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SEPARATION AXIOMS

T4 (normal + T1) 

T3½ (completely regular + T1) 

T3 (regular + T1) 

T2 (Hausdorff) 

T1 

T0 

None

⨉
⨉

⨉
⨉

⨉
⨉and

⨉
⨉

⨉
⨉or
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T0 SPACES: WHY

Spectrum of  rings, with their Zariski topology  
(algebraic geometry) 

Stone duals of  various kinds of  posets  
(fundamental link between topology and order theory) 

Domain theory  
(order theory? computer science)
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T0 SPACES: WHAT

Although many earlier results apply to T0 or even 
general topological spaces,  
I would like to start with the birth of  domain theory  
in logic and computer science. 

The purpose was to give meaning to programs, 
but I won’t talk about that. 

Domain theory is concerned with (apparently) very 
simple T0 spaces (certain posets), but:  
— this is deceptive, and 
— domain theory vastly helped us organize T0 topology.
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DOMAIN THEORY 101

Dana S. Scott, A type-theoretic 
alternative to ISWIM, CUCH and 
OWHY.  Unpublished, 1969. 
Founding paper. 
«Re»printed, TCS 1993. 

From Wikipedia: «His research career 
involved computer science, mathematics, and 
philosophy. His work on automata theory earned 
him the ACM Turing Award in 1976, while his 
collaborative work with Christopher Strachey in 
the 1970s laid the foundations of modern 
approaches to the semantics of programming 
languages.»
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DCPOS

A directed complete partial 
order (dcpo) is one where 
every directed family D has a 
least upper bound sup↑ D. 

D = (xi)i ∈ I is directed iff 
non-empty, and 
for all i, j in I there is a k in I 
such that xi , xj ≤ xk.

sup↑ D
⨉

D

xk

xi

xj
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DCPOS

Every chain is directed. 

Directed families are easier to 
work with than chains. 

Points are partial values ~ 
what partial information you 
get by typing ctrl-C 
max points are total values  
≤ is order of  information  

sup↑ D
⨉

D

xk

xi

xj

(1pt) Every point x in a dcpo is ≤ some maximal point.  Why?
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A SIMPLE EXAMPLE

IR={closed intervals [a,b] of  reals}, ordered by ⊇. 

sup↑i ∈ I [ai, bi] = ∩i ∈ I [ai, bi] = [sup ai, inf  bi]. 

Total values are... just reals a, coded as [a, a]. 

This dcpo is useful in modeling 
exact real arithmetic in computers  
[Edalat, Potts, Sünderhauf, Escardó].

4.3. CONTINUITY CHAPTER 4. TOPOLOGY

IR

R´2 ´1 ´0.1 0.7 1.5 3.3

r´2, 1.5s
r0.7, 3.3s

Figure 4.5 Scott’s dcpo IR.

U such that every chain C such that sup C is in U meets U. Show that this is nothing else than
the Scott topology. (Hint: use Markowsky’s Theorem, applied to the complement of any given
chain-open subset.)

Example 4.2.27 One example that relates ordinary T2 topology with non-T2

topologies (such as the Scott topology of an ordering) is Scott’s dcpo IR, see
Exercise 4.2.28. This is an example of a model (here, of R), a notion we shall
explore in Section 7.7.2.

ô Exercise 4.2.28 (IR)
Let IR be the poset of all non-empty closed intervals ra, bs with a, b P R, a § b. Order it by

reverse inclusion Ö. Show that IR is a dcpo, and that the map ⌘IR : x fiÑ rx, xs, which equates
the points of R with certain elements of IR, has the following properties:

1. for every open subset V of IR, ⌘´1
IR pVq is open in R, with its metric topology (we shall see

in Section 4.3 that this means that ⌘IR is continuous);
2. conversely, for every open subset U of R, there is an open subset V of IR such that

U “ ⌘´1
IR pVq.

In other words, and anticipating on Section 4.9, this means that, up to the identification of
points x P R with elements of the form rx, xs in IR, the metric topology on R is induced from
the Scott topology on the larger space IR. See Figure 4.5 for an illustration.

4.3 Continuity

We have already defined what a continuous function was—between metric
spaces. The key to extend this notion to more general topological spaces is
Proposition 3.5.2, Item 3.

Definition 4.3.1 (Continuity) Let X, Y be two topological spaces. A map
f : X Ñ Y is continuous i↵ the inverse image f ´1

pVq of every open subset V
of Y is open in X.

ô Exercise 4.3.2
Show that f : X Ñ Y is continuous iff the inverse image f ´1

pFq of every closed subset F of
Y is closed in X. This is meant to remind you of Proposition 3.5.2, Item 5.

66
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THE SCOTT TOPOLOGY

A subset C of  a dcpo is  
Scott-closed iff: 
— C is downwards-closed, and  
— C is closed under directed sups

supi↑ xi 
⨉

xk

xi

xj

C
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THE SCOTT TOPOLOGY

A subset C of  a dcpo is  
Scott-closed iff: 
— C is downwards-closed, and  
— C is closed under directed sups 

A subset U of  a dcpo is  
Scott-open iff: 
— U is upwards-closed, and  
— for every directed family (xi)i ∈ I 
with sup in U, some xi is in U.

supi↑ xi 
⨉

xk

xi

xj

U

!10



THE IR MODEL

The Scott topology on IR induces a topology on R. 

Fact: That topology is the usual one on R. 

Proof.  (⊇) Check that ↟[a,b]={[c, d] | a<c≤d<b}  
is Scott-open. Its trace on R is (a,b).  
(⊆) If  U=V⋂R, V Scott-open, let x in U: x= sup↑ε [x–ε, 
x+ ε], so some [x–ε, x+ε] ∈V. Then (x–ε, x+ε) ⊆ U. ☐

!11

In case you thought  

Scott topologies were trivial:

4.3. CONTINUITY CHAPTER 4. TOPOLOGY

IR

R´2 ´1 ´0.1 0.7 1.5 3.3

r´2, 1.5s
r0.7, 3.3s

Figure 4.5 Scott’s dcpo IR.

U such that every chain C such that sup C is in U meets U. Show that this is nothing else than
the Scott topology. (Hint: use Markowsky’s Theorem, applied to the complement of any given
chain-open subset.)

