FORMAL BALLS

JEAN GOUBAULT-LARRECQ
DOMAINS XII
CORK

METRICS

A metric d on a set X:

•
$$d(x, x)=0$$

• if
$$d(x, y) = 0$$

then
$$x=y$$

•
$$d(x,z) \leq d(x,y) + d(y,z)$$

•
$$d(x, y) = d(y, x)$$

An open ball

QUASI-METRICS

A quasi-metric d on a set X:

- d(x, x)=0
- if d(x, y) = 0 and d(y, x) = 0 then x = y
- $d(x,z) \leq d(x,y) + d(y,z)$
- $\bullet \ d(x,y) = d(y,x)$

An open ball

QUASI-METRICS

A quasi-metric d on a set X:

- d(x, x)=0
- if d(x, y) = 0 and d(y, x) = 0 then x = y
- $d(x,z) \leq d(x,y) + d(y,z)$
- $\bullet \ d(x,y) = d(y,x)$

An open ball

Specialization ordering of the open ball topology:

$$x \le y \text{ iff } d(x, y) = 0$$

QUASI-METRICS

- «Classical theory»: R. Wilson (1931), H.-P. Künzi (1983), M. Smyth (1989), M. Schellekens (1995), Ph. Sünderhauf (1993)
- * «As enriched category theory»: F.W. Lawvere (1973), J.J.M.M. Rutten (1996), M.M. Bonsangue, F. van Breugel (1998)
- and...

FORMAL BALLS

- «Formal Balls»:
 - discovered by K. Weihrauch and U. Schreiber (1981), embedding metric spaces in cpo's.
 - studied further by A. Edalat and R. Heckmann (1998)
- New important developments (2009-2010) by P.
 Waszkiewicz, M. Kostanek, S. Romaguera, O. Valero, M.
 Ali-Akbari, B. Honari, M. Pourmahdian, M. M. Rezaii.
- Formal balls provide a unifying view, via domain theory

A SHAMELESS AD

In this talk: an excerpt of the Book

6	Metrics, quasi-metrics, hemi-metrics		200
	6.1	Metrics, hemi-metrics, and open balls	200
	6.2	Continuous and Lipschitz Maps	205
	6.3	Topological Equivalence, Hemi-Metrizability, Metriz-	
		ability	210
	6.4	Coproducts, Quotients	232
	6.5	Products, Subspaces	234
	6.6	Function Spaces	236
	6.7	Compactness and Symcompactness	245
7	Completeness		253
	7.1	Limits, <i>d</i> -limits, and Cauchy nets	253
	7.2	A strong form of completeness: Smyth-completeness	260
	7.3	Formal balls	271
	7.4	A weak form of completeness: Yoneda-completeness	280
	7.5	The formal ball completion	302
	7.6	Choquet-completeness	313
	7.7	Polish spaces	322

OUTLINE

- Notions of completeness
- Low-hanging fruit: fixed point theorems
- The formal ball completion
- Low-handing fruit: miscellanea

OUTLINE

- Notions of completeness
- Low-hanging fruit: fixed point theorems
- The formal ball completion
- Low-handing fruit: miscellanea

CAUCHY NETS

- A net $(x_i)_{i \in I}$ is **Cauchy** iff for every $\varepsilon > 0$, $d(x_i, x_j) < \varepsilon$ for all $i \le j$ large enough
- **Example 1**: for d metric, usual notion ($i \le j$ unimportant)
- **Example 2**: d is an **ordering** iff d(x, y) = 0 or $+\infty$ for all x, y $(x \le y \text{ iff } d(x, y) = 0)$

Cauchy = eventually monotonic $(x_i \le x_j \text{ for all } i \le j \text{ large enough})$

D-LIMITS

- A *d*-limit of a net $(x_i)_{i \in I}$ is a point x such that, for every y, $d(x, y) = \limsup d(x_i, y)$
- unique if it exists (contrarily to limits)
 but **not** a limit (for the open ball topology)
- **Example 1**: if d is metric, d-limit = ordinary limit
- **Example 2**: if *d* ordering, *d*-lim of Cauchy(≈mono) net=**sup**
- **Example 3**: on \mathbb{R} , let $d_{\mathbb{R}}(x, y) = x y$ if $x \ge y$, o otherwise Then $d_{\mathbb{R}}$ -limit $(x_i)_{i \in I} = \mathbf{limsup} \ x_i$

YONEDA-COMPLETENESS

- \Diamond X, d is **Yoneda-complete** iff every Cauchy net has a d-limit
- Example I: =usual notion of completeness for metrics
- **Example 2**: an ordering $(x \le y \text{ iff } d(x, y) = 0)$ is Yonedacomplete iff a **dcpo**
- **Example 3**: \mathbb{R} , $d_{\mathbb{R}}$ is not Yoneda-complete ... but $\mathbb{R} \cup \{+\infty\}$ is, or $\mathbb{R}^+ \cup \{+\infty\}$

THE K-W THEOREM

Theorem (Kostanek, Waszkiewicz 2010): X, d is Yoneda-complete iff $\mathbf{B}(X)$ is a **dcpo**.

