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1o SPACES: WHY

Spectrum of rings, with their Zariski topology
(algebraic geometry)

Stone duals of various kinds of posets
(fundamental ink between topology and order theory)

Domain theory
(order theory? computer science)




1o SPACES: WHAT

Although many earlier results apply to '1'¢ or even
ogeneral topological spaces,

I would like to start with the birth of domain theory
1n logic and computer science.

T'he purpose was to give meaning to programs,
but I won’t talk about that.

Domain theory 1s concerned with (apparently) very
stmple 1o spaces (certain posets), but:

— this 13 deceptive, and

— domain theory vastly helped us organize 1 topology.




Dana S. Scott, A type-theoretic
alternatiwe to ISWIM, CUCH and

OWHY. Unpublished, 1969.
Founding paper.

«Rer»printed, TGS 1993.

F rom Wlklpedla «His research career

involved computer science, mathematics, and
philosophy. His work on automata theory earned
him the ACM Turing Award in 1976, while his
collaborative work with Christopher Strachey in
the 1970s laid the foundations of modern
approaches to the semantics of programming
languages .»
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DCPOS

A directed complete partial
order (dcpo) 1s one where
every directed tamily D has a
least upper bound sup! D.
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DCPOS

Every chain 1s directed.

Directed families are easier to
work with than chains.

Points are partial values ~
what partial information you
oet by typing ctrl-C

max points are total values
< 15 order of information

(lpt) Everny point x cn a depo co < dome maximal point. Why?




A SIMPLE EXAMPLE

e ) T S e R ) R S

[22,1.5]

IR ={closed intervals [a,b] of reals}, ordered by 2.

[077,3.3]

supl;er |a, bi] = Nier |a, b)) = [sup a, int b]. §

Total values are... just reals a, coded as [a, 4.

T'his depo 1s usetul 1n modeling
exact real arithmetic in computers

| Edalat, Potts, Si'mderhaugf, Escardo].




THE SCO1'1T TOPOLOGY

A subset ( of a dcpo 1s

1ft:
— (/' 1s downwards-closed, and
— (/15 closed under directed sups




THE SCO1'1T TOPOLOGY

A subset C of a dcpo is U sup;! x;
iff: | X

— (/' 1s downwards-closed, and

— (15 closed under directed sups ™. x;/

A subset U of a dcpo 1s
1ff:

— U 15 upwards-closed, and
— for every directed family (x;); e 1
with sup in U, some x;1s 1n U.




THE Ik MODEL

" A

- trwial-’ [077,3.3]
[~2,1.5]

In case Yo% %

T'he Scott topology on IR induces a topology on K.

Fact: That topology is the usual one on RR.

Proof. (2) Check that * [a,b]={]c, d] | a<c<d<b}
15 Scott-open. Its trace on R 1s (a,b).

©) If U=VnR, V Scott-open, let x in U: x= sup', [x—¢,
vatiel ssnisonmicalreciateli S EilRlicns e st e wGRTT
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MODELS

e ) T S e R ) R S

(=015

[077,3.3]

A model of a (1) space X 1s any dcpo that embeds X as
1ts subspace of maximal elements.
A vast subject! [Lawson, Martin| FE.g.:

Thm (Martin, 2003): 'The 'I's spaces that

have an w-continuous model are exactly
the Polish spaces.

But I won’t talk about that... Let’s get back to basics.




THE SPECIALIZATION ORDER

A fundamental notion for Ty spaces (not just dcpos!)

Detn (specialization, <): In a topological space X, x<y
1ft every open U that contains x also contains y.

X1s Toiff =< 1s antisymmetric (an ordering).

Ex: For a dcpo (X, £) 1n 1ts Scott topology, < 1s just C.

(Z4¢) Prove this. Tote that | x ¢ alwaye Secott- closed,




THE SPECIALIZATION ORDER

Detn (specialization, <): In a topological space X, x<y
1ft every open U that contains x also contains
1ff x 1s 1n the closure of .

