Full Abstraction for Non-Deterministic and Probabilistic Extensions of PCF

Jean Goubault-Larrecq

ANR Blanc CPP

Domains X - September 2011
Outline

1. Introduction
2. Call-by-Name
 - Syntax
 - Operational Semantics
 - Denotational Semantics
3. The Full Abstraction Problem
 - Full Abstraction
 - Definability
 - The Need for Termination Testers
4. Call-by-Value
 - Syntax
 - Semantics
 - The Need for Statistical Termination Testers
 - Full Abstraction in Angelic Cases
5. Conclusion
Outline

1 Introduction
2 Call-by-Name
 - Syntax
 - Operational Semantics
 - Denotational Semantics
3 The Full Abstraction Problem
 - Full Abstraction
 - Definability
 - The Need for Termination Testers
4 Call-by-Value
 - Syntax
 - Semantics
 - The Need for Statistical Termination Testers
 - Full Abstraction in Angelic Cases
5 Conclusion
PCF, Full Abstraction

PCF [Plotkin77]:
- a call-by-name, simply-typed, higher-order functional language
- no side-effects
- has computational adequacy
- fails full abstraction... except with additional por
PCF, Full Abstraction

PCF [Plotkin77]:
- a call-by-name, simply-typed, higher-order functional language
- no side-effects
- has computational adequacy
- fails full abstraction... except with additional \textit{por}

Here, PCF plus specific \textit{choice} effects:
- probabilistic choice
- angelic/demonic/erratic non-deterministic choice
- + mixtures

Only partial results for now
- with a stress on call-by-value, and angelic non-determinism
Outline

1. Introduction
2. Call-by-Name
 - Syntax
 - Operational Semantics
 - Denotational Semantics
3. The Full Abstraction Problem
 - Full Abstraction
 - Definability
 - The Need for Termination Testers
4. Call-by-Value
 - Syntax
 - Semantics
 - The Need for Statistical Termination Testers
 - Full Abstraction in Angelic Cases
5. Conclusion
Types

\[
\begin{align*}
\gamma & ::= \text{Nat} \mid S & \text{Ground types} \\
\sigma, \tau & ::= \gamma \mid \sigma \rightarrow \tau \mid T\tau & \text{Types}
\end{align*}
\]

Notes:
- \(S\) has only one (non-bottom) value
 - \(=\) \textit{unit type}, \textit{termination type}
 - Not required in principle, but practical
- \(T\tau\) type of \textit{processes} computing value of type \(\tau\)

\(\text{à la [Moggi91]}\)
PCF(S) Terms

Language parameterized by set $S \subseteq \{A, D, P\}$

(angelic non-det., demonic non-det., probabilistic choice).

- PCF terms
 \[
 (\lambda\text{-calculus} + \text{basic arithmetic} + \text{ifz} + \text{fixpoint } Y)
 \]

- At S type:
 - $\top : S$
 - for every $M : \text{Nat}$, ignore $M : S$
 - for all $M : S, N : \sigma$, sequencing $M; N : \sigma$

- At T_τ types:
 - for each $M : \tau$, $\text{val } M : T_\tau$
 - for all $M : \sigma, N : T_\tau$, let $x \leftarrow M$ in $N : T_\tau$
 - Non-det. choice $\text{\bigvee} : T_\tau \rightarrow T_\tau \rightarrow T_\tau$ (if $A \in S$ or $D \in S$)
 - Prob. choice $\text{\bigoplus} : T_\tau \rightarrow T_\tau \rightarrow T_\tau$ (if $P \in S$)
 Operational Semantics

As a machine (a transition system) working on configurations $E \cdot M$

- $M : \sigma$ is PCF(S) term
- Contexts $E : (\sigma \vdash TS) =$ stacks of pending operations:

\[
E \quad ::= \\- E[N] \quad | \quad E[\text{succ } _] \mid E[\text{pred } _] \\
| \quad E[\text{ifz } N P] \mid E[_ ; N] \\
| \quad E[\text{ignore } _] \\
| \quad \text{val } _ \\
| \quad E[\text{let } x \leftarrow _ \text{ in } N]
\]
The PCF(S) Machine: 1. Redex Discovery Rules

Purpose: move top of \(M \) into context \(E \), until redex appears

\[
E \cdot MN \rightarrow E[_N] \cdot M \\
E[_N] \cdot \text{pred} \rightarrow E[\text{pred }_] \cdot N \\
E[_N] \cdot \text{succ} \rightarrow E[\text{succ }_] \cdot N \\
E[_MNP] \cdot \text{ifz} \rightarrow E[\text{ifz } N P] \cdot M \\
E \cdot M; N \rightarrow E[_; N] \cdot M \\
E[_N] \cdot \text{ignore} \rightarrow E[\text{ignore }_] \cdot N \\
\cdot \text{val } M \rightarrow \text{val } \cdot M \\
E \cdot \text{let } x \leftarrow M \text{ in } N \rightarrow E[\text{let } x \leftarrow _\text{in } N] \cdot M
\]
The PCF(S) Machine: 2. Computation

Redex = interaction between top of \(M \) and bottom of \(E \)

\[
\begin{align*}
E[N] \cdot \lambda x \cdot P & \rightarrow E \cdot P[x := N] \\
E[pred _ _] \cdot n + 1 & \rightarrow E \cdot n \\
E[succ _ _] \cdot n & \rightarrow E \cdot n + 1 \\
E[ifz _ _ N P] \cdot 0 & \rightarrow E \cdot N \\
E[ifz _ _ N P] \cdot n + 1 & \rightarrow E \cdot P \\
E[_; N] \cdot \top & \rightarrow E \cdot N \\
E[ignore _ _ _] \cdot n & \rightarrow E \cdot \top \\
E[_N] \cdot Y & \rightarrow E \cdot N(YN) \\
E[let x _ := _ _ in P] \cdot \text{val} N & \rightarrow E \cdot P[x := N]
\end{align*}
\]

Termination state: \(\text{val} _ \cdot \top \)
The choice states are:

- (non-deterministic) $E \cdot \bigcirc$ (if $A \in S$ or $D \in S$)
- (probabilistic) $E \cdot \bigoplus$ (if $P \in S$)

The rules are pretty non-committal (to the kind of choice):

$$E[MN] \cdot \bigcirc \rightarrow M \quad E[MN] \cdot \bigcirc \rightarrow N$$

$$E[MN] \cdot \bigoplus \rightarrow M \quad E[MN] \cdot \bigoplus \rightarrow N$$
Reachability Objectives

\[S = \emptyset \] reachability: does \(E \cdot M \rightarrow^* \text{val} \cdot \top \)?

\[S = \{ P \} \] probabilistic testing: \(\Pr[E \cdot M \rightarrow^* \text{val} \cdot \top] > r \)?
where \(E[_MN] \cdot \oplus \) goes to \(M \) or \(N \) with prob. \(1/2 \)

\[S = \{ A \} \] may testing: \(\exists \) terminating path \(E \cdot M \rightarrow^* \text{val} \cdot \top \) ?

\[S = \{ D \} \] must testing: \(\forall \) paths terminate?

\[S = \{ A, P \} \] \(\exists \) scheduler \(\varsigma \) / \(\Pr[E \cdot M \rightarrow^*_\varsigma \text{val} \cdot \top] > r \)?