Example 4.2.27 One example that relates ordinary T2 topology with non-T2

topologies (such as the Scott topology of an ordering) is Scott’s dcpo IR, see
Exercise 4.2.28. This is an example of a model (here, of R), a notion we shall
explore in Section 7.7.2.

ô Exercise 4.2.28 (IR)
Let IR be the poset of all non-empty closed intervals ra, bs with a, b P R, a § b. Order it by

reverse inclusion Ö. Show that IR is a dcpo, and that the map ⌘IR : x fiÑ rx, xs, which equates
the points of R with certain elements of IR, has the following properties:

1. for every open subset V of IR, ⌘´1
IR pVq is open in R, with its metric topology (we shall see

in Section 4.3 that this means that ⌘IR is continuous);
2. conversely, for every open subset U of R, there is an open subset V of IR such that

U “ ⌘´1
IR pVq.

In other words, and anticipating on Section 4.9, this means that, up to the identification of
points x P R with elements of the form rx, xs in IR, the metric topology on R is induced from
the Scott topology on the larger space IR. See Figure 4.5 for an illustration.

4.3 Continuity

We have already defined what a continuous function was—between metric
spaces. The key to extend this notion to more general topological spaces is
Proposition 3.5.2, Item 3.

Definition 4.3.1 (Continuity) Let X, Y be two topological spaces. A map
f : X Ñ Y is continuous i↵ the inverse image f ´1

pVq of every open subset V
of Y is open in X.

ô Exercise 4.3.2
Show that f : X Ñ Y is continuous iff the inverse image f ´1

pFq of every closed subset F of
Y is closed in X. This is meant to remind you of Proposition 3.5.2, Item 5.
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MODELS

A model of  a (T1) space X is any dcpo that embeds X as 
its subspace of  maximal elements.  
A vast subject! [Lawson, Martin]  E.g.: 

Thm (Martin, 2003): The T3 spaces that 
have an ω-continuous model are exactly  
the Polish spaces. 

But I won’t talk about that... Let’s get back to basics.
!12

4.3. CONTINUITY CHAPTER 4. TOPOLOGY

IR

R´2 ´1 ´0.1 0.7 1.5 3.3

r´2, 1.5s
r0.7, 3.3s

Figure 4.5 Scott’s dcpo IR.

U such that every chain C such that sup C is in U meets U. Show that this is nothing else than
the Scott topology. (Hint: use Markowsky’s Theorem, applied to the complement of any given
chain-open subset.)

Example 4.2.27 One example that relates ordinary T2 topology with non-T2

topologies (such as the Scott topology of an ordering) is Scott’s dcpo IR, see
Exercise 4.2.28. This is an example of a model (here, of R), a notion we shall
explore in Section 7.7.2.

ô Exercise 4.2.28 (IR)
Let IR be the poset of all non-empty closed intervals ra, bs with a, b P R, a § b. Order it by

reverse inclusion Ö. Show that IR is a dcpo, and that the map ⌘IR : x fiÑ rx, xs, which equates
the points of R with certain elements of IR, has the following properties:

1. for every open subset V of IR, ⌘´1
IR pVq is open in R, with its metric topology (we shall see

in Section 4.3 that this means that ⌘IR is continuous);
2. conversely, for every open subset U of R, there is an open subset V of IR such that

U “ ⌘´1
IR pVq.

In other words, and anticipating on Section 4.9, this means that, up to the identification of
points x P R with elements of the form rx, xs in IR, the metric topology on R is induced from
the Scott topology on the larger space IR. See Figure 4.5 for an illustration.

4.3 Continuity

We have already defined what a continuous function was—between metric
spaces. The key to extend this notion to more general topological spaces is
Proposition 3.5.2, Item 3.

Definition 4.3.1 (Continuity) Let X, Y be two topological spaces. A map
f : X Ñ Y is continuous i↵ the inverse image f ´1

pVq of every open subset V
of Y is open in X.

ô Exercise 4.3.2
Show that f : X Ñ Y is continuous iff the inverse image f ´1

pFq of every closed subset F of
Y is closed in X. This is meant to remind you of Proposition 3.5.2, Item 5.
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THE SPECIALIZATION ORDER

A fundamental notion for T0 spaces (not just dcpos!) 

Defn (specialization, ≤): In a topological space X, x≤y 
iff  every open U that contains x also contains y. 

X is T0 iff  ≤ is antisymmetric (an ordering). 

Ex: For a dcpo (X, ⊑) in its Scott topology, ≤ is just ⊑.

(2pt) Prove this. Note that ↓x is always Scott-closed.
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THE SPECIALIZATION ORDER

Defn (specialization, ≤): In a topological space X, x≤y 
iff  every open U that contains x also contains y 
iff  x is in the closure of  y. 

Every open is  
upwards-closed 

Every closed set 
is downward-closed

(1pt) Show that ↓x={y | y≤x} is the closure of x in any space X.

C
U

!14
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MONOTONICITY
Prop: A continuous map f:X → Y is always monotonic 
(w.r.t. the specialization orderings). 

Proof. Assume x≤x’. 
We must show f(x)≤ f(x’), namely that 
        every open neighborhood V of  f(x) contains f(x’).  
Since f(x)∈V, x∈ f-1(V).  
f-1(V) is open hence upwards-closed.  
So x’∈ f-1(V).  
That is, f(x’) ∈V. ☐ 

Converse fails!  (Take for X any T1 space...)

Any ideas? 
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SCOTT-CONTINUITY

In the special case of  dcpos: 

Prop: A map f:X → Y between dcpos is continuous iff  
it is monotonic, and preserves directed sups. 

Proof. Every continuous map f  is monotonic. 
Let x=supi↑ xi.  supi↑ f(xi)≤f(x) by monotonicity. 
To show f(x)≤ supi↑ f(xi), let V be an open nbd of  f(x).  
Hence x∈f-1(V), so some xi is in f-1(V): f(xi) is in V, so 
supi↑ f(xi) is in V, too.  Since ≤=⊑, f(x)≤ supi↑ f(xi).  
Conversely, ... Exercise.
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Let us return to general T0 spaces. 

Let me give a few words of  warning.
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THINGS YOU SHOULD FORGET

Limits are unique: no.                 [unless space is Hausdorff.] 
In fact, any point ≤ a limit is also a limit.  
In dcpos, supi↑ xi is the largest limit of  (xi)i ∈ I. 