Every open 1s
upwards-closed

Every closed set
1s downward-closed

(Not just 1 depos

|
(fﬁt).%aw/z‘ém‘ix:{g | ¢St} co the closune of x éuw any space X.
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MONOTONICITY

Prop: A continuous map f:X — ¥ 15 always monotonic
(w.r.t. the specialization orderings).

Proof. Assume x=x’,
We must show flx)< f(x”), namely that
every open neighborhood Vot flx) contains f{x’).

Any ideas?




SCOTT-CONTINUI'TY

In the special case ot dcpos:

Prop: A map /X — 1 between dcpos 1s continuous 1ff
1t 1s monotonic, and preserves directed sups.

Proof. Every continuous map f 1s monotonic.

Let x=supi! x;. sup;! fx;))<f(x) by monotonicity.

To show f(x)< sup;! flx;), let " be an open nbd of f(x).
Hence x&f1(V), so some x;1s in f1(V): flx;) 15 1n V) so
sup;! flx;)1s 1 V, too. Since ==L, flx)< sup;! flx;).
Conversely, ... Erencise.




Let us return to general 1o spaces.

Let me give a few words of warning.




THINGS YOU SHOULD FORGET

LZWLUS are Zmlque . NO. [unless space 1s Hausdorft. ]
In fact, any point < a limit 1s also a limat.
In dcpos, sup;! x; 1s the largest limit of (x;); e 1.

CO??Z/)CZCZ SUbS@tS are CZOSgd. 1no. [Note: no separation assumed in compactness. |
E.g., any finite subset 1s compact,
but closed sets are downwards-closed.

Intersections of compact subsets are compact. no.

oo X\X X X X
(lgt) Stow that | a. | € are compact, but wot | a N | ¢. W




THINGS YOU SHOULD NOT
FORGET

Everything else works in the expected way.
A closed subset of a compact space 1s compact.

Closure of A=set of limits of nets of points of A.

Continuous 1images of compact sets are compact.

It a filtered intersection of closed sets intersects a
compact set then one ot them intersects 1t too.

Etc.




THINGS YOU SHOULD PAY
ATTENTION TO

L.ocal compactness has to be redefined.

X 15 locally compact ift every point x has a
base of compact neighborhoods, 1.e.,
for every open U containing x,

there 1s a compact O such that
eSO 0 G ET

Usual definition (every point has a Compaé{\\__,/ ,
neighborhood) equivalent in Hausdorft

spaces, but too weak 1n general.
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1o SPACES: HOW

Let me guide you through a case study: D. S. Scott’s
characterization of the injective Ty spaces as the
continuous lattices.

T'his will let us go through some of the important
notions in the field.




INJECTIVE SPACES

ot -2
A standard problem in topology: i I /
Let /: X — < be continuous, i

and ¢ : X — 1 be an embedding. A

Show (under some conditions) that f extends to a
continuous map from 7 to <.

Ex: [t 7 normal, X closed in ¥, =R (lietze-Urysohn)

See also Dugundji, Lavrentiev, etc.




INJECTIVE SPACES

Defn: The 1ospace < 1s injective 1ft
for all 1o spaces X and 7,

for every continuous f: X — <

for every embedding:: X — ¥,

fextends to a continuous map from 1 to <.

Note: X, ¥ are arbitrary (among '1'p spaces).

What are the 1njective spaces?

Solved by Dana S. Scott, Continuous lattices,
Springer LNM 274, 97-136, 1972.
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SIERPINSKI SPACE

% O = {0 <1}, Scott topology

# Opens= @, {1}, {0, 1} -not {0} §
% 1o, not'l;

¢ lrivial, but important:

(lpt) Stow that U — yy ¢ a one-to-one coviespondence
between opens of X and continaous mape from X to 5.