(pure, memoryless) schedulers map \(E \cdot \emptyset \) to left/right

\[S = \{ D, P \} \] min\(\varsigma \) scheduler \(\Pr[E \cdot M \rightarrow^*_\varsigma \text{val} \cdot \top] > r \)?

\(\{ A, D \} \subseteq S \) erratic cases: ask both angelic and demonic questions
(I will exclude the erratic cases from this talk)
Termination Semantics (1/2)

Use judgments $E \cdot M \downarrow^m a$, $m \in \{\text{may}, \text{must}\}$, $a \in \mathbb{Q} \cap [0, 1]$.

“The probability that $E \cdot M$ (may, must) terminate is $> a$”

- For every redex discovery (1.) or computation (2.) rule $C \rightarrow C'$:

 $\frac{C' \downarrow^m a}{C \downarrow^m a}$

 (e.g., $E \cdot P[x := N] \downarrow^m a$

 $E[N] \cdot \lambda x \cdot P \downarrow^m a$)

- Final state $\text{val}_\bot \cdot \top$

 $\frac{\text{val}_\bot \cdot \top \downarrow^m a}{(a \in \mathbb{Q} \cap [0, 1])}$

- Choice: see next slide (obviously the most important part)
Termination Semantics (2/2)

Choice:

\[
\begin{align*}
E \cdot M \downarrow^\text{may} a & \quad \Rightarrow \quad E[_MN] \cdot \bigvee \downarrow^\text{may} a \\
E[_MN] \cdot \bigvee \downarrow^\text{may} a & \quad \Rightarrow \quad E \cdot N \downarrow^\text{may} a
\end{align*}
\]

\[
E \cdot M \downarrow^\text{must} a \quad E \cdot N \downarrow^\text{must} a
\]

\[
E \cdot M \downarrow^m a \quad E \cdot N \downarrow^m b
\]

\[
E[_MN] \cdot \bigoplus \downarrow^m \frac{1}{2}(a+b)
\]

\[
(m \in \{\text{may, must}\})
\]

Definition

\[
\Pr(E \cdot M \downarrow^m) = \sup\{a \in \mathbb{Q} \in [0, 1] \mid E \cdot M \downarrow^m a \text{ derivable}\}
\]

- \[
\Pr(\text{val } \cdot \top \downarrow^m) = 1
\]
- \[
\Pr(E[_MN] \cdot \bigoplus \downarrow^m) = \frac{1}{2}(\Pr(E \cdot M \downarrow^m) + \Pr(E \cdot N \downarrow^m))
\]
- \[
\Pr(E[_MN] \cdot \bigvee \downarrow^\text{may}) = \max(\Pr(E \cdot M \downarrow^\text{may}), \Pr(E \cdot N \downarrow^\text{may}))
\]
- \[
\Pr(E[_MN] \cdot \bigvee \downarrow^\text{must}) = \min(\Pr(E \cdot M \downarrow^\text{must}), \Pr(E \cdot N \downarrow^\text{must})).
\]
Denotational Semantics: Previsions

Let $[[T \tau]]_S$ as spaces of previsions over $[[\tau]]_S$ [JGL-CSL07]

Definition (Prevision on X)

Let $I = [0, 1]$, as a dcpo. A Scott-continuous functional $F : [X \to I] \to I$ is a prevision iff:

- $F(ah) = aF(h)$ for every $a \in I$
- $F\left(\frac{a+h}{2}\right) = \frac{1}{2}(a + F(h))$ (total mass $= 1$)
- $F\left(\frac{h+h'}{2}\right) \leq \frac{1}{2}(F(h) + F(h'))$ (if $S \subseteq \{A, P\}$)
- $F\left(\frac{h+h'}{2}\right) \geq \frac{1}{2}(F(h) + F(h'))$ (if $S \subseteq \{D, P\}$)
- $F(h) \in \{0, 1\}$ for every $h : X \to \{0, 1\}$ (if $P \notin S$)

(Again, not dealing with the erratic cases here.)

Note: by representation theorems [JGL08], match the usual Hoare/Smyth powerdomains, as well as [MOW03, TKP05].
Denotational Semantics

\[
\begin{align*}
[x]_S &= x & [\top]_S &= \top & [n]_S &= n \in \mathbb{N} \\
[\lambda x \cdot M]_S &= (x \mapsto [M]_S) & [MN]_S(\rho) &= [M]_S([N]_S) \\
[Y]_S &= (f \mapsto \bigcup_{n \in \mathbb{N}} f^n(\bot)) \\
[pred]_S &= (\nu \in \mathbb{N} \setminus \{0\} \mapsto \nu - 1 \mid 0, \bot \mapsto \bot) \\
[succ]_S &= (\nu \in \mathbb{N} \mapsto \nu + 1 \mid \bot \mapsto \bot) \\
[ifz]_S &= (0, t, e \mapsto t \mid n \in \mathbb{N} \setminus \{0\}, t, e \mapsto e \mid \bot \mapsto \bot) \\
[M; N]_S &= [N]_S \text{ if } [M]_S \neq \bot, \text{ else } \bot \\
[ignore]_S &= (n \in \mathbb{N} \mapsto \top \mid \bot \mapsto \bot) \\
[val \ M : T]_S &= (h \mapsto h([M]_S)) \\
[let \ x \leftarrow M \ in N]_S &= (h \mapsto [M]_S(x \mapsto [N]_S(h))) \\
[S]_S &= (F_1, F_2, h \mapsto \max(F_1(h), F_2(h))) \quad \text{(if } A \in S) \\
[S]_S &= (F_1, F_2, h \mapsto \min(F_1(h), F_2(h))) \quad \text{(if } D \in S) \\
[S]_S &= (F_1, F_2, h \mapsto \frac{1}{2}(F_1(h) + F_2(h))) \quad \text{(if } P \in S)
\end{align*}
\]
In usual PCF, **soundness** states that if $M \rightarrow^* V$ then $\llbracket M \rrbracket = \llbracket V \rrbracket$.

Theorem (Soundness)

Let $\diamondsuit = \chi\{\top\} : \llbracket S \rrbracket \rightarrow l$ map \bot to 0, \top to 1.

- If $E \cdot M \downarrow^{\text{may}} a$ then $\llbracket E[M] \rrbracket_S (\diamondsuit) > a$ (if $S \subseteq \{A, P\}$)
- If $E \cdot M \downarrow^{\text{must}} a$ then $\llbracket E[M] \rrbracket_S (\diamondsuit) > a$ (if $S \subseteq \{D, P\}$)

Proof: induction.

\[\square\]
In usual PCF, **soundness** states that if $M \rightarrow^* V$ then $\llbracket M \rrbracket = \llbracket V \rrbracket$.

Theorem (Soundness)

Let $\diamond = \chi_{\{T\}} : [S] \rightarrow I$ map \bot to 0, T to 1.