Compact subsets are closed: no.     [Note: no separation assumed in compactness.] 
E.g., any finite subset is compact,  
but closed sets are downwards-closed. 

Intersections of  compact subsets are compact: no.  

⨉ ⨉

⨉ ⨉ ⨉ ⨉ ⨉...

a b(1pt) Show that ↑a, ↑b are compact, but not ↑a ⋂ ↑b.
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THINGS YOU SHOULD NOT 
FORGET

Everything else works in the expected way. 

A closed subset of  a compact space is compact. 

Closure of  A=set of  limits of  nets of  points of  A. 

Continuous images of  compact sets are compact. 

If  a filtered intersection of  closed sets intersects a 
compact set then one of  them intersects it too. 

Etc.
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THINGS YOU SHOULD PAY 
ATTENTION TO

Local compactness has to be redefined. 

X is locally compact iff  every point x has a 
base of  compact neighborhoods, i.e.,  
for every open U containing x, 
there is a compact Q such that 
x ∈ int(Q) ⊆ Q  ⊆ U. 

Usual definition (every point has a compact 
neighborhood) equivalent in Hausdorff  
spaces, but too weak in general.

4.8. LOCAL COMPACTNESS CHAPTER 4. TOPOLOGY

U

intpQq
Q (compact saturated)

(open)

x

Figure 4.7 Local compactness.

Definition 4.8.1 (Locally Compact) A topological space X is locally compact
if and only if, for every x P X and every open neighborhood U of x, there is a
compact saturated subset Q of X such that x P intpQq and Q Ñ U.

See Figure 4.7. So, for every open neighborhood U of x, there is a smaller
compact saturated neighborhood of x. Using Lemma 4.1.10, a locally compact
topological space therefore has a base consisting of the interiors of compact
saturated (small) subsets.

Trick 4.8.2 To show that a space X is locally compact, it is enough to show
that for every x P X, for every open neighborhood U of x in X, there is a
compact set K and an open subset V such that x P V Ñ K Ñ U.

Indeed, then Ò K is compact saturated and still included in U (Proposi-
tion 4.4.14), and V Ñ intpÒ Kq.

Example 4.8.3 R, R�, N� are locally compact. Only the latter one is com-
pact. (Exercise.)

ô Exercise 4.8.4 (Q is Not Locally Compact)
Consider the space Q of all rational numbers, with the topology having a base given by the

intervals pa, bqXQ, where a † b in R. (This is the subspace topology from R, see Section 4.9.)
Show that every compact subset Q of Q has empty interior. In other words, consider any
compact subset Q of Q, and show that it cannot contain any interval ra, bs X Q with a † b.

Conclude that Q is not locally compact.

ô Exercise 4.8.5 (R` is Not Locally Compact)
Show that the Sorgenfrey line R` (Exercise 4.1.34) is not locally compact either: as for Q,

every compact subset of R` has empty interior.

ô Exercise 4.8.6
Show that the lifting XK (Exercise 4.4.25) of a space X is locally compact if and only if X is

locally compact.

The standard definition of local compactness, used in the context of T2

spaces, is that every point should have a compact neighborhood. Indeed:

94
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T0 SPACES: HOW

Let me guide you through a case study: D. S. Scott’s 
characterization of  the injective T0 spaces as the 
continuous lattices. 

This will let us go through some of  the important 
notions in the field.
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INJECTIVE SPACES

A standard problem in topology:  
Let f : X → Z be continuous, 
and i : X → Y be an embedding.  
Show (under some conditions) that f extends to a 
continuous map from Y to Z. 

Ex: If  Y normal, X closed in Y, Z=R (Tietze-Urysohn) 

See also Dugundji, Lavrentiev, etc.

X

ZY

fi
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INJECTIVE SPACES

Defn: The T0 space Z is injective iff 
for all T0 spaces X and Y, 
for every continuous f : X → Z, 
for every embedding i : X → Y, 
f extends to a continuous map from Y to Z. 

Note: X, Y are arbitrary (among T0 spaces). 

What are the injective spaces? 

Solved by Dana S. Scott, Continuous lattices, 
Springer LNM 274, 97-136, 1972.

X

ZY

fi
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SIERPIŃSKI SPACE

S = {0 < 1}, Scott topology 

Opens= ∅, {1}, {0, 1} - not {0} 

T0, not T1 

Trivial, but important:

(1pt) Show that U ↦ χU is a one-to-one correspondence 
between opens of X and continuous maps from X to S.
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SIERPIŃSKI SPACE

S = {0 < 1}, only non-trivial open {1}. 

Fact: S is injective. 

Proof. Take a continuous map f:X → S. 
f is equal to χU, where U=f-1({1}).  
Since X embeds into Y through i, U is the trace on X of  
an open subset V of  Y.  (Formally, U=i-1(V).) 
Then f extends to χV:Y → S , as χV (i(x))=χU(x).  ☐
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THE ČECH EMBEDDING

Let OX be the complete lattice of  open sets of  X. 

Thm (Čech 1966) Let 𝜂:X → SOX : x ↦ (𝝌U(x))U ∈ OX. 
For every T0 space X, 𝜂 is a topological embedding. 

Proof: later.  The point is that SOX has a wealth of  good 
properties.  E.g., it is (stably) compact.

(1pt) Compact... but not Hausdorff!  Show that any 
space with a least element w.r.t. ≤ is compact.  Hence 
compactness is not much to ask without Hausdorffness.
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THE ČECH EMBEDDING

Thm. Let 𝜂 : X → SOX map x to (𝝌U(x))U ∈ OX. 
For every T0 space X, 𝜂 is a topological embedding. 

Proof: A subbase of  SOX is given by  
πU-1({1})={tuples that have a 1 at position U}.  
— 𝜂 -1(πU-1({1})) = U is open, so 𝜂 is continuous. 
— 𝜂 is almost open, i.e., for every open U of  X, 
    U=𝜂 -1(V) for some open V of  SOX [take V= πU-1({1})] 
— 𝜂 is injective, because X is T0. 
Such a map is a homeomorphism onto its image. ☐  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PRODUCTS

Fact: Every product of  injectives is injective. 

