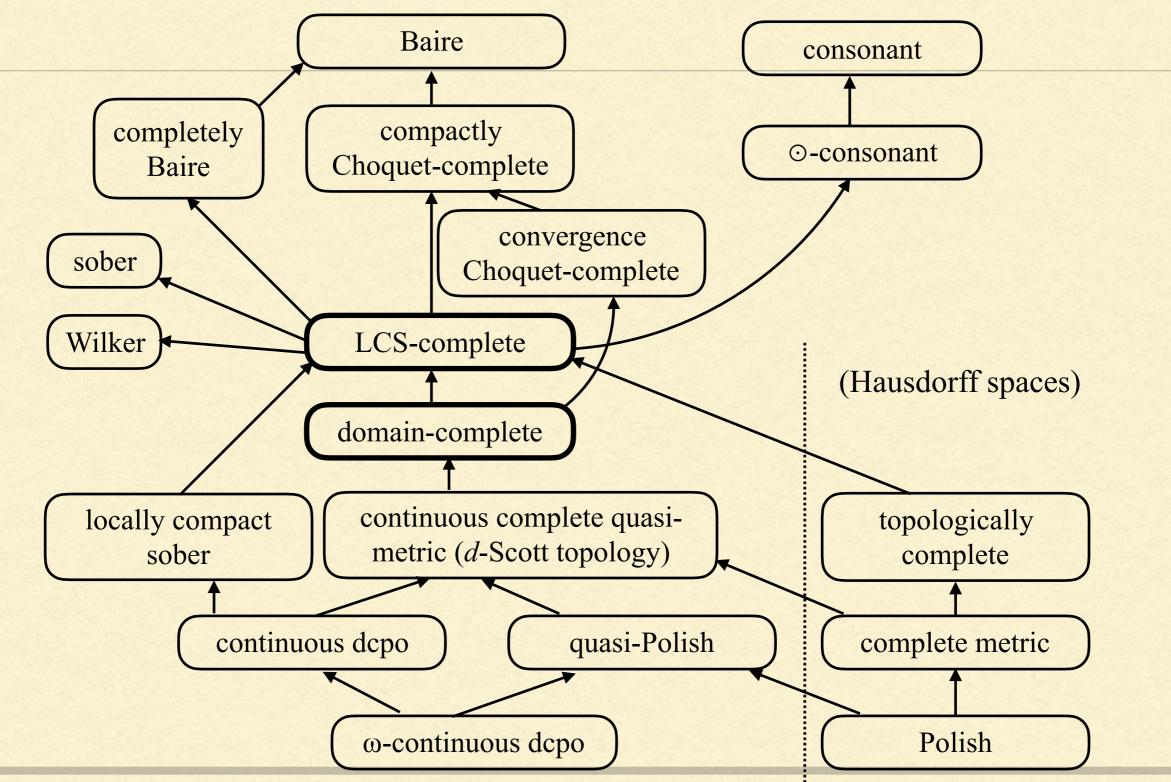


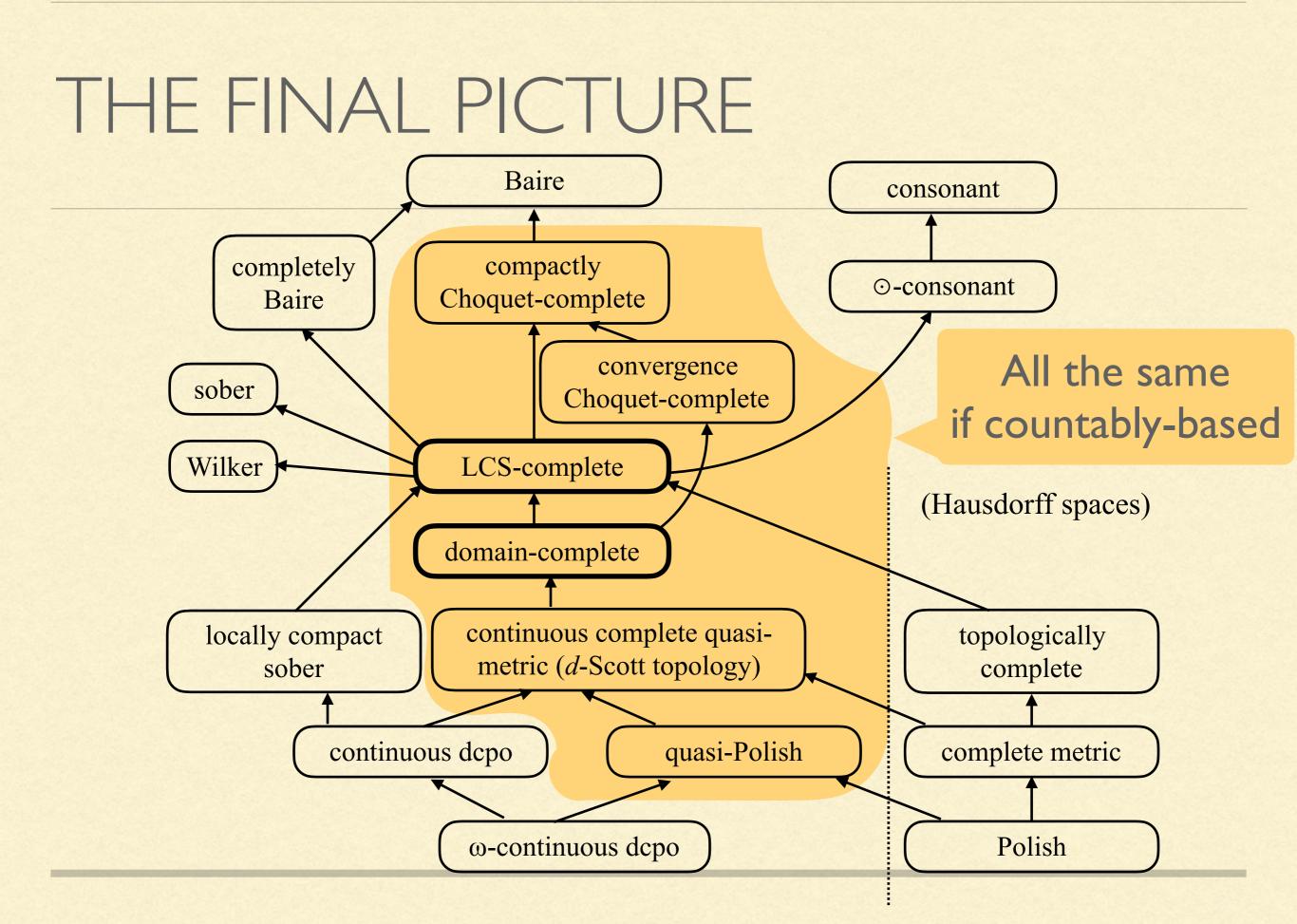
- Thm. LCS-complete + countably-based
 = quasi-Polish
- **Proof.** Let B_n form a countable base. Instead of playing U_n , α plays the intersection of U_n with the B_i s that contain x_n , $i \le n$
- Then $Q = \bigcap_n U_n$ is not just compact but **supercompact**, hence of the form $\uparrow x$ [Heckmann,Keimel13].

- Thm. LCS-complete + countably-based
 = quasi-Polish
- **Proof.** Let B_n form a countable base. Instead of playing U_n , α plays the intersection of U_n with the B_i s that contain x_n , $i \le n$
- Then $Q = \bigcap_n U_n$ is not just compact but **supercompact**, hence of the form $\uparrow x$ [Heckmann,Keimel13].
- Hence the space is convergence Choquet-complete.

- Thm. LCS-complete + countably-based
 = quasi-Polish
- **Proof.** Let B_n form a countable base. Instead of playing U_n , α plays the intersection of U_n with the B_i s that contain x_n , $i \le n$
- Then $Q = \bigcap_n U_n$ is not just compact but **supercompact**, hence of the form $\uparrow x$ [Heckmann,Keimel13].
- Hence the space is convergence Choquet-complete.
- Recall [deBrecht13]: this + countably-based \Rightarrow quasi-Polish. \Box

THE FINAL PICTURE





CONCLUSION

 A very rich theory, extending both domains and (quasi-)Polish spaces, with applications in topological measure theory