- If $E \cdot M \downarrow^\text{may} a$ then $\llbracket E[M] \rrbracket_S (\diamond) > a$ (if $S \subseteq \{A, P\}$)
- If $E \cdot M \downarrow^\text{must} a$ then $\llbracket E[M] \rrbracket_S (\diamond) > a$ (if $S \subseteq \{D, P\}$)

Proof: induction.

Corollary

- $\llbracket E[M] \rrbracket_S (\diamond) \geq \Pr(E \cdot M \downarrow^\text{may})$ (if $S \subseteq \{A, P\}$)
- $\llbracket E[M] \rrbracket_S (\diamond) \geq \Pr(E \cdot M \downarrow^\text{must})$ (if $S \subseteq \{D, P\}$)
Computational Adequacy

In usual PCF, \(M \rightarrow^* V \) iff \(\llbracket M \rrbracket = \llbracket V \rrbracket \), at ground types.
Here, use \(E = __ \) (empty context, of type \(\text{TS} \vdash \text{TS} \)).

Theorem (Computational Adequacy)

- \(\llbracket M \rrbracket_S (\Diamond) = \Pr(__ \cdot M \downarrow^\text{may}) \) (if \(S \subseteq \{A, P\} \))
- \(\llbracket M \rrbracket_S (\Diamond) = \Pr(__ \cdot M \downarrow^\text{must}) \) (if \(S \subseteq \{D, P\} \))

Proof: Let \(M \preceq^m N \) iff \(\Pr(E \cdot M \downarrow^m) \leq \Pr(E \cdot N \downarrow^m) \) for every \(E \).

- \(M[x := N] \preceq^m (\lambda x \cdot M)N \)
- \(n \preceq^m M \Rightarrow n + 1 \preceq^m \text{succ} M \)
- \(0 \preceq^m M \Rightarrow N \preceq^m \text{ifz} M \cdot N \cdot P \)
- \(\top \preceq^m M \Rightarrow N \preceq^m M; N \)
- \(n \preceq^m M \Rightarrow \top \preceq^m \text{ignore} M \)
- \(n + 1 \preceq^m M \Rightarrow n \preceq^m \text{pred} M \)
- \(n + 1 \preceq^m M \Rightarrow P \preceq^m \text{ifz} M \cdot N \cdot P \)
In usual PCF, $M \rightarrow^\ast V$ iff $\llbracket M \rrbracket = \llbracket V \rrbracket$, at ground types.

Theorem (Computational Adequacy)

1. $\llbracket M \rrbracket_S (\Diamond) = \Pr(_ \cdot M\downarrow^\text{may})$ (if $S \subseteq \{A, P\}$)
2. $\llbracket M \rrbracket_S (\Diamond) = \Pr(_ \cdot M\downarrow^\text{must})$ (if $S \subseteq \{D, P\}$)

Proof: Let $M \preceq^m N$ iff $\Pr(E \cdot M\downarrow^m) \leq \Pr(E \cdot N\downarrow^m)$ for every E. Define a logical relation R_σ:

- $M R_S u$ iff $u = \bot$, or $u = \top$ and $\top \preceq^m M$
- $M R_{\text{Nat}} n$ iff $n = \bot$, or $n \in \mathbb{N}$ and $n \preceq^m M$
- $M R_{\tau \rightarrow^\tau} f$ iff for all $N R_\sigma v$, $MN R_\tau f(v)$
- $M R_{T\sigma} F$ iff for all $E R_\sigma h$, $\Pr(E \cdot M\downarrow^m) \geq F(h)$
- $E R_\sigma h$ iff for all $Q R_\sigma v$, $\Pr(E \cdot \text{val } Q\downarrow^m) \geq h(v)$
Computational Adequacy

In usual PCF, \(M \rightarrow^* V \) iff \([M] = [V]\), at ground types.
Here, use \(E = _\) (empty context, of type \(TS \vdash TS \))

Theorem (Computational Adequacy)

- \([M]_S (\Diamond) = \Pr(_ \cdot M \downarrow^\text{may}) \quad (if \ S \subseteq \{A, P\})
- \([M]_S (\Diamond) = \Pr(_ \cdot M \downarrow^\text{must}) \quad (if \ S \subseteq \{D, P\})

Proof: Let \(M \leq^m N \) iff \(\Pr(E \cdot M \downarrow^m) \leq \Pr(E \cdot N \downarrow^m) \) for every \(E \).

Define a logical relation \(R_\sigma: \)
- \(M R_{T \sigma} F \) iff for all \(E R_\sigma^\perp h, \Pr(E \cdot M \downarrow^m) \geq F(h) \)
- \(E R_\sigma^\perp h \) iff for all \(Q R_\sigma v, \Pr(E \cdot \text{val} Q \downarrow^m) \geq h(v) \)

By definition, \(_ R_S^\perp \Diamond \)

Basic Lemma: \(M R_\tau [M]_S \) for every \(M : \tau \)
For all \(E R_\tau^\perp h, \Pr(E \cdot M \downarrow^m) \geq [M]_S (h) \)
Conclude by taking \(E = _, h = \Diamond\).
Full Abstraction for PCF with Choice

The Full Abstraction Problem

Outline

1. Introduction
2. Call-by-Name
 - Syntax
 - Operational Semantics
 - Denotational Semantics
3. The Full Abstraction Problem
 - Full Abstraction
 - Definability
 - The Need for Termination Testers
4. Call-by-Value
 - Syntax
 - Semantics
 - The Need for Statistical Termination Testers
 - Full Abstraction in Angelic Cases
5. Conclusion
Definition (Full Abstraction)

\[M \lesssim^m N \text{ iff } \llbracket M \rrbracket_S \leq \llbracket N \rrbracket_S, \text{ at all types.} \]

- Easy direction: If \(\llbracket M \rrbracket_S \leq \llbracket N \rrbracket_S \) at type \(\tau \), then
 \(\llbracket E[M] \rrbracket_S \leq \llbracket E[N] \rrbracket_S \) for every context \(E : \tau \vdash TS \)
 By computational adequacy, \(\Pr(_\cdot E[M] \downarrow^m) \leq \Pr(_\cdot E[N] \downarrow^m) \)
 So \(\Pr(E \cdot M \downarrow^m) \leq \Pr(E \cdot N \downarrow^m) \)
 This is the definition of \(M \lesssim^m N \).
Full Abstraction for PCF with Choice

Full Abstraction

Definition (Full Abstraction)

\[M \sim^m N \iff \llbracket M \rrbracket_S \leq \llbracket N \rrbracket_S, \text{ at all types.} \]

- **Easy direction:** If \(\llbracket M \rrbracket_S \leq \llbracket N \rrbracket_S \) at type \(\tau \), then
 \(\llbracket E[M] \rrbracket_S \leq \llbracket E[N] \rrbracket_S \) for every context \(E : \tau \vdash TS \)
 By computational adequacy, \(\Pr(_ \cdot E[M]\downarrow^m) \leq \Pr(_ \cdot E[N]\downarrow^m) \)
 So \(\Pr(E \cdot M\downarrow^m) \leq \Pr(E \cdot N\downarrow^m) \)
 This is the definition of \(M \sim^m N \).