SIERPINSKI SPACE

> = {0 < 1}, only non-trivial open {1}.
Fact: 5 15 injective.

Proof. Take a continuous map f.X — 5.
f1s equal to yu, where U=f1({1}).
Since X embeds into ¥ through i, U 1s the trace on X of
an open subset Vot Y. (Formally, U=¢1(}).)
Then fextends to YV — S, as yv (2lx)=yu(x).




THE CECH EMBEDDING

Let OX be the complete lattice of open sets of X.

Thm (Cech 1966) Let 7:X — SOX : x > (yu(x))v e ox.
For every 1 space X, 1 1s a topological embedding.

Proof: later. 'The point 1s that 594 has a wealth of good
properties. E.g., 1t 1s (stably) compact.

T &%
¢
7

‘

_

(lp2) Compact... but not Fausderly! Show that any
space with a leadt dlement w.n.l. < o compact., Fence

| compactnedd b uol much o adk without Hausdonffuess.
S K , 26




THE CECH EMBEDDING

Thm. Letn: X — 59 map x to (yu(x))ve ox.
For every 1 space X, 7 1s a topological embedding.

Proofs A subbase of 594 1s given by
mirl({1})={tuples that have a 1 at position U}.

— n-Y(mrl({1})) = Uis open, so # is continuous.
— 1115 almost open, 1.c., for every open U of X,

U=n-1(V) for some open I of 594 [take V= wr-1({1})]

— 1 1s Injective, because X 1s L.

Such a map 1s a homeomorphism onto 1ts 1mage.

27




PRODUCTS

Fact: Every product of 1injectives 1s injective.

Proof. Let < be injective, ) € 7, < be their product,
and 7t be the projections : £ — <.

Let .X — < be continuous, :X — ¥ be an embedding.
lHoRcachi) (e [OxlicHds ioye s 1o==>""¢"

So fitselt extends to y = (£75(y)); e 7.

Corl: 59415 injective.




Now assume < 1s Injective.

Let X=2, V= SO, i=g, f=id.

Then < arises as a retract of 590<:
there 1s a continuous map 7 : S9< —=

such that r o n = 1d.




RETRACTS

Fact: a retract of an injective 1s injective.

Progf. Let < be retract of <’ injective.
s o f extends to the dotted arrow.
Post-compose with r and use r o s = 1d.

Corl: The following are equivalent:
(1) < 1s 1njective

(2) < 1s a retract of SOK

(3) < 1s a retract of some power of .

30




INTERMISSION

We now know that the injective spaces are the retracts
of powers of 5.

To characterize these, let us spend some time doing
basic domain theory:

— algebraic dcpos

— continuous dcpos

'T'hat will be usetul later.

(I told you the study of the theorem would be an
excuse!)




FINITE ELEMENTS

Defn: An element x of a poset X 1s finite 1ft
for every directed family (y;); e  whose sup y exists and
1s = x, some ); 18 already = x.

Equivalently, iff Tx 1s Scott-open. My

Ex: every finite poset (in particular, )
1s a dcpo where every element 1s finite.

Ex: The powerset P(4), C is a dcpo.

Its finite elements are... the finite subsets of A.

(142) Show this,

32




ALGEBRAIC POSETS

Defn: An element x of a poset X 1s finite 1ft
for every directed family (y;); e  whose sup y exists and
1s = x, some ); 1s already = x.

Defn: A poset X1s algebraic iff every point x 1s a
directed sup of finite elements below x.

Ex: The powerset P(4), C is algebraic.

Fach B C A is sup! {finite subsets of B}. (Sup=union.)
(Zpt) Stow that ¢ A co ancountable, then 4 tself co not the supp of a
chain of fincle subsets. This co why we Yook dinected famdlics, uot chains.

33




B-SPACLES

Marcel Exrné, The ABC of order and
topology, 1991.

A b-space 15 a space with a base of
(compact) opens of the form 1y

A strong form of local compactness:

Thm: | 'he posets that are b-spaces
in their Scott topology are exactly
the algebraic posets.