Much more to be read about in the paper! (19 sections, 8 theorems, 14 propositions, 10 lemmata, and 72 essential vitamins a

Questions?

Domain-complete and LCS-complete spaces

Matthew de Brecht ^{a,1,2} ^a Graduate School of Human and Environmental Studies , Kyoto University, Kyoto, Japan Jean Goubault-Larrecq ^{b,3,4} Xiaodong Jia ^{b,3,5} Zhenchao Lyu ^{b,3,6} ^b LSV, ENS Paris-Saclay, CNRS, Université Paris-Saclay, France

Abstract

We study G_{δ} subspaces of continuous dcpos, which we call domain-complete spaces, and G_{δ} subspaces of locally compact spaces, which we call LCS-complete spaces. Those include all locally compact sober spaces—in particular, all continuous dc all topologically complete spaces in the sense of Čech, and all quasi-Polish spaces—in particular, all Polish spaces. We that LCS-complete spaces are sober, Wilker, compactly Choquet-complete, completely Baire, and G_{\circ} consonant—in part consonant; that the countably-based LCS-complete (resp., domain-complete) spaces are the quasi-Polish spaces exactly; and the metrizable LCS-complete (resp., domain-complete) spaces are the quasi-Polish spaces. We include two applic on LCS-complete spaces, all continuous valuations extend to measures, and sublinear previsions form a space homeomorp the convex Hoare powerdomain of the space of continuous valuations.