- **Hard direction:** assume \(\llbracket M \rrbracket_S \not\leq \llbracket N \rrbracket_S \), find \(E \) such that
 \(\Pr(E \cdot M\downarrow^m) > \Pr(E \cdot N\downarrow^m) \)

So hard that it is wrong for PCF, and for PCF(\(S \)). . . so one should do something about this
Full Abstraction

Definition (Full Abstraction)

\[M \sim^m N \text{ iff } \llbracket M \rrbracket_S \leq \llbracket N \rrbracket_S \text{, at all types.} \]

- Easy direction: If \(\llbracket M \rrbracket_S \leq \llbracket N \rrbracket_S \) at type \(\tau \), then
 \(\llbracket E[M] \rrbracket_S \leq \llbracket E[N] \rrbracket_S \) for every context \(E : \tau \vdash TS \)
 By computational adequacy, \(\Pr(_ \cdot E[M] \downarrow^m) \leq \Pr(_ \cdot E[N] \downarrow^m) \)
 So \(\Pr(E \cdot M \downarrow^m) \leq \Pr(E \cdot N \downarrow^m) \)
 This is the definition of \(M \sim^m N \).

- Hard direction: assume \(\llbracket M \rrbracket_S \not\leq \llbracket N \rrbracket_S \), find \(E \) such that
 \(\Pr(E \cdot M \downarrow^m) > \Pr(E \cdot N \downarrow^m) \)

- So hard that it is wrong for PCF, and for PCF(S)
 \[\ldots \text{so one should do something about this} \]
The Failure of Full Abstraction

Full abstraction fails for PCF [Plotkin77].

Source: parallel or (por) should be definable, is not.

Cures:

1. Change the model
 e.g., game semantics:
 [AJM93,HO03] (no choice), [HarmerMcCusker99] (non-det.),
 [DanosHarmer01] (prob.)

2. Restrict the denotations to some invariant
 Kripke logical (Sieber-) relations [JungTiuryn93]
 of variable arity [O’HearnRiecke94]

3. Change the syntax

 Add por [Plotkin77]
 I will attempt to do something similar.

Meanwhile, let us adopt a proof strategy, and see what is missing
for this to work.
Strategies for Proving Full Abstraction

Plotkin showed full abstraction using definability (needed anyway)

Theorem (Plotkin77)

In $\text{PCF} + \text{por}$, the finite elements of $[\tau]$ are exactly those of the form $[M]$, $M : \tau$.

This is bound to fail here:
if $P \in S$, then $[\tau]$ is a continuous, not an algebraic domain.
Strategies for Proving Full Abstraction

Plotkin showed full abstraction using definitability (needed anyway)

Theorem (Plotkin77)

In PCF^{por}, the finite elements of $\llbracket \tau \rrbracket$ are exactly those of the form $\llbracket M \rrbracket$, $M : \tau$.

This is bound to fail here:
if $P \in S$, then $\llbracket \tau \rrbracket$ is a continuous, not an algebraic domain.

Cure: show a weaker definitability result, of both

- elements
- and opens

Find a basis of definable elements of $\llbracket \tau \rrbracket_S$ (terms $M : \tau$)
Find a subbase B_τ of definable opens of $\llbracket \tau \rrbracket_S$ (contexts $E : \tau \vdash S$)
Opens are More Important than Elements

Find a basis of definable elements of $[\tau]_S$ (terms $M : \tau$)

Then if $[M]_S \not\subseteq [N]_S$,
for some $U \in \mathcal{B}_\tau$, $[M]_S \in U$ and $[N]_S \not\in U$,
i.e., for some E, $[E[M]]_S = \top$ and $[E[N]]_S = \bot$.

By computational adequacy,
$\Pr(\text{val } E \cdot M \downarrow^m) = 1 > 0 = \Pr(\text{val } E \cdot N \downarrow^m)$,
so full abstraction will hold.
Candidates for Subbases

The canonical (sub)base in the continuous dcpo τS is given by \uparrow^ν

Would require us to find term defining \ll (seems hard)
The canonical (sub)base in the continuous dcpo $\llbracket \tau \rrbracket_S$ is given by $\uparrow \nu$

Would require us to find term defining \ll (seems hard). Instead:

<table>
<thead>
<tr>
<th>Basis of elements</th>
<th>Subbase of opens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nat</td>
<td>n, \bot</td>
</tr>
<tr>
<td>S</td>
<td>\top, \bot</td>
</tr>
<tr>
<td>$T \tau$</td>
<td>Definable from $\delta_a = \lambda h \cdot h(a), 0$ \sup (if $A \in S$) \inf (if $D \in S$) $\frac{1}{2} (- + -)$ (if $P \in S$)</td>
</tr>
<tr>
<td>$\sigma \rightarrow \tau$</td>
<td>Step functions $\sup_{i=1}^{m} (\bigcap_{j=1}^{ni} U_{ij}) \downarrow y_i$ U_{ij} in \mathcal{B}_σ</td>
</tr>
</tbody>
</table>
Subbases

This is allowed because of: \((S \text{ among } \{A\}, \{A, P\}, \{D\}, \{D, P\})\)

Theorem

*The Scott and weak topologies *coincide* on \([T\tau]_S\).*

Theorem

*The Scott and pointwise conv. topologies *coincide* on \([\sigma \rightarrow \tau]_S\).*

In general, Scott is finer. But here \([\tau]_S\) is a *bc-domain* for every \(\tau\). (Remember we don’t deal with erratic cases here, where this fails.)

Note: exclude purely probabilistic case \(S = \{P\}\), where this fails. (Anyway, full abstraction seems unlikely in this case.)
Scott = Pointwise

Theorem

The Scott and pointwise conv. topologies coincide on $[\sigma \rightarrow \tau]_S$.

Proof: On $\sigma \rightarrow \tau$, Scott=compact-open topology (follows e.g. from characterization of \ll through co-step functions [EEK98])

Has subbasic opens $[Q \subseteq V] = \{ f \mid f\langle Q \rangle \subseteq V \}$,

Q compact saturated, V open

Since $Q = \bigcap_{A \text{ finite}} \uparrow A$, $[Q \subseteq V] = \bigcup_{A \text{ finite}} [\uparrow A \subseteq V]$.

And $[\uparrow A \subseteq V] = \bigcap_{i=1}^n [a_i \in V]$, where $A = \{ a_1, \ldots, a_n \}$.

\[\square \]
Scott = Weak

Remember weak subbasic opens $[h > r] = \{F \mid F(h) > r\}$.