- %‘

Qfmt(@ I\y (0)
/_<Q (cor

U (open)

(Zpt) Stow talf of this:
any algebrace poser
madt be a b-opace.




POWERSETS

Sd= PA): (bJacar {aEA | b=1}

Prop: this 1s a homeomorphism: the product topology
(on 34) 15 the Scott topology (on [P(4)).

Mod =, the product topology on [P(4) has subbasic sets
el =B TS Bl N ote ar s L oel =i =tk
Take finite intersections: basic sets 1F, I finite € A.

Let B € U Scott-open in P(4). B= sup'; F;, I; finite.
So some F;1s in U. Hence T F; open nbd of B inside U.
> Scott topology has basic sets 1 F, F finite € A, too.

35




THE CECH EMBEDDING
REVISITED

Thm. Let 7:X— P(OX) map x to N,.={UE0X [x&U}.
For every 1 space X, 7 1s a topological embedding.

X 15 injective 1t X 15 a retract of P(OX)
it X 1s a retract of some powerset.

(But let us proceed with our intermission.)




C-SPACLES

Yuri L. Ershov, 1 /e theory of A-spaces,
Algebra and Logic 12(4), 1973.
Marcel Erné, The ABC of order and
topology, 1991.

A c-space 1s a space where every
point x has a base of (compact)
neighborhoods of the form 1y

A strong form ot local compactness:

Compared to b-spaces, we do not
rediiesuiaibeianandes




B- AND G-SPACES

Prop: A retract of a b-space 1s a c-space.

Proof: first, every b-space 1s trivially a c-space.
Letr: (. — X, s: X — (be a retraction, (' a c-space.
Let us show that X 1s a c-space, too.

Let x be in X, U be an open neighborhood of x.

Any cdeas?




CONTINUOUS POSETS

I might take that as a defimtion:

Thm (Erné, 2005): 'The posets that are c-spaces 1n
their Scott topology are exactly the continuous posets.

Let us unknit that, and try to reconstruct what a
continuous poset might be, with an eye to that
theorem.




THE WAY-BELOW RELATION

Defn: Let x < x71ff, for every directed tamily (yi)ie
whose sup » 1s 2 x”, some p; 1s already = x.

Note: x < x”1f x”1s in the Scott interior
of Tx. (Iff in continuous posets = c-spaces.)

Note: x 1s finite il x < x.

Defn: A continuous poset X 1s one where
every point x 1s a directed sup of points < x.

Ex: |0, 1] 1s a continuous dcpo,
geccalicr=(loraiz.

(142) Sthow theo.




BASES

I have said that x <« x’1f x”1s 1n the Scott interior
of Tx. The converse holds in continuous posets,
(admitted). We shall prove Erné’s theorem later, too.

Prop: Let tx = {x’ | x < x’}. In a continuous poset,

tx=1nt(Tx), and those sets form a base of the Scott
topology.

Prop: In an algebraic poset, x < x” ift x<w=x’tfor
some finite w. The sets Tw, w finite, are (compact and)
open and form a base of the Scott topology.

41




A CONUNDRUM

A retract 1 ot a b-space X'1s a c-space
For a poset, algebraic < b-space 1n 1ts Scott topology
For a poset, continuous <> c-space 1n 1its Scott topology

Is a retract 1 of an algebraic dcpo X continuous?
Dathculty: 7




THE SOPHISTICATED WAY OU'T

Invoke sobriety (see later, it we’ve got time).
Thm: Algebraic decpo = sober b-space.
Thm: Continuous dcpo = sober c-space.

(In particular, a sober b- or c-space has the Scott
topology ot its specialization ordering.)

Retracts of sober spaces are sober.

We conclude: all retracts of algebraics dcpos are
continuous dcpos.

43




CONVERSELY?

We know that every retract of an algebraic dcpo 1s a
continuous dcpo.