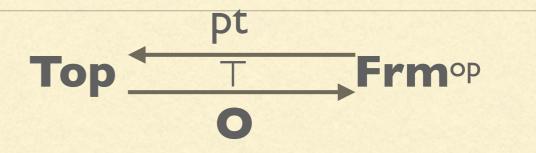
Keywords: Topology, domain theory, quasi-Polish spaces, G_{δ} subsets, continuous valuations, measures

- Beyond domains and quasi-Polish spaces
- Motivating example: measure extension theorems
- Locating LCS-complete spaces
- So time permits after all! Stone duality, consonance, ...

- Beyond domains and quasi-Polish spaces
- Motivating example: measure extension theorems
- Locating LCS-complete spaces
 - So time permits after all! Stone duality, consonance, ...

STONE DUALITY

- O: Top → Frm^{op} maps X to its lattice of open sets
- pt : Frm^{op} → Top maps L to space of completely prime filters of L



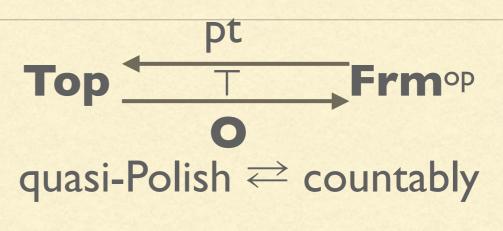
STONE DUALITY

- O: Top → Frm^{op} maps X to its lattice of open sets
- pt : Frm^{op} → Top maps L to space of completely prime filters of L
- Adjunction, which restricts to several equivalences of categories

pt Тор Frmop Sober spaces \rightleftharpoons spatial locales loc. compact sober \rightleftharpoons continuous distr. complete lattices continuous dcpos \rightleftharpoons completely distributive lattices quasi-Polish \rightleftharpoons countably presented locales [Heckmann15]

STONE DUALITY

- O: Top → Frm^{op} maps X to its lattice of open sets
- pt : Frm^{op} → Top maps L to space of completely prime filters of L
- Adjunction, which restricts to several equivalences of categories



presented locales [Heckmann15]

domain-complete \rightleftharpoons quotient of completely distributive lattice

LCS-complete \rightleftharpoons quotient of

continuous distr. complete lattice

... by countably many relations $u=\top$

Let LCS be the category of LCS-complete spaces

Prop. LCS is closed under:
 — countable topological products
 — arbitrary sums.

Prop. LCS does not have:

— equalizers

(Q would arise as eq. of $f, g : \mathbb{R} \to \mathbb{P}(\mathbb{R})$

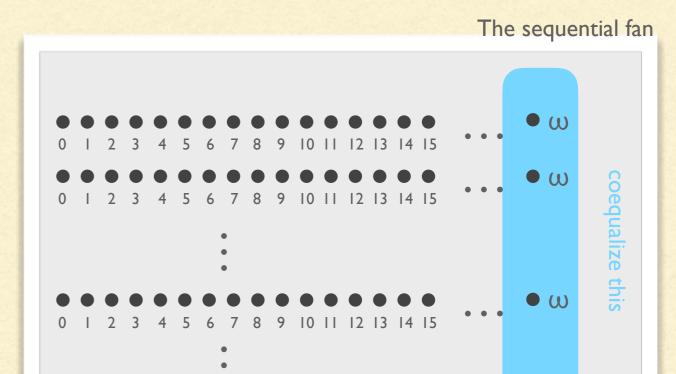
with $f(x)=(\mathbb{R}-\{x\}) \cup \mathbb{Q}, g(x)=\mathbb{R})$

Note that the category of quasi-Polish spaces has equalizers.