Theorem

*The Scott and weak topologies coincide on $[T\tau]_S$.***

Proof:

- $S = \{A\}$ weak=lower Vietoris (subbasic $\Diamond U$) = Scott (since every closed subset is directed union of $\downarrow E$, E finite)
- $S = \{D\}$ weak=upper Vietoris (subbasic $\Box U$) = Scott (since every Q is $\bigcap_{E} \uparrow E$)
- $S = \{P\}$ proved by [Kirch93], see also [Tix95,Jung04]
- $S = \{A,P\}$ by [JGL08], Hoare previsions = retract (closed convex hull) of Hoare powerdomain on valuations, then apply previous results ($S = \{A\}, S = \{P\}$)
- $S = \{D,P\}$ by [JGL08], similarly.
Definability

<table>
<thead>
<tr>
<th>Basis of elements</th>
<th>Subbase of opens</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{T})</td>
<td>(h > r) = ({ F \mid F(h) > r })</td>
</tr>
<tr>
<td>(\delta_a)</td>
<td>(\text{val } a)</td>
</tr>
<tr>
<td>0</td>
<td>(Y(\lambda F_{\mathbb{T}} \cdot F))</td>
</tr>
<tr>
<td>(\sup)</td>
<td>(\bigvee) ((A \in S))</td>
</tr>
<tr>
<td>(\inf)</td>
<td>(\bigvee) ((D \in S))</td>
</tr>
<tr>
<td>(\frac{1}{2} (_ + _))</td>
<td>(\bigoplus) ((P \in S))</td>
</tr>
</tbody>
</table>

Step functions

\[
\left(\sup_{i=1}^{m} \left(\bigcap_{j=1}^{n_i} U_{ij} \right) \right) \downarrow y_i
\]

\[
\bigcap_{j=1}^{n_i} U_{ij} \quad \bigwedge_{j=1}^{n_i} \chi U_{ij}
\]

\[
\sup_{i=1}^{m}
\]

... \(\text{a nuisance} \)

Needs statistical tester

\[
[a \in V] \ldots E[-N]
\]

where \(E \) defines \(V \), and \(N \) defines \(a \)
We must show definability of two kinds of things:

- **statistical testers** \([h > r]\)
- finite sups of step functions in \(\sigma \rightarrow \tau\)

Both of them **fail**.

Already in PCF, \(\text{por}\) is missing:

- In PCF+\(\text{por}\), one can define parallel if, hence finite sups of step functions (through a convoluted trick)
The Need for Termination Testers

We need (statistical) testers \([h > r]\), for \(h = ♦\)
just at type \(S\): termination testers

Theorem

\[
PCF(S) + \text{por} \text{ is not fully abstract} \quad (\text{for any } S)
\]

Proof. Key Lemma: every definable function : \(Tγ \rightarrow γ\) is constant.
(Proof: logical relation \(R_γ = \text{equality of values, } R_{TT} \text{ always true.})

Let \(M = \lambda g \cdot g(\text{val } ⊤), N = \lambda g \cdot g(\text{val } Ω)\)
\((g : TS \rightarrow S)\).

The only definable \(g\) are constant, so \(M \preceq^m N\)
(and \(N \preceq^m M\))

But \([M]_S \not\preceq [N]_S\) since

\[
[M]_S ([♦ > 1/2]) = ⊤ \quad [N]_S ([♦ > 1/2]) = ⊥
\]
Termination Testers

Add termination testers $\Pr(M > b)$ to the language $(M : TS)$

\[
\frac{M \downarrow^m b \quad E \cdot \bot \downarrow^m a \quad (Pr)}{E \cdot \Pr(M > b) \downarrow^m a}
\]

\[
[\Pr(M > b)]_s = \begin{cases}
\top & \text{if } [M]_s (\Diamond) > b \\
\bot & \text{otherwise}
\end{cases}
\]

Computational adequacy: still OK.

Fully abstract now? I don’t know (I don’t think so.)
(Even redefining \sim^m using extended contexts $E := \ldots | \Pr(_ > b)$)
Let us restrict to semantic domains with a top (continuous lattices)

- Involves switching to call-by-value
 ... so all domains are of the form $[T\tau]$

- Make sure all domains of the form $[T\tau]$ have a top:
 We shall eventually concentrate on the angelic cases
 (S among $\{A\}$, $\{A, P\}$)
Outline

1. Introduction
2. Call-by-Name
 - Syntax
 - Operational Semantics
 - Denotational Semantics
3. The Full Abstraction Problem
 - Full Abstraction
 - Definability
 - The Need for Termination Testers
4. Call-by-Value
 - Syntax
 - Semantics
 - The Need for Statistical Termination Testers
 - Full Abstraction in Angelic Cases
5. Conclusion
Syntax changes: no let/val, constants turned into operators, \(Y/\lambda \) merged as \(\text{rec } f \cdot \lambda x \cdot M \), ignore /; omitted (definable)

\[
M ::= x \mid \top \mid n \\
| \text{rec } f \cdot \lambda x \cdot M \\
| MN \\
| \text{pred } M \mid \text{succ } M \\
| \text{ifz } M \; N \; P \\
| M \otimes N \quad (\text{if } A \in S \text{ or } D \in S) \\
| M \oplus N \quad (\text{if } P \in S)
\]
Call-by-Value PCF(S): Denotational Semantics

Types $\tau ::= \gamma \mid \sigma \Rightarrow \tau$ \hspace{1cm} (no T type; but $\sigma \Rightarrow \tau \defeq \sigma \to T\tau$)

<table>
<thead>
<tr>
<th>Semantics</th>
<th>if $M : \tau$ then $\llbracket M \rrbracket^*_S \in \llbracket T\tau \rrbracket_S$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\llbracket x \rrbracket^*_S = \text{val } x$</td>
<td></td>
</tr>
<tr>
<td>$\llbracket \top \rrbracket^*_S = \text{val } \top$</td>
<td></td>
</tr>
<tr>
<td>$\llbracket n \rrbracket^*_S = \text{val } n$</td>
<td></td>
</tr>
<tr>
<td>$\llbracket \text{rec } f \cdot \lambda x \cdot M \rrbracket^*_S$</td>
<td>$\text{val } (\text{lfp}(f, x \mapsto \llbracket M \rrbracket^*_S))$</td>
</tr>
<tr>
<td>$\llbracket MN \rrbracket^*_S$</td>
<td>$\text{let } f \leftarrow \llbracket M \rrbracket^_S \text{ in let } v \leftarrow \llbracket N \rrbracket^_S \text{ in } f(v)$</td>
</tr>
<tr>
<td>$\llbracket \text{pred } M \rrbracket^*_S$</td>
<td>$\text{let } h \mapsto \llbracket M \rrbracket^*_S (n \neq 0 \mapsto h(n-1) \mid 0 \mapsto 0)$</td>
</tr>
<tr>
<td>$\llbracket \text{succ } M \rrbracket^*_S$</td>
<td>$\text{let } n \leftarrow \llbracket M \rrbracket^*_S \text{ in } n+1$</td>
</tr>
<tr>
<td>$\llbracket \text{ifz } M N P \rrbracket^*_S$</td>
<td>$\text{let } n \leftarrow \llbracket M \rrbracket^_S \text{ in } (\llbracket N \rrbracket^_S \text{ if } n = 0, \llbracket P \rrbracket^*_S \text{ else})$</td>
</tr>
<tr>
<td>$\llbracket M \otimes N \rrbracket^*_S$</td>
<td>$\llbracket M \rrbracket^_S(\llbracket M \rrbracket^_S)(\llbracket N \rrbracket^*_S)$</td>
</tr>
<tr>
<td>$\llbracket M + N \rrbracket^*_S$</td>
<td>$\llbracket M \rrbracket^_S(\llbracket M \rrbracket^_S)(\llbracket N \rrbracket^*_S)$</td>
</tr>
</tbody>
</table>

where $\text{val } a = (h \mapsto h(a))$

$\text{let } v \leftarrow F \text{ in } G(v) = (h \mapsto F(v \mapsto G(v)(h)))$

... we now need subnormalized previsions $(F(a + h) \leq \frac{1}{2}(a + F(h)))$

+ no \bot in base types: $\llbracket \text{Nat} \rrbracket_S = \mathbb{N}$, $\llbracket S \rrbracket_S = \{\top\}$
New notion: values $V = \text{rec } f \cdot \lambda x \cdot M \mid \top \mid n$