Proof.  Let Zj be injective, j ∈ J, Z be their product,  
and πj be the projections : Z → Zj. 
Let f:X → Z be continuous, i:X → Y be an embedding.  
For each j, πj o f extends to f ’j: Y → Zj. 
So f itself  extends to y ↦ (f ’j(y))j ∈ J.  ☐ 

Corl: SOX is injective.
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RETRACTS

Now assume Z is injective. 

Let X=Z, Y= SOZ, i=𝜂, f=id. 

Then Z arises as a retract of  SOZ: 
there is a continuous map r : SOZ → Z 
such that r o 𝜂 = id.

X

ZY

fi

Z

ZSOZ

id𝜂

r
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RETRACTS

Fact: a retract of  an injective is injective. 

Proof.  Let Z be retract of  Z’ injective. 
s o f extends to the dotted arrow.  
Post-compose with r and use r o s = id. ☐ 

Corl: The following are equivalent:  
(1) Z is injective 
(2) Z is a retract of  SOZ 
(3) Z is a retract of  some power of  S.

X

ZY

fi

rs

Z’
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INTERMISSION

We now know that the injective spaces are the retracts 
of  powers of  S. 

To characterize these, let us spend some time doing 
basic domain theory:  
— algebraic dcpos  
— continuous dcpos  
That will be useful later. 

(I told you the study of  the theorem would be an 
excuse!)
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FINITE ELEMENTS

Defn: An element x of  a poset X is finite iff 
for every directed family (yi)i ∈ I whose sup y exists and 
is ≥ x, some yi is already ≥ x. 

Equivalently, iff  ↑x is Scott-open. 

Ex: every finite poset (in particular, S) 
is a dcpo where every element is finite. 

Ex: The powerset P(A), ⊆ is a dcpo.  
Its finite elements are... the finite subsets of  A.

x

↑x

(1pt) Show this. !32



ALGEBRAIC POSETS

Defn: An element x of  a poset X is finite iff 
for every directed family (yi)i ∈ I whose sup y exists and 
is ≥ x, some yi is already ≥ x. 

Defn: A poset X is algebraic iff  every point x is a 
directed sup of  finite elements below x. 

Ex: The powerset P(A), ⊆ is algebraic.  
Each B ⊆ A is sup↑ {finite subsets of  B}.  (Sup=union.) 

(2pt) Show that if A is uncountable, then A itself is not the sup of a 
chain of finite subsets. This is why we took directed families, not chains.
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B-SPACES

Marcel Erné, The ABC of  order and 
topology, 1991. 

A b-space is a space with a base of  
(compact) opens of  the form ↑y. 

A strong form of  local compactness: 

Thm: The posets that are b-spaces 
in their Scott topology are exactly 
the algebraic posets.  

4.8. LOCAL COMPACTNESS CHAPTER 4. TOPOLOGY

U

intpQq
Q (compact saturated)

(open)

x

Figure 4.7 Local compactness.

Definition 4.8.1 (Locally Compact) A topological space X is locally compact
if and only if, for every x P X and every open neighborhood U of x, there is a
compact saturated subset Q of X such that x P intpQq and Q Ñ U.

See Figure 4.7. So, for every open neighborhood U of x, there is a smaller
compact saturated neighborhood of x. Using Lemma 4.1.10, a locally compact
topological space therefore has a base consisting of the interiors of compact
saturated (small) subsets.

Trick 4.8.2 To show that a space X is locally compact, it is enough to show
that for every x P X, for every open neighborhood U of x in X, there is a
compact set K and an open subset V such that x P V Ñ K Ñ U.

Indeed, then Ò K is compact saturated and still included in U (Proposi-
tion 4.4.14), and V Ñ intpÒ Kq.

Example 4.8.3 R, R�, N� are locally compact. Only the latter one is com-
pact. (Exercise.)

ô Exercise 4.8.4 (Q is Not Locally Compact)
Consider the space Q of all rational numbers, with the topology having a base given by the

intervals pa, bqXQ, where a † b in R. (This is the subspace topology from R, see Section 4.9.)
Show that every compact subset Q of Q has empty interior. In other words, consider any
compact subset Q of Q, and show that it cannot contain any interval ra, bs X Q with a † b.

Conclude that Q is not locally compact.

ô Exercise 4.8.5 (R` is Not Locally Compact)
Show that the Sorgenfrey line R` (Exercise 4.1.34) is not locally compact either: as for Q,

every compact subset of R` has empty interior.

ô Exercise 4.8.6
Show that the lifting XK (Exercise 4.4.25) of a space X is locally compact if and only if X is

locally compact.

The standard definition of local compactness, used in the context of T2

spaces, is that every point should have a compact neighborhood. Indeed:

94

Q=int(Q)=↑y

(2pt) Show half of this: 
any algebraic poset 
must be a b-space.!34



POWERSETS

SA ≅ P(A): (ba)a ∈ A ↦ {a ∈ A | ba =1} 

Prop: this is a homeomorphism: the product topology 
(on SA) is the Scott topology (on P(A)). 

Mod ≅, the product topology on P(A) has subbasic sets 
πa-1({1})={B ⊆ A | a ∈ B}.  Note πa-1({1})=↑{a}. 
Take finite intersections: basic sets ↑F, F finite ⊆ A. 

Let B ∈ U Scott-open in P(A). B= sup↑i Fi, Fi finite. 
So some Fi is in U.  Hence ↑Fi open nbd of  B inside U. 
➪ Scott topology has basic sets ↑F, F finite ⊆ A, too. ☐
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THE ČECH EMBEDDING 
REVISITED

Thm. Let 𝜂:X→ P(OX) map x to Nx={U∈OX |x∈U}.  
For every T0 space X, 𝜂 is a topological embedding. 

X is injective iff  X is a retract of  P(OX) 
                     iff  X is a retract of  some powerset. 

(But let us proceed with our intermission.)
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C-SPACES
Yuri L. Ershov, The theory of  A-spaces, 
Algebra and Logic 12(4), 1973.  
Marcel Erné, The ABC of  order and 
topology, 1991. 

A c-space is a space where every 
point x has a base of  (compact) 
neighborhoods of  the form ↑y. 

A strong form of  local compactness: 

Compared to b-spaces, we do not 
require ↑y to be open.

4.8. LOCAL COMPACTNESS CHAPTER 4. TOPOLOGY

U

intpQq
Q (compact saturated)

(open)

x

Figure 4.7 Local compactness.