— coequalizers

(the **sequential fan** would arise as such a coequalizer but is not first-countable

however every countable LCS-complete space is first-countable)



Prop. Every exponentiable object in LCS is locally compact

- Prop. Every exponentiable object in LCS is locally compact
- Baire space N^N is Polish, hence LCS-complete but is not locally compact

- Prop. Every exponentiable object in LCS is locally compact
- Baire space N^N is Polish, hence LCS-complete but is not locally compact
- Corl. LCS is not Cartesian-closed

- Prop. Every exponentiable object in LCS is locally compact
- Baire space N^N is Polish, hence LCS-complete but is not locally compact
- Corl. LCS is not Cartesian-closed
- Thm. (Bonus.) The exponentiable objects in the category of quasi-Polish spaces are exactly the countably-based locally compact sober spaces.

CONSONANCE

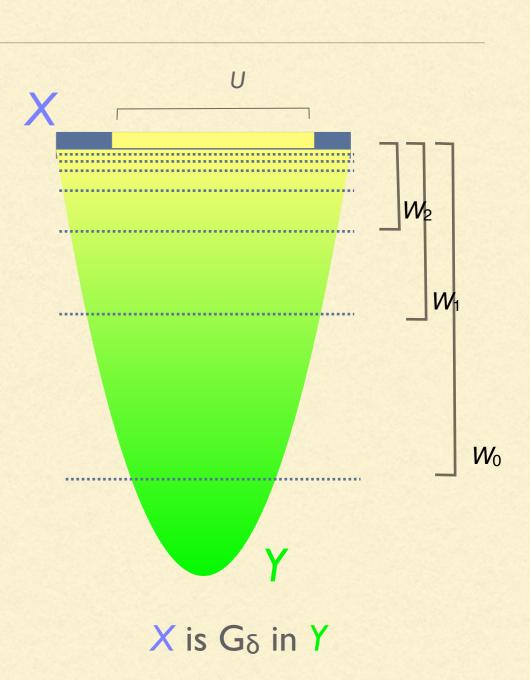
- For Q compact saturated, $Q =_{def} Collection of Opens U \supseteq Q$
- Q is a Scott-open filter in the complete lattice OX of opens
- Every union $U_i = Q_i$ is Scott-open in **O**X.
- Defn. X is consonant iff those are the only Scott-opens of OX.

$\mathsf{LCS}\operatorname{-COMPLETE} \Rightarrow \mathsf{CONSONANT}$

Thm. Every LCS-complete spaceX is consonant.

Proof.

Let **F** be Scott-open in **O**Y, $U \in \mathbf{F}$. We must find $Q / U \in \mathbf{Q} \subseteq \mathbf{F}$.



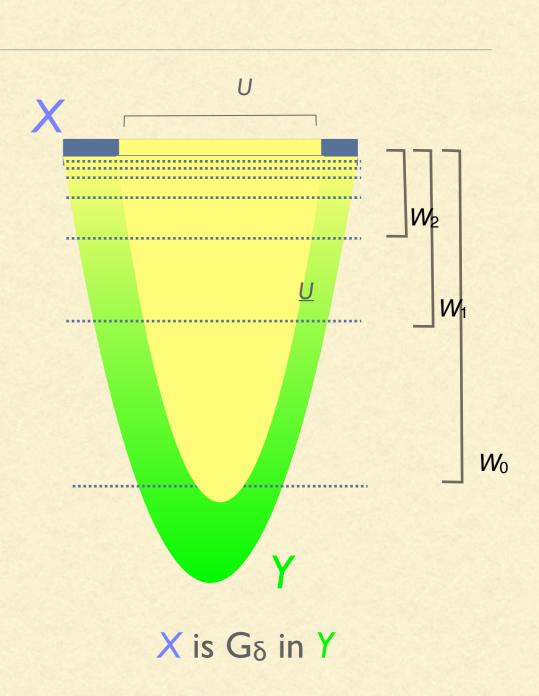
$\mathsf{LCS}\operatorname{-COMPLETE} \Rightarrow \mathsf{CONSONANT}$

Thm. Every LCS-complete spaceX is consonant.

Proof.

Let **F** be Scott-open in **O**Y, $U \in F$. We must find **Q** / $U \in \mathbf{Q} \subseteq F$.

• $U = \underline{U} \cap Y$ for some open \underline{U} in X.