...if f not free in M, $\text{rec } f \cdot \lambda x \cdot M$ written $\lambda x \cdot M$

Semantically, $\llbracket V \rrbracket^*_S = \text{val}(\llbracket V \rrbracket^*_S)$ where

$\llbracket \text{rec } f \cdot \lambda x \cdot M \rrbracket^*_S = \text{lfp}(f, x \mapsto \llbracket M \rrbracket^*_S)$, $\llbracket \top \rrbracket^*_S = \top$, $\llbracket n \rrbracket^*_S = n$

Contexts $E : \sigma \vdash S$ (rather $\sigma \vdash TS$) are now:

$$
E : \sigma \vdash S := \\
\begin{align*}
E & : \sigma \vdash S \\
\text{or} & \quad E[_N] \\
\text{or} & \quad E[(\text{rec } f \cdot \lambda x \cdot M)__] \quad \text{(new)} \\
\text{or} & \quad E[\text{succ } _] | E[\text{pred } _] \\
\text{or} & \quad E[\text{ifz } N P]
\end{align*}
$$
The CBV PCF(S) Machine

1. Redex Discovery Rules

\[E \cdot MN \rightarrow E[_N] \cdot M \]
\[E[_N] \cdot \text{rec } f \cdot \lambda x \cdot M \rightarrow E[(\text{rec } f \cdot \lambda x \cdot M)_] \cdot N \quad \text{(new)} \]
\[E \cdot \text{pred } M \rightarrow E[\text{pred }_] \cdot M \]
\[E \cdot \text{succ } M \rightarrow E[\text{succ }_] \cdot M \]
\[E \cdot \text{ifz } M N P \rightarrow E[\text{ifz }_ N P] \cdot M \]

2. Computation

\[E[V_f_] \cdot V \rightarrow E.M[f := V_f, x := V] \quad \text{where } V_f = \text{rec } f \cdot \lambda x \cdot M \]
\[E[\text{pred }_] \cdot n + 1 \rightarrow E \cdot n \]
\[E[\text{succ }_] \cdot n \rightarrow E \cdot n + 1 \]
\[E[\text{ifz }_ N P] \cdot 0 \rightarrow E \cdot N \]
\[E[\text{ifz }_ N P] \cdot n + 1 \rightarrow E \cdot P \]

3. Choice states are now
\[E \cdot M \Join N, \ E \cdot M \Join N \]

4. Termination state:
\[_ \cdot \top \]
Essentially the same as before:

\[
\begin{align*}
C' \downarrow^m a & \quad (C \to C') \\
C \downarrow^m a & \quad (a \in \mathbb{Q} \cap [0, 1)) \\
E \cdot M \downarrow^{\text{may}} a & \quad E \cdot N \downarrow^{\text{may}} a \\
E \cdot M \oplus N \downarrow^{\text{may}} a & \quad E \cdot M \oplus N \downarrow^{\text{may}} a \\
E \cdot M \downarrow^m a & \quad E \cdot N \downarrow^m b \\
E \cdot M \oplus N \downarrow^m \frac{1}{2} (a + b) & \quad (a \in \mathbb{Q} \cap [0, 1)) \\
E \cdot M \oplus N \downarrow^{\text{must}} a & \quad E \cdot M \oplus N \downarrow^{\text{must}} a
\end{align*}
\]
Full Abstraction for PCF with Choice

Call-by-Value

Semantics

Soundness

Theorem (Soundness)

1. \([E[M]]_S^* (\diamond) \geq \text{Pr}(E \cdot M \downarrow \text{may})\) (if \(S \subseteq \{A, P\}\))
2. \([E[M]]_S^* (\diamond) \geq \text{Pr}(E \cdot M \downarrow \text{must})\) (if \(S \subseteq \{D, P\}\))

Proof: induction, using \([E[M]]_S^* (\diamond) = [M]^*_S (h)\) for some \(h\) depending on \(E\) only.
Theorem (Computational Adequacy)

- $\llbracket M \rrbracket_S^* (\diamondsuit) = Pr(_ \cdot M \downarrow^\text{may})$ (if $S \subseteq \{A, P\}$)
- $\llbracket M \rrbracket_S^* (\diamondsuit) = Pr(_ \cdot M \downarrow^\text{must})$ (if $S \subseteq \{D, P\}$)

Proof: Define logical relation R_τ^* (terms), R_τ^\perp (contexts), R_σ° (values):

- $M R_\sigma^* F$ iff for all $E R_\sigma^\perp h$, $Pr(E \cdot M \downarrow^m) \geq F(h)$
- $E R_\sigma^\perp h$ iff for all $V R_\sigma^\circ v$, $Pr(E \cdot V \downarrow^m) \geq h(v)$
- $V_f R_\sigma^\circ \Rightarrow_\tau \varphi$ iff for all $V R_\sigma^\circ v$, $E R_\tau^\perp h$, $Pr(E[V_f] \cdot V \downarrow^m) \geq \varphi(v)(h)$
- $m R_\text{Nat}^\circ n$ iff $m = n$ and $\top R_S^\circ \top$

Show $V R_\tau^\circ \llbracket V^\circ \rrbracket_S$ and $M R_\tau^* \llbracket M^* \rrbracket_S$.

Finally take $E = _$, $h = \diamondsuit$ at $\tau = S$. \qed
Statistical Termination Testers

Do we still need termination testers?

Theorem (Yes, in Probabilistic Cases ($P \in S$))

CBV PCF(S) without termination testers is not fully abstract

Proof. Define logical relation R^*_T, R^\perp_T, R°_T:

- $\top R^\circ_T \top$ $n_1 R^\circ_{\text{Nat}} n_2$ iff $n_1 = n_2$
- $f_1 R^\circ_{\sigma \Rightarrow \tau} f_2$ iff for all $v_1 R^\circ_\sigma v_2$, $f_1(v_1) R^*_T f_2(v_2)$
- $F_1 R^*_T F_2$ iff for all $h_1 R^\perp_T h_2$, $F_1(h_1) \sim_0 F_2(h_2)$
- $h_1 R^\perp_T h_2$ iff for all $v_1 R^\circ_\tau v_2$, $h_1(v_1) \sim_0 h_2(v_2)$
- $a_1 \sim_0 a_2$ iff $a_1 = a_2 = 0$ or ($a_1 \neq 0$ and $a_2 \neq 0$)

Then $[\text{\textcolor{red}{\textbullet}} > r] = (h \mapsto \begin{cases} \text{val } \top & \text{if } h(\top)(\text{\textcolor{red}{\textbullet}}) > r \\ 0 & \text{else} \end{cases})$ is not in relation with itself, hence not definable (of type $(S \Rightarrow S) \Rightarrow S \sim TS \Rightarrow TS)$
Statistical Termination Testers

Do we still need termination testers?