Definition 4.8.1 (Locally Compact) A topological space X is locally compact
if and only if, for every x P X and every open neighborhood U of x, there is a
compact saturated subset Q of X such that x P intpQq and Q Ñ U.

See Figure 4.7. So, for every open neighborhood U of x, there is a smaller
compact saturated neighborhood of x. Using Lemma 4.1.10, a locally compact
topological space therefore has a base consisting of the interiors of compact
saturated (small) subsets.

Trick 4.8.2 To show that a space X is locally compact, it is enough to show
that for every x P X, for every open neighborhood U of x in X, there is a
compact set K and an open subset V such that x P V Ñ K Ñ U.

Indeed, then Ò K is compact saturated and still included in U (Proposi-
tion 4.4.14), and V Ñ intpÒ Kq.

Example 4.8.3 R, R�, N� are locally compact. Only the latter one is com-
pact. (Exercise.)

ô Exercise 4.8.4 (Q is Not Locally Compact)
Consider the space Q of all rational numbers, with the topology having a base given by the

intervals pa, bqXQ, where a † b in R. (This is the subspace topology from R, see Section 4.9.)
Show that every compact subset Q of Q has empty interior. In other words, consider any
compact subset Q of Q, and show that it cannot contain any interval ra, bs X Q with a † b.

Conclude that Q is not locally compact.

ô Exercise 4.8.5 (R` is Not Locally Compact)
Show that the Sorgenfrey line R` (Exercise 4.1.34) is not locally compact either: as for Q,

every compact subset of R` has empty interior.

ô Exercise 4.8.6
Show that the lifting XK (Exercise 4.4.25) of a space X is locally compact if and only if X is

locally compact.

The standard definition of local compactness, used in the context of T2

spaces, is that every point should have a compact neighborhood. Indeed:
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Q=↑y
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B- AND C-SPACES
Prop: A retract of  a b-space is a c-space. 

Proof: first, every b-space is trivially a c-space.  
Let r : C → X, s : X → C be a retraction, C a c-space.  
Let us show that X is a c-space, too.  
 
Let x be in X, U be an open neighborhood of  x. 
r-1(U) is an open neighborhood of  s(x) in C. 
For some y in C, s(x) ∈ int(↑y), ↑y ⊆ r-1(U).  
Then x ∈ s-1(int(↑y)) ⊆ int(↑r(y)) and ↑r(y) ⊆ U.  ☐

(2pt) Show the leftmost inclusion in the last line.  Recall that r, being 
continuous, is monotonic. !38

Any ideas? 
Any ideas? 



CONTINUOUS POSETS

I might take that as a definition: 

Thm (Erné, 2005): The posets that are c-spaces in 
their Scott topology are exactly the continuous posets. 

Let us unknit that, and try to reconstruct what a 
continuous poset might be, with an eye to that 
theorem.
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THE WAY-BELOW RELATION

Defn: Let x ≪ x’ iff, for every directed family (yi)i ∈ I 
whose sup y is ≥ x’, some yi is already ≥ x. 

Note: x ≪ x’ if  x’ is in the Scott interior 
of  ↑x.  (Iff  in continuous posets = c-spaces.) 

Note: x is finite iff  x ≪ x. 

Defn: A continuous poset X is one where 
every point x is a directed sup of  points ≪ x. 

Ex: [0, 1] is a continuous dcpo,  
     x ≪ x’ iff  x=0 or x<x’.

x

int(↑x)

(1pt) Show this.
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BASES

I have said that x ≪ x’ if  x’ is in the Scott interior 
of  ↑x.  The converse holds in continuous posets, 
(admitted). We shall prove Erné’s theorem later, too. 

Prop: Let ↟x = {x’ | x ≪ x’}.  In a continuous poset, 
↟x=int(↑x), and those sets form a base of  the Scott 
topology. 

Prop: In an algebraic poset, x ≪ x’ iff  x≤w≤x’ for 
some finite w.  The sets ↑w, w finite, are (compact and) 
open and form a base of  the Scott topology.
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A CONUNDRUM

A retract Y of  a b-space X is a c-space 

For a poset, algebraic ⇔ b-space in its Scott topology 

For a poset, continuous ⇔ c-space in its Scott topology 

Is a retract Y of  an algebraic dcpo X continuous? 
Difficulty: why should Y have the Scott topology??
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THE SOPHISTICATED WAY OUT

Invoke sobriety (see later, if  we’ve got time). 

Thm: Algebraic dcpo = sober b-space. 

Thm: Continuous dcpo = sober c-space. 

(In particular, a sober b- or c-space has the Scott 
topology of  its specialization ordering.) 

Retracts of  sober spaces are sober. 

We conclude: all retracts of  algebraics dcpos are 
continuous dcpos.
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CONVERSELY?

We know that every retract of  an algebraic dcpo is a 
continuous dcpo. 
(Modulo the sobriety thing.) 

We wish to establish the converse: every continuous 
dcpo X arises as the retract of  some algebraic dcpo. 

That algebraic dcpo is the ideal completion I(X) of  X.
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IDEALS

An (order-) ideal D of  a poset X is a directed,  
downwards-closed subset of  X. 

Let I(X) = {ideals of  X}, ordered by ⊆. 

Prop: I(X) is a dcpo, and directed sups are unions. 

Proof: Exercise.
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IDEAL COMPLETION
An (order-) ideal D of  a poset X is a directed,  
downwards-closed subset of  X. 
Let I(X) = {ideals of  X}, ordered by ⊆. 

Prop: I(X) is an algebraic dcpo, and its finite elements 
are the ideals of  the form ↓x, x in X. 

Proof: ↓x is finite: if  ↓x ⊆ sup↑i Di, then x∈sup↑i Di, so x 
is in some Di, i.e., ↓x ⊆ Di. 
Clearly, (*) D=sup↑x∈D ↓x. 
If  D finite, by (*) D ⊆↓x for some x∈D, so D =↓x. 
Finally, by (*) every D is a sup↑ of  finite elements. ☐
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IDEAL COMPLETION

The ideal completion has many properties: 

There is an order-embedding i:x ↦ ↓x of  X into I(X). 

I(X) is the the free dcpo over X: 
every monotonic map f from X to  
a dcpo Z extends to a unique 
Scott-continuous map f ’ from I(X) to Z. 