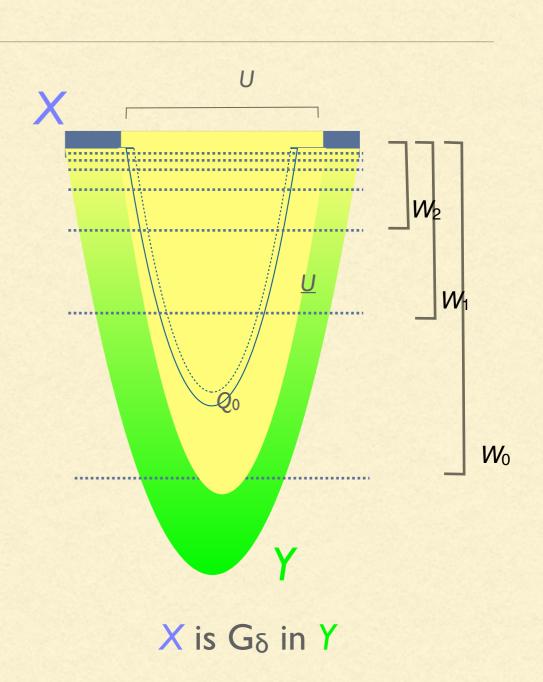
$LCS-COMPLETE \Rightarrow CONSONANT$

Thm. Every LCS-complete space
 X is consonant.

Proof.

Let **F** be Scott-open in **O**Y, $U \in F$. We must find **Q** / $U \in \mathbf{Q} \subseteq F$.

- $U = \underline{U} \cap Y$ for some open \underline{U} in X.
- Y locally compact \Rightarrow approximate $\underline{U} \cap W_0$ by Q_0 with $int(Q_0) \cap Y \in \mathbf{F}$



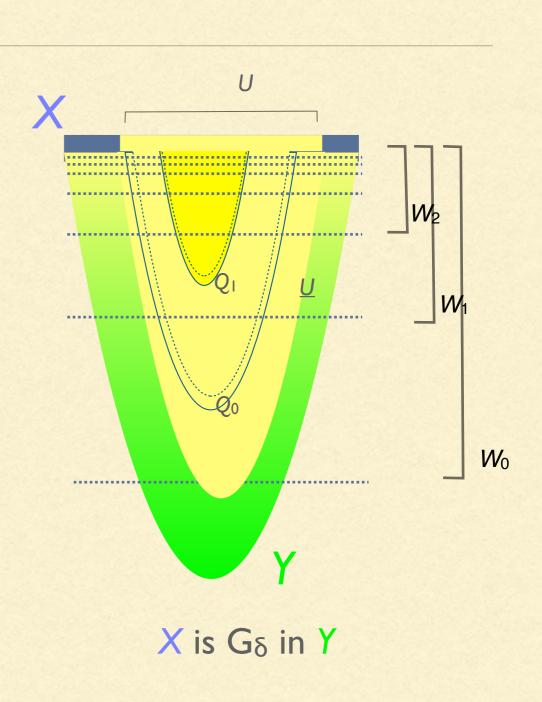
$LCS-COMPLETE \Rightarrow CONSONANT$

Thm. Every LCS-complete spaceX is consonant.

Proof.

Let **F** be Scott-open in **O**Y, $U \in F$. We must find **Q** / $U \in \mathbf{Q} \subseteq F$.

- $U = \underline{U} \cap Y$ for some open \underline{U} in X.
- Y locally compact \Rightarrow approximate $\underline{U} \cap W_0$ by Q_0 with $int(Q_0) \cap Y \in \mathbf{F}$
- Repeat with $int(Q_1) \cap W_1$, etc.



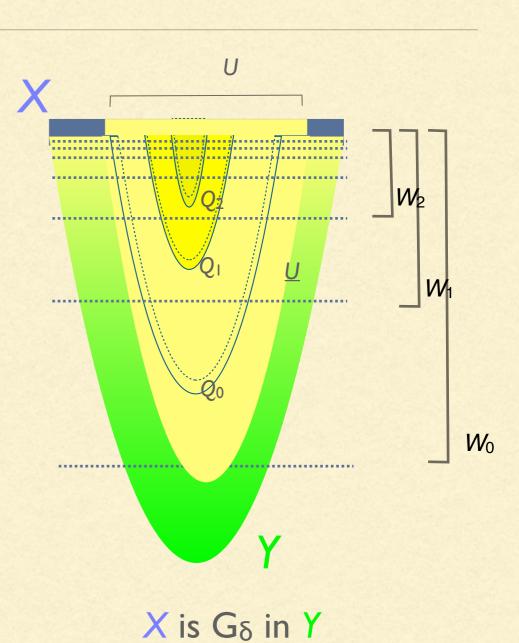
$\mathsf{LCS}\operatorname{-}\mathsf{COMPLETE} \Rightarrow \mathsf{CONSONANT}$

Thm. Every LCS-complete space
 X is consonant.

Proof.

Let **F** be Scott-open in **O**Y, $U \in F$. We must find **Q** / $U \in \mathbf{Q} \subseteq F$.