Theorem (Yes, in Probabilistic Cases \((P \in S)\))

CBV PCF(S) without termination testers is not fully abstract

Proof. Define logical relation \(R^*, R^\perp, R^\circ\):

\[
\begin{align*}
\top &\ R^\circ_S \top &\ n_1 \ R^\circ_{\text{Nat}} \ n_2 \ \text{iff} \ n_1 = n_2 \\
 f_1 \ R^\circ_{\sigma \Rightarrow \tau} \ f_2 &\ \text{iff} \ \text{for all} \ v_1 \ R^\circ_{\sigma} \ v_2, \ f_1(v_1) \ R^* \ f_2(v_2) \\
 F_1 \ R^* \ F_2 &\ \text{iff} \ \text{for all} \ h_1 \ R^\perp_{\tau} \ h_2, \ F_1(h_1) \sim_0 F_2(h_2) \\
h_1 \ R^\perp_{\tau} \ h_2 &\ \text{iff} \ \text{for all} \ v_1 \ R^\circ_{\tau} \ v_2, \ h_1(v_1) \sim_0 h_2(v_2) \\
a_1 \sim_0 a_2 &\ \text{iff} \ a_1 = a_2 = 0 \ \text{or} \ (a_1 \neq 0 \ \text{and} \ a_2 \neq 0)
\end{align*}
\]

Then \([\text{\Diamond} > r] = (h \mapsto \begin{cases} \text{val} \top &\text{if} \ h(\top)(\text{\Diamond}) > r \\ 0 &\text{else} \end{cases})\) is not in relation with itself, hence not definable \((\text{of type} \ (S \Rightarrow S) \Rightarrow S \sim TS \Rightarrow TS)\)

Fact (No, in Non-Probabilistic Cases \((P \notin S)\))

Can define \(\Pr(M > r)\) as \(M\) if \(r \in [0, 1)\)
Add termination testers $\Pr(M > b)$ to the language $(M : S)$.

\[
\frac{_ \cdot M \Downarrow^m b \quad E \cdot \top \Downarrow^m a}{E \cdot \Pr(M > b) \Downarrow^m a} \qquad (Pr)
\]

\[
\llbracket \Pr(M > b) \rrbracket_S^* = \begin{cases}
 \text{val} \top & \text{if } \llbracket M \rrbracket_S^* (\diamond) > b \\
 0 & \text{otherwise}
\end{cases}
\]

Computational adequacy: still OK.
The Angelic+Probabilistic Case

Let $M \sim^m N$ iff $\Pr(_ \cdot E'[M] \downarrow^m) \leq \Pr(_ \cdot E'[N] \downarrow^m)$ for every extended context E'.

Theorem (Case $S = \{A, P\}$)

Full abstraction holds for $PCF(\{A, P\}) +$ statistical testers:

$$M \preceq^\text{may} N \iff \llbracket M \rrbracket_{A, P} \leq \llbracket N \rrbracket_{A, P}$$

Proof.

- Open subbase $[a \mapsto h > r] = \{f \in \llbracket \sigma \Rightarrow \tau \rrbracket_S \mid f(a)(h) > r\}$
 definable by $E[\Pr(_ > r)][V_{h-}][V_a]

- Basis of values definable from $\ominus, \oplus, \text{val}, \Omega (0)$
 The “nuisance” $\sup_{i=1}^m$ is definable through $\bigvee (= \sup)$.

Note: no need for por.

The Purely Angelic Case

Let \(M \sim^m N \) iff \(\Pr(_ \cdot E[M] \downarrow^m) \leq \Pr(_ \cdot E[N] \downarrow^m) \)
for every ordinary context \(E \) (no need for \(\Pr(_ > b) \))

Theorem (Case \(S = \{A\} \))

Full abstraction holds for PCF(\(\{A\} \)):

\[
M \sim^{\text{may}} N \iff M \sim^{\text{may}} N \iff [M]_A \leq [N]_A
\]

Proof. Same argument, except termination testers are definable
\((\Pr(M > b) = M \text{ if } b \in [0, 1]) \)

Note: no need for \(\text{por} \), no need for \(\Pr(M > b) \)

Fully abstract, as is!
The Purely Angelic Case: Standard Semantics

If $S = \{A\}$, note that previsions \preceq Hoare powerdomain (with \emptyset)

We obtain a standard call-by-value semantics for non-determinism

\[
\begin{align*}
[x]_S^* &= \downarrow x & [\top]_S^* &= \{\top\} & [n]_S^* &= \{n\} \\
[\text{rec } f \cdot \lambda x \cdot M]_S^* &= \downarrow (\text{lfp}(f, x \mapsto [M]_S^*)) \\
[MN]_S^* &= \bigcup_{f \in [M]_S^*, v \in [N]_S^*} f(v) \\
[pred M]_S^* &= \{n - 1 \mid n \in [M]_S^*, n \neq 0\} \\
[succ M]_S^* &= \{n + 1 \mid n \in [N]_S^*\} \\
[\text{ifz } M N P]_S^* &= \begin{cases}
\emptyset & \text{if } [M]_S^* = \emptyset \\
[N]_S^* & \text{if } [M]_S^* = \{0\} \\
[P]_S^* & \text{if } [M]_S^* \neq \emptyset, \text{ does not contain } 0 \\
[N]_S^* \cup [P]_S^* & \text{if } [M]_S^* \text{ contains } 0 \text{ and some } n \neq 0
\end{cases} \\
[M \mathbin{\otimes} N]_S^* &= [M]_S^* \cup [N]_S^*
\end{align*}
\]

... and we have shown this was fully abstract.
Outline

1. Introduction
2. Call-by-Name
 - Syntax
 - Operational Semantics
 - Denotational Semantics
3. The Full Abstraction Problem
 - Full Abstraction
 - Definability
 - The Need for Termination Testers
4. Call-by-Value
 - Syntax
 - Semantics
 - The Need for Statistical Termination Testers
 - Full Abstraction in Angelic Cases
5. Conclusion
The **angelic** cases ... are angelic:

- Call-by-value PCF(\{A\}) is **fully abstract**
- Call-by-value PCF(\{A, P\})+statistical termination testers is **fully abstract**

- Similar results for **demonic** cases + new primitive “irq”
- **Erratic** cases easy consequences of the above

 Difficulty: \([\tau]_S\) not a bc-domain

 ... but semantics is pair of angelic/demonic semantics

- **Purely probabilistic** case hopeless (valuations/lin. previsions) \([\tau]_S\) not a bc-domain, no known cure [JungTix98]

 ... even FS-domains would not help (see “nuisance”)

- What about using **random variables** [JGLVaracca11] instead?

 form bc-domains again, but should require extra testers

- Call-by-name cases seem hard.
Dealing with the Demonic Cases

Problem: in the demonic cases \((D \in S)\), \([T\tau]_S\) has no top

Cure: add one.