Every algebraic dcpo X is isomorphic to  
the ideal completion I(B) of  its poset B 
of  finite elements.

X

ZI(X)

fi

f ’

(2pt) Exercise.
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IDEAL COMPLETION
Let ↡x = {x’ | x’ ≪ x}, when X is continuous. 
There is another embedding s:x ↦ ↡x of  X into I(X),  
and a map r:D ↦ sup D from I(X) to X. 

Prop: If  X is a continuous dcpo, then r, s exhibit X as 
a retract of  I(X). 

Proof: - r o s = id... by the def. of  continuous posets. 
- r is monotonic and preserves sup↑, so is continuous. 
- A basic open subset of  I(X) is ↑I(X)↓Xx (upwards-
closure of  a finite element).  Its inverse image by s is 
↟x, which is open. So s is   continuous.  ☐
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CONTINUOUS VS. ALGEBRAIC

We therefore obtain (modulo the sobriety thing): 

Thm: The continuous dcpos are exactly the retracts 
of  algebraic dcpos. 

That is too much for our purpose (characterizing 
injective spaces), but nice anyway.
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INJECTIVE⇒ 
CONTINUOUS LATTICE

One checks easily that an order-retract of  a complete 
lattice is a complete lattice.  So:  

Thm: A retract of  an algebraic complete lattice is a 
continuous complete lattice. 

Recall that an injective space Z is a retract of  the 
algebraic dcpo SOZ ≅ P(OZ), also a complete lattice. 

Corl: Every injective space is a continuous complete 
lattice, in its Scott topology.
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AN EXTENSION FORMULA

Prop: Let Z be a continuous complete lattice.  
Every continuous map f:X → Z extends to a 
continuous map f ’ from P(OX) to Z. 
(I.e., f ’o 𝜂=f, or equivalently, f ’(Nx)=f(x) for every x.) 

Proof.  For A in P(OX), let f ’(A)=sup {z | f-1(↟z)∈A}.  
- f ’ preserves (all) unions, hence is Scott-continuous. 
- f ’(Nx)=sup {z | x ∈ f-1(↟z)}  
          =sup↑ {z | z ≪ f(x)} = f(x)  (continuous dcpo). ☐
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CONTINUOUS LATTICE 
⇒INJECTIVE

Prop: Let Z be a continuous complete lattice.  
Every continuous map f:X → Z extends to a 
continuous map f ’ from P(OX) to Z.  [I.e., f ’o 𝜂=f.] 

Let X=Z, f=id: 

Corl: Let Z be a continuous complete lattice.  
There is a continuous map ⍴=id’ from P(OZ) to Z 
such that ⍴ o 𝜂 = id  [i.e., ⍴(Nz)=z for every z in Z.] 

That is, Z is a retract of  P(OZ).  So Z is injective.
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SCOTT’S THEOREM

Thm (Scott, 1972): The following are equivalent:  
(1) Z is injective 
(2) Z is a retract of  SOZ=P(OX) 
(3) Z is a retract of  some power of  S (=some powerset) 
(4) Z is a continuous complete lattice in its Scott 
topology. 

(Modulo the sobriety thing... we are coming to it.)
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STONE DUALITY
(I’ll be quicker here.) 
Let a frame be a complete lattice where 
                     u ⋀ ⋁i∈I vi =  ⋁i∈I (u ⋀ vi) 
Frame morphisms preserve finite ⋀ and arbitrary ⋁. 
Together they form a category Frm. 

There is a functor O : Top → Frmop: 
— mapping every topological space X to OX 
— and every continuous map f:X → Y to the frame 
morphism Of: OY → OX : V ↦ f-1(V). 

Can we retrieve X from       its frame of  opens?
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POINTS IN A FRAME

Let L be a frame.  
If  L=OX, where X is T0, we can equate x with Nx. 
Nx is a completely prime filter: 
— it is non-empty  
— it is upwards-closed  
— it is closed under ⋀ 
— (c.p.) if  ⋁i∈I vi is in it, then some vi is in it. 

Let pt L be the set of  c.p. filters of  L, (a.k.a., points) 
with the hull-kernel topology,  
whose opens are Ou = {x point | u ∈ x}.
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THE STONE ADJUNCTION

pt defines a functor : Frmop → Top, 
right-adjoint to O. 

The unit 𝜂 : X → pt OX maps x to Nx, and is injective 
iff  X is T0.  (Then it is an embedding.) 

Defn: X is sober iff  𝜂 is bijective 
                              iff  𝜂 is a homeomorphism. 

In other words, the T0 space X is sober iff  every c.p. 
filter of  opens is Nx for some point x.
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IRREDUCIBLE CLOSED SETS

For a c.p. filter F, the union V of  all opens not in F is 
not in F — by c.p.  This is the largest open not in F. 

Let C be the complement of  the largest open not in F. 
Note: for U open, C intersects U iff  U⊈V iff  U∈ F. 

Lemma: C is irreducible closed, namely: if  C 
intersects finitely many opens U1, ..., Un, then it 
intersects ∩i=1n Ui. 

Proof.  Each Ui  is in F, so ∩i=1n Ui is in F (filter), too.  ☐
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IRREDUCIBLE CLOSED SETS

Lemma: C is irreducible closed, namely: if  C 
intersects finitely many opens U1, ..., Un, then it 
intersects ∩i=1n Ui. 

Equivalently: if  C is included in a union of  finitely 
many closed sets C1, ..., Cn, then it is included in some 
Ci  —  when the name irreducible closed. 

Conversely, let C be irreducible closed.  
Let F be the set of  all opens U that intersect C. 
Then F is a c.p. filter.
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SOBER SPACES

Because of  the one-to-one-correspondence between 
c.p. filters and irreducible closed subsets, we have: 

Prop: Up to iso, pt OX is the sobrification SX of  X, 
whose points are the irreducible closed subsets of  X. 
Its opens are ◇U={C | C ⋂ U≠∅}, U ∈OX. 
If  X is T0, 𝜂 : X → pt OX : x ↦ ↓x is an embedding. 

Corl: The T0 space X is sober iff  every irreducible 
closed subset is the closure ↓x of  a (unique) point x.
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T2 ⇒ SOBER

C is irreducible closed iff: if  C intersects finitely many 
opens U1, ..., Un, then it intersects ∩i=1n Ui. 
Note that irreducible implies non-empty (take n=0). 