- $U = \underline{U} \cap Y$ for some open \underline{U} in X.
- Y locally compact \Rightarrow approximate $\underline{U} \cap W_0$ by Q_0 with $int(Q_0) \cap Y \in \mathbf{F}$
- Repeat with $int(Q_1) \cap W_1$, etc.
- Let Q =_{def} ∩↓Q_n: compact by well-filteredness,
 contained in U (U ∈ ■Q), and ■Q ⊆ F by well-filteredness again. □



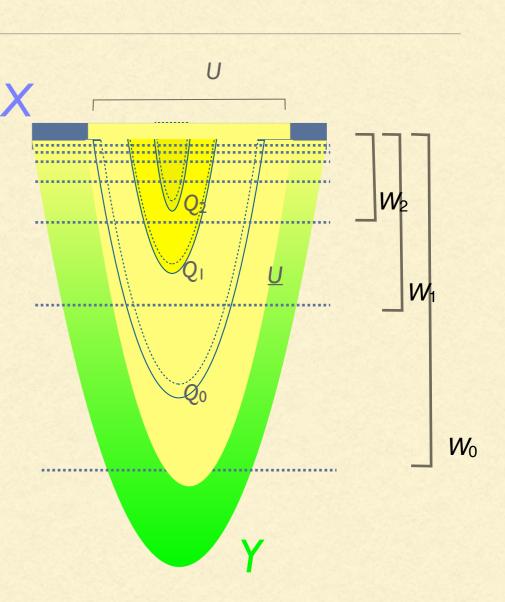
LCS-COMPLETE \Rightarrow CONSONANT

Thm. Every LCS-complete spaceX is consonant.

Proof.

Let **F** be Scott-open in **O**Y, $U \in \mathbf{F}$. We must find **Q** / $U \in \mathbf{Q} \subseteq \mathbf{F}$.

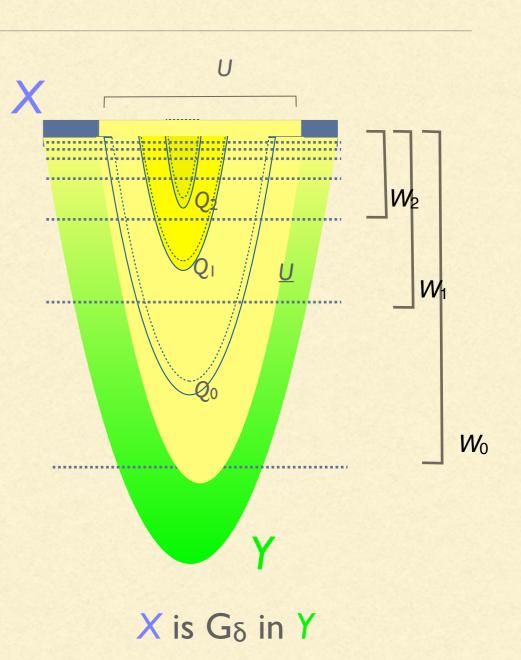
- $U = \underline{U} \cap Y$ for some open \underline{U} in $\overset{\bullet}{\times}$
- Y locally compact \Rightarrow approximate $\underline{U} \cap W_0$ by Q_0 with $int(Q_0) \cap Y \in \mathbf{F}$
- Repeat with $int(Q_1) \cap W_1$, etc.
- Let $Q =_{def} \cap^{\downarrow} Q_n$: compact by well-filteredness, contained in U ($U \in \blacksquare Q$), and $\blacksquare Q \subseteq F$ by well-filteredness again. \Box