(Modulo the sobriety thing:)

We wish to establish the converse: every continuous
dcpo X arises as the retract of some algebraic dcpo.

'T'hat algebraic dcpo 1s the 1deal completion I(X) of X.




IDEALS

An (order-) ideal D of a poset X is a directed,
downwards-closed subset of X.

Let I(X) = {ideals of X}, ordered by C.

Prop: I(X) 1s a dcpo, and directed sups are unions.

Proof: Evencise.




IDEAL COMPLETION

An (order-) ideal D of a poset X1s a directed,
downwards-closed subset of X.

Let I(X) = {ideals of X}, ordered by C.

Prop: I(X) 1s an algebraic dcpo, and its finite elements
are the 1deals of the form | x, x in X.

Rroof:bwsfinite i UG supl sD SthentvEsap.l; Ssov
is in some D;, 1.e., | x © D,
Clearly, (*) D=supt.ep | x.
If D finite, by (*) D C|x for some x€D, so D = x.
Finally, by (*) every D 1s a sup! of finite elements.

46




IDEAL COMPLETION

The 1deal completion has many properties:

There 1s an order-embedding z:x = | x of X into I(X).

I(X) 15 the the free dcpo over X:

every monotonic map ffrom X to
a dcpo < extends to a unique
Scott-continuous map f” from I(X) to <.

Every algebraic dcpo X 1s 1somorphic to
the 1deal completion I(B) of 1its poset 5
of finite elements. (2p2) Enercice.




IDEAL COMPLETION

Let vx = {«’

There 1s anot

RS ey

hen X 1S continuous.

her embedd

ing s:x = vx of Xinto I(X),

and a map 7:D ~ sup D trom I(X) to X.

Prop: If X 1s a continuous dcpo, then r, s exhibit X as
a retract of I(X).

Proof: - r 0o s = 1d... by the def. of continuous posets.
- 718 monotonic and preserves sup!, so 1s continuous.

- A basic open subset of I(X)1is T1x) | xx (upwards-

closure of a finite element). Its inverse image by s 1s

* x, which 1s open. So s 1s = continuous.




CONTINUOUS V5. ALGEBRAIC

We therefore obtain (modulo the sobriety thing):

Thm: [he continuous dcpos are exactly the retracts
of algebraic dcpos.

T'hat 1s too much for our purpose (characterizing
Injective spaces), but nice anyway.




INJECTIVE=>
CONTINUOUS LATTICE

One checks easily that an order-retract of a complete
lattice 1s a complete lattice. So:

Thm: A retract of an algebraic complete lattice 1s a
continuous complete lattice.

Recall that an injective space < 1s a retract of the
algebraic dcpo 59<= P(0QK), also a complete lattice.

Corl: Every injective space 1s a continuous complete
lattice, 1n 1ts Scott topology.

50




AN EXTENSION FORMULA

Prop: Let £ be a continuous complete lattice.
Every continuous map £ X — { extends to a

continuous map /~ from P(OX) to <.
(I.e., "o n=f, or equivalently, /N,)=f(x) for every x.)

Proof. For A in P(OX), let f1A)=sup {2z | fL{T2)&A}.
- ” preserves (all) unions, hence 1s Scott-continuous.
~J We=sup 1z | x EF1(12))

=sup! {z | 2z < flx)} = flx) (continuous dcpo).

51




CONTINUOUS LATTICE
—INJECTIVE

Prop: Let < be a continuous complete lattice.
Every continuous map £ X — { extends to a

continuous map f” from P(OX) to <. [L.e., /o n=/]
Let X=X, f=1d:

Corl: Let < be a continuous complete lattice.
There 1s a continuous map p=1d’ from P(OL) to
such that p on =1d [1.e., p(N;)=% for every z 1n <.|

That 1s, 15 a retract of P(0X). So < 1s injective.