Let \(X^{err}\) be \(X\) with a fresh top element \(err\) (abnormal termination)

(not really the space we shall work with)

Previsions on \(X^{err}\) are the same as lax previsions on \(X\):

Definition (Lax Prevision)

Let \(lax\) map previsions \(F\) on \(X^{err}\) to \((h \in [X \rightarrow I] \mapsto F(\hat{h}))\),

where \(\hat{h}(x) = h(x)\ (x \in X)\) and \(\hat{h}(err) = 1\).

The functionals in the range of \(lax\) are the lax previsions on \(X\)

- Every prevision is a lax prevision
- \(h \mapsto 1\) is largest (top) lax prevision \((= lax(\delta_{err}))\)
- Lax prev. closed under \(\frac{_ + _}{2}\) \((P \in S)\), \(\text{min} (D \in S)\), \(\text{max} (A \in S)\)
CBV PCF(S) + irq

New syntax: \(M \text{ irq } N : \tau \) (if \(M : \tau \), \(N : S \)) (at every type \(\tau \))

New operational rules

\[
\begin{align*}
E \cdot M \downarrow^m a & \quad \vdash E \cdot M \text{ irq } N \downarrow^m a \\
\vdash E \cdot M \text{ irq } N \downarrow^m a & \quad \vdash _\cdot N \downarrow^m a \\
\vdash E \cdot M \text{ irq } N \downarrow^m a & \quad \vdash E \cdot M \text{ irq } N \downarrow^m a
\end{align*}
\]

Run \(M \) with \(N \) in background: if \(N \) terminates, kill \(M \) and abort

Note: abort = \(M \text{ irq } \top \) aborts immediately (\(M \) arbitrary)

Den. semantics: \(\llbracket M \text{ irq } N \rrbracket_S^* (h) = \max(\llbracket M \rrbracket_S^* (h), \llbracket N \rrbracket^* (\text{♦})) \)

Soundness, computational adequacy: still OK.
The Demonic+Probabilistic Case

Theorem (Case $S = \{D, P\}$)

Full abstraction holds for PCF($\{D, P\}$)+ irq + statistical testers:

\[M \sim_{\text{must}} N \iff \llbracket M \rrbracket_{D, P} \leq \llbracket N \rrbracket_{D, P} \]

Proof.

- Open subbase $[a \mapsto h > r] = \{ f \in \llbracket \sigma \Rightarrow \tau \rrbracket_S | f(a)(h) > r \}$
 defensible by $E[\Pr(\cdot > r)\llbracket V_h \rrbracket\llbracket_- V_a \rrbracket]$
 Note that Scott=weak again on lax previsions

- Basis of values defensible from \lor, \oplus, val, Ω, and abort.
 “Nuisance” $\sup_{i=1}^{m}$: use “sup-as-inf” trick:

\[
\sup_{i=1}^{m} (U_i \downarrow F_i)(x) = \min_{I \subseteq \{1, \ldots, m\}} F_I \text{ irq } \chi_{\bigcup_{i \in I} u_i(x)}
\]

where $F_I = \sup_{i \in I} F_i$ (exists since bc-domain)

\[F \text{ irq } \top = (h \mapsto 1), \ F \text{ irq } \bot = F \ldots \text{definable through irq} \]

and \min definable through \lor.
The Purely Demonic Case

Again, termination testers are definable when \(P \notin S \)

Theorem (Case \(S = \{D\} \))

Full abstraction holds for PCF(\(\{D\} \)) + irq:

\[
M \prec_{\text{must}} N \iff M \prec_{\text{must}} N \iff [M]_{\{D\}} \leq [N]_{\{D\}}
\]
Back to the Angelic Cases

Everything works with lax previsions and irq as before in angelic cases.

Theorem (Case $S = \{A\}$)

Full abstraction holds for $PCF(\{A\}) + irq$:

$$M \preceq_{\text{may}} N \iff M \preceq_{\text{may}} N \iff [M]_{\{A\}} \leq [N]_{\{A\}}$$

Theorem (Case $S = \{A, P\}$)

Full abstraction holds for $PCF(\{A, P\}) + irq + \text{statistical testers}$:

$$M \preceq_{\text{may}} N \iff [M]_{\{A, P\}} \leq [N]_{\{A, P\}}$$
When \(\{A, D\} \subseteq S \), semantics given in terms of forks [JGL-CSL07]

Definition

A *fork* is a pair \((F^-, F^+)\) of a Hoare and a Smyth prevision satisfying Walley's condition:

\[
F^-(\frac{h + h'}{2}) \leq \frac{F^-(h) + F^+(h')}{2} \leq F^+(\frac{h + h'}{2})
\]

Ordered componentwise. (Define lax forks similarly.)

Difficulty: (lax) forks do not form a bc-domain

...but we don't care here
Erratic = Angelic + Demonic

Assume \(\{A, D\} \subseteq S \). Let \(S^- = S \cap \{D, P\} \), \(S^+ = S \cap \{A, P\} \).

We don’t care because:

Lemma

\[
[M]_S^* = ([M]_S^-)^*, ([M]_S^+)^*
\]

...merely ignoring Walley’s condition

Now, if \([M]_S^* \not\cong [N]_S^* \), either:

- \([M]_S^-^* \not\cong [N]_S^-^* \): since demonic cases are fully abstract, there is an \(E \) such that \(\Pr(_ \cdot E[M]_\downarrow^{\text{must}}) \not\cong \Prob(_ \cdot E[M]_\downarrow^{\text{must}}) \)

- or \([M]_S^+^* \not\cong [N]_S^+^* \): since angelic cases are fully abstract, there is an \(E \) such that \(\Pr(_ \cdot E[M]_\downarrow^{\text{may}}) \not\cong \Prob(_ \cdot E[M]_\downarrow^{\text{may}}) \)
Full Abstraction in the Erratic Cases

For \(\{A, D\} \subseteq S \), let \(M \preceq N \) iff \(M \preceq_{\text{may}} N \) and \(M \preceq_{\text{must}} N \)
(i.e., with extended contexts, including \(E[\Pr(_ > b)] \))
(and similarly for \(\preceq \), with ordinary contexts)

We therefore obtain:

Theorem (Case \(S = \{A, D\} \))

Full abstraction holds for PCF(\(\{A, D\} \)) + irq:
\[
M \preceq N \text{ iff } M \preceq_{\text{may}} N \text{ iff } [M]_{\{A,D\}} \leq [N]_{\{A,D\}}
\]

Theorem (Case \(S = \{A, D, P\} \))

Full abstraction holds for PCF(\(\{A, D, P\} \)) + irq + statistical testers:
\[
M \preceq N \text{ iff } [M]_{\{A,D,P\}} \leq [N]_{\{A,D,P\}}
\]