X is G_{δ} in Y

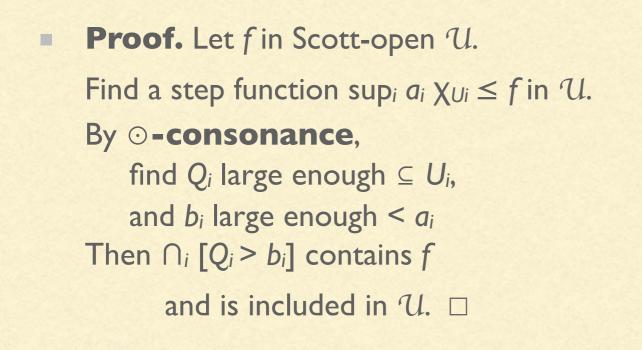
$LCS-COMPLETE \Rightarrow CONSONANT$

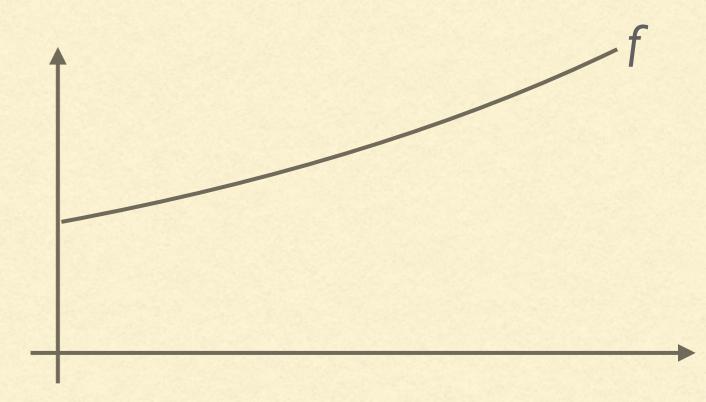
- Thm. Every LCS-complete space X is consonant.
- Corl. ... and X+X+...+X is consonant, too, i.e. X is ⊙-consonant.



Let *LX* = {lower semicontinuous maps : X → ℝ₊ ∪ {∞} }
 with the Scott topology

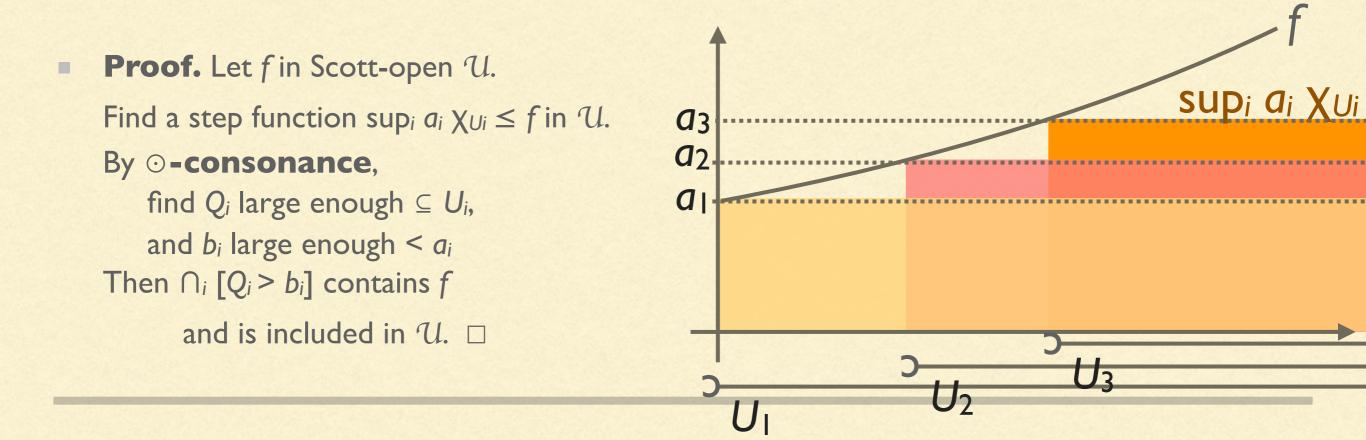
• **Thm.** If X is LCS-complete, then Scott=compact-open on $\mathcal{L}X$.





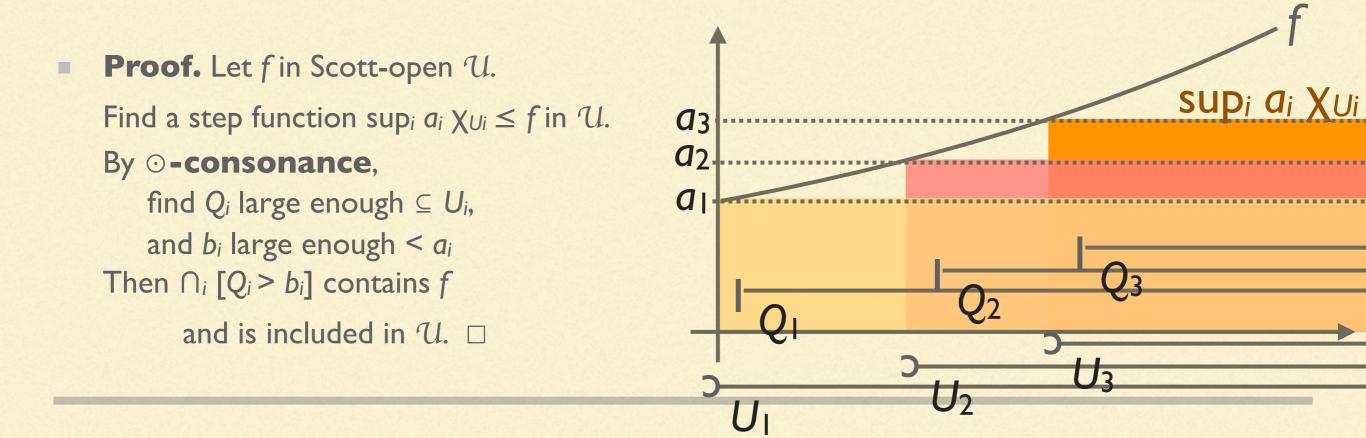
• Let $\mathcal{L}X = \{\text{lower semicontinuous maps} : X \to \mathbb{R}_+ \cup \{\infty\} \}$ with the Scott topology

• **Thm.** If X is LCS-complete, then Scott=compact-open on $\mathcal{L}X$.