Thm: Every Hausdorff  space is sober. 

Proof.  Let C be irreducible closed.  
If  C contained two distinct elements, then separate them by disjoint opens U1, U2. 
By irreducibility, C intersects their (empty) intersection: no.  
So C contains exactly one point.  ☐ 

T2 ⇒ sober ⇒ T0, sober incomparable with T1.

Exercise! 
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CONTINUOUS DCPO ⇒ SOBER

Thm: Every continuous dcpo is sober. 

Proof.  Let C be irreducible closed.  
— Let D={x | ↟x intersects C}.  I claim D is directed.  
     If  x, y are in D, then ↟x ⋂ ↟y intersects C. 
     Since ↟x ⋂ ↟y open, contains some ↟z that 
     intersects C.  Note that x, y ≤ z.  So D is directed.  
— sup D is in C since C Scott-closed, so ↓sup D ⊆ C. 
— For every y in C, write y as a sup of  x ≪ y.  Each 
such x is in D, so y ≤ sup D.  Hence C = ↓sup D.  ☐

Exercise 
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OPERATIONS ON SOBER SPACES

Sober spaces are closed under coproducts,  
(T0 quotients of) quotients, products; but not subspaces. 

Prop: Sober spaces are closed under retracts. 

Proof. Let r : Z → X, s : X → Z be a retraction, Z sober. 
Let C be irreducible closed in X. 
(1) We check that cl(s(C)) is irreducible closed.  
If  cl(s(C)) intersects U1, ..., Un, then s(C) intersects them, 
too.  So C intersects s-1(U1), ..., s-1(Un).  
Since C irreducible, C intersects ∩i=1ns-1(Ui)=s-1(∩i=1nUi).  
So s(C), hence also cl(s(C)), intersects ∩i=1nUi.
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OPERATIONS ON SOBER SPACES

Sober spaces are closed under coproducts,  
(T0 quotients of) quotients, products; but not subspaces. 

Prop: Sober spaces are closed under retracts. 

Proof. Let r : Z → X, s : X → Z be a retraction, Z sober. 
Let C be irreducible closed in X. 
(1) We check that cl(s(C)) is irreducible closed.  
(2) So cl(s(C))=↓z for some z in Z.  We claim C=↓r(z).  
(⊆) Every x in C is such that s(x)≤z, so x=r(s(x))≤r(z).  
(⊇) s(C) ⊆ r-1(C) since r o s=id, so cl(s(C)) ⊆ r-1(C) (closed).  
      Hence z ∈ r-1(C), so r(z) ∈ C, so ↓r(z) ⊆ C.   ☐
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SOBER ⇒ MONOTONE 
CONVERGENCE

Thm (O. Wyler, 1977): Let X be sober.  Then: 
(1) ≤ is directed complete 
(2) all opens are Scott-open.  
(A space satisfying those is a monotone convergence space.  All T1 spaces are, too.) 

Proof. Let D be directed.  Then cl(D) is irreducible closed.  
(1) By sobriety, cl(D)=↓x for some x: we show x=sup↑ D. 
     x is an upper bound of  D since D ⊆ ↓x. 
     For any other upper bound y, every open nbd U of  x  
     intersects cl(D) hence D, so contains y: hence x≤y. 
     It follows that x=sup↑ D. 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SOBER ⇒ MONOTONE 
CONVERGENCE

Thm (O. Wyler, 1977): Let X be sober.  Then: 
(1) ≤ is directed complete 
(2) all opens are Scott-open.  
(A space satisfying those is a monotone convergence space.  All T1 spaces are, too.) 

Proof. Let D be directed.  Then cl(D) is irreducible closed.  
(1) By sobriety, cl(D)=↓x for some x: we show x=sup↑ D. 
(2) If  U open contains sup↑ D=x, U intersects ↓x=cl(D),  
     hence also D.  So U is Scott-open.  ☐
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SOBER ⇒ MONOTONE 
CONVERGENCE

Thm (O. Wyler, 1977): Let X be sober.  Then: 
(1) ≤ is directed complete 
(2) all opens are Scott-open.  
(A space satisfying those is a monotone convergence space.  All T1 spaces are, too.) 

Beware: X not continuous in general 
                        (here, a non-continuous, sober dcpo) 

Beware:  Johnstone’s non-sober dcpo:
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5.1. THE WAY-BELOW RELATION CHAPTER 5. APPROXIMATION

!

p1, 1q

p1, 0q

p0, 2q

p0, 1q

p0, 0q

p1, 2q

Figure 5.1 The non-continuous dcpo N2.

Note that x ! y implies x § y: take the directed family tyu. The converse
fails, see Example 5.1.2.

To explain the notion through its complement, x is not way-below y if there
is a way of taking a limit of elements all properly below x, but where the limit
would jump above not just x but also y.

Example 5.1.2 Here are a few instances of the way-below relation !: piq if
X “ N, then x ! y i↵ x § y; piiq if X “ N!, where N! is N plus a fresh
element ! above all natural numbers, then x ! y i↵ x § y and x ‰ !; piiiq if
X “ PpYq, where Y is some set, possibly infinite, A ! B i↵ A is a finite subset
of B; pivq if X “ R, then x ! y i↵ x † y; pvq if X “ R` or X “ r0, 1s, then
x ! y i↵ x “ 0 or x † y. (As an exercise, prove these claims.)

ô Exercise 5.1.3
Here is a case where the way-below relation is slightly less intuitive. Consider the dcpo N2

in Figure 5.1. Show that, in N2, ! is the empty relation: x ! y for no pair of elements x, y. In
particular, no element is way-below !.

Let us state a few easy properties of !. Note that ! is neither reflexive
nor irreflexive in general. E.g., some elements are way-below themselves (the
elements of N in X “ N!), some others are not (! in the same example).

Proposition 5.1.4 If x ! y, then x § y.
If x ! y and y § z, then x ! z.
If x § y and y ! z, then x ! z. In particular, ! is transitive.

Proof We have already mentioned the first claim. For the second part, we
show more generally that if x1 § x2 ! y2 § y1, then x1 ! y1; this follows
easily from the definition. ⇤

5.1.1 Continuous posets
The elements y such that y ! x should be understood as approximants of x,
which in good cases are simpler than x itself. E.g., in the case of PpYq (Exam-
ple 5.1.2), the approximants of the possibly infinite sets B are the finite subsets
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SOBER C-SPACES

We know that a continuous dcpo is: 
(1) sober 
(2) a c-space in its Scott topology. 