52




SCOTT’S THEOREM

Thm (Scott, 1972): The following are equivalent:

(1) < 1s 1njective

(2) £ 1s a retract of SOI=P(0X)

(3) < 1s a retract of some power of 5 (=some powerset)
(4) < 1s a continuous complete lattice 1n its Scott

topology.

(Modulo the sobriety thing... we are coming to 1it.)




> TONE DUALITY

(I’ll be quicker here.)

Let a frame be a complete lattice where
u A\ Viervi = Viel(u A vi)

Frame morphisms preserve finite A and arbitrary V.

Together they form a category Frm.

T'here 1s a functor O : Top — Frmor:
— mapping every topological space X to OX
— and every continuous map f:.X — ¥ to the frame

morphism Qf: OV — OX : ' fL(T]).

Can we retrieve X from 1ts frame of opens?
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POINTS IN A FRAME

Bl Cratlizainde:

It L=0X, where X 1s T, we can equate x with V..
N:1s a completely prime filter:

— 1t 1S non-empty

— 1t 1s upwards-closed

— 1t 13 closed under A

— (c.p.) if Vierv;is 1n it, then some ;15 1n 1t.

Let pt L be the set of c.p. filters of L, (a.k.a., points)
with the hull-kernel topology,

whose opens are O, = {x point | u € x}.

5




THE STONE ADJUNCTION

pt defines a functor : Frmer — Top,
right-adjoint to O.

The unit 7 : X — pt OX maps x to NV, and 1s injective
ift X'1s To. (Then i1t 1s an embedding,)

Defn: X i1s sober iff 7 1s bijective

1ft # 1s a homeomorphism.

In other words, the 'T'gspace X 1s sober 1ft every c.p.
filter of opens 1s N, for some point .

56




IRREDUCIBLE CLOSED SET'S

For a c.p. filter F the union V of all opens not in F1s
not in £ — by c.p. This 1s the largest open not 1n F.

Let (' be the complement ot the largest open not 1n F.
Note: for U open, G intersects U itt UL I'iit Ue F.

Lemma: (15 irreducible closed, namely: it ¢
intersects finitely many opens Uy, ..., U,, then 1t
intersects ;=1 Uj.

Proof cRachellasim F=so . Ll=1m b asand filter (6 0;

57




IRREDUCIBLE CLOSED SET'S

Lemma: (15 irreducible closed, namely: it ¢
intersects finitely many opens Ui, ..., U, then 1t
intersects (=1" U,.

Equivalently: it ('1s included 1n a union of finitely
many closed sets (1, ..., (s, then 1t 15 included 1n some
(; — when the name wreducible closed.

Conversely, let ('

be 1rreducible closed.

Let F be the set ot all opens U that intersect C.

~

T’hen Fis a c.p. filter. (142) Sthow thie.




SOBER SPACES

Because of the one-to-one-correspondence between
c.p. filters and irreducible closed subsets, we have:

Prop: Up to 1so, pt OX 1s the sobrification SX of X,
whose points are the irreducible closed subsets of X.

Its opens are CU={C | C n U}, UEOX.
If XisTo,n: X—=pt OX:x+~ |xis an embedding.

Corl: The Tospace X 1s sober 1t every irreducible
closed subset 1s the closure | x of a (unique) point «.

59




12 = SOBER

(' 1s irreducible closed 1ift: it ¢ intersects finitely many
OPENsEEht s o TN CASIRTI L CRS CELS SISl = (7
Note that irreducible implies non-empty (take n=0).

Thm: Every Hausdorft space 1s sober.

Ervencise!

1o = sober = Iy, sober incomparable with T'.

60




CONTINUOUS DCPO = SOBER

Thm: Every continuous dcpo 1s sober.

Proof. Let C be irreducible closed.
— Let D={x | *x ntersects C}. I claim D 1s directed.