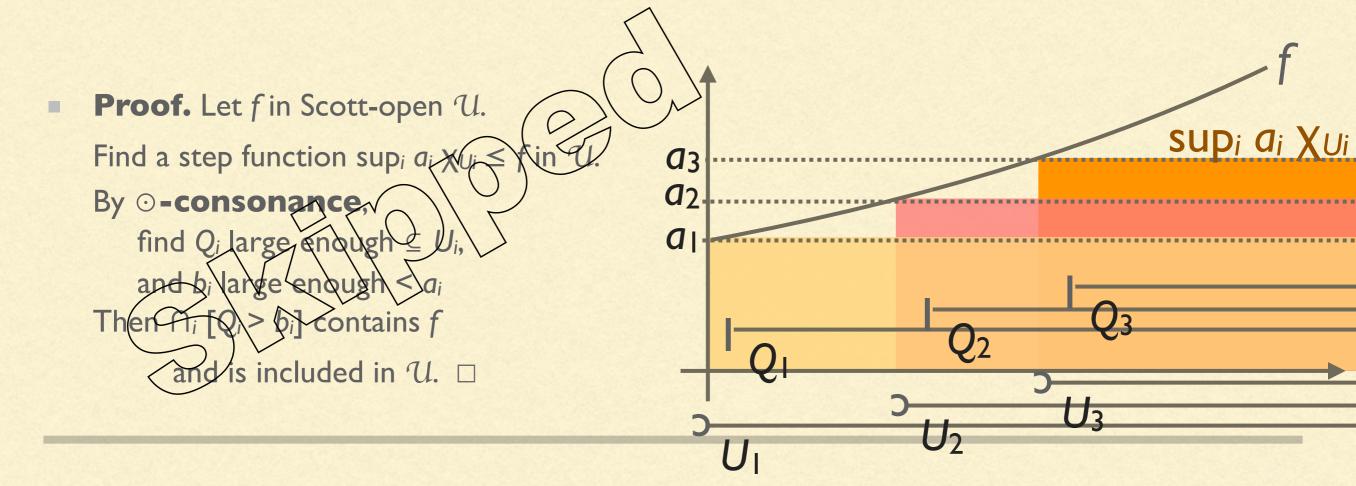
• Let $\mathcal{L}X = \{\text{lower semicontinuous maps} : X \to \mathbb{R}_+ \cup \{\infty\} \}$ with the Scott topology

• **Thm.** If X is LCS-complete, then Scott=compact-open on *LX*.



• Let $\mathcal{L}X = \{\text{lower semicontinuous maps} : X \to \mathbb{R}_+ \cup \{\infty\} \}$ with the Scott topology

• **Thm.** If X is LCS-complete, then Scott=compact-open on $\bot X$.



Let *LX* = {lower semicontinuous maps : X → ℝ₊ ∪ {∞} }
 with the Scott topology

• **Thm.** If X is LCS-complete, then Scott=compact-open on $\mathcal{L}X$.

• Let $\mathcal{L}X = \{\text{lower semicontinuous maps} : X \to \mathbb{R}_+ \cup \{\infty\}\}$ with the Scott topology

• **Thm.** If X is LCS-complete, then Scott=compact-open on $\mathcal{L}X$.

Corl. In that case, *LX* is locally convex ... hence the isomorphism theorems of [JGL17] apply, e.g.:

• Let $\mathcal{L}X = \{\text{lower semicontinuous maps} : X \to \mathbb{R}_+ \cup \{\infty\}\}$ with the Scott topology

• **Thm.** If X is LCS-complete, then Scott=compact-open on $\mathcal{L}X$.

Corl. In that case, *LX* is locally convex ... hence the isomorphism theorems of [JGL17] apply, e.g.:

Corl. If X is LCS-complete, then
 the space of sublinear cont. functionals : *LX* → ℝ₊ ∪ {∞}
 ≅ the space of convex closed sets of cont. valuations on X