I claimed the converse, earlier. 

Let us prove this. 

Recall that a c-space is a space with 
a very strong local compactness 
property: if  x∈U open, then there is 
a point y such that x∈int(↑y)⊆↑y⊆U.

4.8. LOCAL COMPACTNESS CHAPTER 4. TOPOLOGY

U

intpQq
Q (compact saturated)

(open)

x

Figure 4.7 Local compactness.

Definition 4.8.1 (Locally Compact) A topological space X is locally compact
if and only if, for every x P X and every open neighborhood U of x, there is a
compact saturated subset Q of X such that x P intpQq and Q Ñ U.

See Figure 4.7. So, for every open neighborhood U of x, there is a smaller
compact saturated neighborhood of x. Using Lemma 4.1.10, a locally compact
topological space therefore has a base consisting of the interiors of compact
saturated (small) subsets.

Trick 4.8.2 To show that a space X is locally compact, it is enough to show
that for every x P X, for every open neighborhood U of x in X, there is a
compact set K and an open subset V such that x P V Ñ K Ñ U.

Indeed, then Ò K is compact saturated and still included in U (Proposi-
tion 4.4.14), and V Ñ intpÒ Kq.

Example 4.8.3 R, R�, N� are locally compact. Only the latter one is com-
pact. (Exercise.)

ô Exercise 4.8.4 (Q is Not Locally Compact)
Consider the space Q of all rational numbers, with the topology having a base given by the

intervals pa, bqXQ, where a † b in R. (This is the subspace topology from R, see Section 4.9.)
Show that every compact subset Q of Q has empty interior. In other words, consider any
compact subset Q of Q, and show that it cannot contain any interval ra, bs X Q with a † b.

Conclude that Q is not locally compact.

ô Exercise 4.8.5 (R` is Not Locally Compact)
Show that the Sorgenfrey line R` (Exercise 4.1.34) is not locally compact either: as for Q,

every compact subset of R` has empty interior.

ô Exercise 4.8.6
Show that the lifting XK (Exercise 4.4.25) of a space X is locally compact if and only if X is

locally compact.

The standard definition of local compactness, used in the context of T2

spaces, is that every point should have a compact neighborhood. Indeed:
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Q=↑y
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SOBER C-SPACES
Prop (Erné): A sober c-space X is a continuous dcpo, 
and its topology is the Scott topology. 

Proof. Define y ≺ y’ iff  y’ ∈int(↑y).  
(1) We first show that y ≺ y’ implies y ≪ y’. 
     If  y ≺ y’ ≤ sup↑ D=x — recall↓x=cl(D) —  
     then int(↑y) intersects cl(D) (at y’) hence D. 
     So some z ∈ D is above y.
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SOBER C-SPACES
Prop (Erné): A sober c-space X is a continuous dcpo, 
and its topology is the Scott topology. 

Proof. Define y ≺ y’ iff  y’ ∈int(↑y).  
(1) We first show that y ≺ y’ implies y ≪ y’. 
(2) Now show: D={y | y ≺ y’} is directed and sup↑ D=y’. 
     For every open nbd U of  y’, some y∈U satisfies y ≺ y’. 
     For U=X, this shows D non-empty. 
     Given y1, y2 in D, take U=int(↑y1) ⋂ int(↑y2).  
     Find y in U such that y ≺ y’. 
     Then y is in D, and y1, y2 ≤ y.
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SOBER C-SPACES
Prop (Erné): A sober c-space X is a continuous dcpo, 
and its topology is the Scott topology. 

Proof. Define y ≺ y’ iff  y’ ∈int(↑y).  
(1) We first show that y ≺ y’ implies y ≪ y’. 
(2) Now show: D={y | y ≺ y’} is directed and sup↑ D=y’. 
(3) So, with ≤, X is a continuous dcpo.  
    ... Every y’ is the sup↑ of  a family D of  elements ≪ y’.
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SOBER C-SPACES
Prop (Erné): A sober c-space X is a continuous dcpo, 
and its topology is the Scott topology. 

Proof. Define y ≺ y’ iff  y’ ∈int(↑y).  
(1) We first show that y ≺ y’ implies y ≪ y’. 
(2) Now show: D={y | y ≺ y’} is directed and sup↑ D=y’. 
(3) So, with ≤, X is a continuous dcpo.  
(4) y ≪ y’ implies y ≺ y’. 
Use (2) and the def. of  ≪: some element of  D is above y. 
Call that element z: y ≤ z ≺ y’, so y ≺ y’.
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SOBER C-SPACES
Prop (Erné): A sober c-space X is a continuous dcpo, 
and its topology is the Scott topology. 

Proof. Define y ≺ y’ iff  y’ ∈int(↑y).  
(1) We first show that y ≺ y’ implies y ≪ y’. 
(2) Now show: D={y | y ≺ y’} is directed and sup↑ D=y’. 
(3) So, with ≤, X is a continuous dcpo.  
(4) y ≪ y’ implies y ≺ y’. 
(5) Every Scott-open is open (in the original topology).  
By (1) and (4), ↟y=int(↑y).  The former are a base of  the 
Scott topology, the latter are open.

!72

Your turn. 



SOBER C-SPACES
Prop (Erné): A sober c-space X is a continuous dcpo, 
and its topology is the Scott topology. 

Proof. Define y ≺ y’ iff  y’ ∈int(↑y).  
(1) We first show that y ≺ y’ implies y ≪ y’. 
(2) Now show: D={y | y ≺ y’} is directed and sup↑ D=y’. 
(3) So, with ≤, X is a continuous dcpo.  
(4) y ≪ y’ implies y ≺ y’. 
(5) Every Scott-open is open (in the original topology).  
(6) Every open is Scott-open. 
     ... because a sober space is monotone convergence. ☐
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CONCLUSION

This fills the last gap in our proof. 

There would be many things more to say.  
— The Hofmann-Mislove theorem  
— The theory of  stably compact spaces  
— Quasi-metric spaces  
— Etc. (but I had to make choices.) 

Read the book, follow the blog!  
http://projects.lsv.ens-cachan.fr/topology/
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