Ervencioe

S LD OSISHINRE SSTNTGE (O] Scott-closed, so LSRR BN
— For every y in C, write y as a sup of x < y. Each

such x1s1n D, so y < sup D. Hence ¢ = |sup D.

61




OPERATIONS ON SOBER SPACES

Sober spaces are closed under coproducts,
(1'o quotients of) quotients, products; but not subspaces.

Prop: Sober spaces are closed under retracts.

FrorlictauEd =X mm A e e A Fe TGO - < SOREL:

Let (' be 1irreducible closed 1n X.
(1) We check that cl(s((\)) 1s irreducible closed.

Your tura.




OPERATIONS ON SOBER SPACES

Sober spaces are closed under coproducts,
(1'o quotients of) quotients, products; but not subspaces.

Prop: Sober spaces are closed under retracts.

FrorlictauEd =X mm A e e A Fe TGO - < SOREL:

Let C be 1rreducible closed 1n X.
(1) We check that cl(s((\)) 1s irreducible closed.
(2) So cl(s(C))=| z for some z in <. We claim C=|n(2).

Your turn.




SOBER = MONOTONLE
CONVERGENCE

Thm (O. Wyler, 1977): Let X be sober. 'T'hen:
(1) = 1s directed complete

(2) all opens are Scott-open.
(A space satistying those 18 a monotone convergence space. All T spaces are, tooO.

Proof. Let D be directed. Then cl(D) 1s irreducible closed.
(1) By sobriety, cl(D)=| x for some x: we show x=sup! D.

Your tura.




SOBER = MONOTONLE
CONVERGENCE

Thm (O. Wyler, 1977): Let X be sober. Then:
(1) < 1s directed complete

(2) all opens are Scott-open.
(A space satistying those 18 a monotone convergence space. All T spaces are, tooO.

Proof. Let D be directed. Then cl(D) 1s irreducible closed.

(1) By sobriety, cl(D)=|x for some x: we show x=sup! D.

(2) If U open contains supt D=x, U intersects | x=cl(D),
hence also . So U 1s Scott-open.




SOBER = MONOTONLE
CONVERGENCE

Thm (O. Wyler, 1977): Let X be sober. Then:

(1) < 1s directed complete

(2) all opens are Scott-open.
(A space satistying those 18 a monotone convergence space. All T spaces are, tooO.
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Beware: X not continuous 1n general
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SOBER CG-SPACES

We know that a continuous dcpo 1s:
(1) sober
(2) a c-space 1n its Scott topology.

I claimed the converse, earlier.
Let us prove this.

Recall that a c-space 1s a space with
a very strong local compactness

property: if x&U open, then there 1s
a point y such that xEint(1y)C1yCU.
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SOBER CG-SPACES

Prop (Erné): A sober c-space X 1s a continuous dcpo,
and 1ts topology 1s the Scott topology.

Proof. Define y < y’iff y’ Eint(1]y).
(1) We first show that y <y’ 1mplies y « y”.

Your turn.
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b) Every Scott-open 1s open (in the original topology).

Your tura.




SOBER CG-SPACES

Prop (Erné): A sober c-space X 1s a continuous dcpo,
and 1its topology 1s the Scott topology.

Proof. Define y < y’iff y’ Eint(1]y).

1) We first show that y < y”1mplies y < .

2) Now show: D={y | y <»’} is directed and sup! D=y".
3) So, with <, X 1s a continuous dcpo.

4) y < y’1mplies y < y°.

b) Every Scott-open 1s open (in the original topology).

)

6) Every open 1s Scott-open.
... because a sober space 1s monotone convergence.

(
(
(
(
(
(
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CONCLUSION

This fills the last gap 1n our prootf.

There would be many things more to say.
— T'he Hotmann-Mislove theorem

— 'T'he theory of stably compact spaces
— QQuasi-metric spaces

— Etc. (but I had to make choices.)

Read the book, follow the blog!

http://projects.lsv.ens-cachan.fr/topoloqgy/
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