B(X) is the poset of **formal balls** (x, r) $(x \in X, r \in \mathbb{R}^+)$ with:

$$(x, r) \le (y, s)$$
 iff $d(x, y) \le r - s$
(in particular, $r \ge s$)

- ♦ A net $(x_i, r_i)_{i \in I}$ is Cauchy-weighted iff $\inf^{\downarrow} r_i = 0$ $d(x_i, x_j) \le r_i r_j$ for all $i \le j$ Then we say that $(x_i)_{i \in I}$ is Cauchy-weightable
- Cauchy-weightable implies Cauchy
 Every Cauchy net has a Cauchy-weightable subnet [EH98]
 Hence X, d Yoneda-complete iff
 every Cauchy-weightable net has a d-limit

- A net $(x_i, r_i)_{i \in I}$ is **Cauchy-weighted** iff $\inf^{\downarrow} r_i = 0$ $d(x_i, x_j) \le r_i r_j$ for all $i \le j$ Then we say that $(x_i)_{i \in I}$ is **Cauchy-weightable**
- Note: a Cauchy-weighted net is

 - \Leftrightarrow with **aperture** inf r_i equal to o

Lemma 1. Let $(x_i, r_i)_{i \in I}$ be a monotone net in $\mathbf{B}(X)$. If $(x_i)_{i \in I}$ has a d-limit x and r=inf r_i , then $(x, r) = \sup_{i \in I} (x_i, r_i)_{i \in I}$

 \clubsuit **Lemma 2**. If **B**(X) is a dcpo, the converse holds.

- **Proof**: We first show $r = \inf r_i$.
- \bullet Let $r_{\infty} = \inf r_i$.
- Since $r_i \ge r$ for every $i, r_\infty \ge r$.

Translate by r_{∞} : the net $(x_i, r_i - r_{\infty})_{i \in I}$ has a **sup** (x', r').

By the same argument, inf $(r_i - r_\infty) \ge r'$. So r' = 0.

$$(x', r') \ge (x_i, r_i - r_\infty) \Longrightarrow (x', r_\infty) \ge (x_i, r_i)$$
, so $(x', r_\infty) \ge (x, r)$: $r_\infty \le r$.

- **Lemma 1.** Let $(x_i, r_i)_{i \in I}$ be a monotone net in $\mathbf{B}(X)$. If $(x_i)_{i \in I}$ has a d-limit x and r=inf r_i , then $(x, r) = \sup_{i \in I} (x_i, r_i)_{i \in I}$
- \clubsuit Lemma 2. If $\mathbf{B}(X)$ is a dcpo, the converse holds.
- **Proof**: We first show $r = \inf r_i$.
- **♦** Let $r_{\infty} = \inf r_i$. Since $r_i \ge r$ for every $i, r_{\infty} \ge r$.
- **Translate** by r_{∞} : the net $(x_i, r_i r_{\infty})_{i \in I}$ has a **sup** (x', r'). By the same argument, inf $(r_i r_{\infty}) \ge r'$. So r' = 0.

$$(x', r') \ge (x_i, r_i - r_\infty) \Longrightarrow (x', r_\infty) \ge (x_i, r_i)$$
, so $(x', r_\infty) \ge (x, r)$: $r_\infty \le r$.

Lemma 1. Let $(x_i, r_i)_{i \in I}$ be a monotone net in $\mathbf{B}(X)$. If $(x_i)_{i \in I}$ has a d-limit x and r=inf r_i , then $(x, r) = \sup_{i \in I} (x_i, r_i)_{i \in I}$

 \clubsuit **Lemma 2**. If **B**(X) is a dcpo, the converse holds.

Proof: We first show $r = \inf r_i$.

② Let $r_{\infty} = \inf r_i$. Since $r_i \ge r$ for every $i, r_{\infty} \ge r$.

Translate by r_{∞} : the net $(x_i, r_i - r_{\infty})_{i \in I}$ has a **sup** (x', r').

By the same argument, inf $(r_i - r_\infty) \ge r'$. So r' = 0.

 $(x', r') \ge (x_i, r_i - r_\infty) \Longrightarrow (x', r_\infty) \ge (x_i, r_i)$, so $(x', r_\infty) \ge (x, r)$: $r_\infty \le r$.

- Proof: (continued)
 - **We** claim that **translation** $(y, s) \mapsto (y, s+a)$ is Scott-continuous, for every $a \ge 0$.
 - Since order isomorphism with $\mathbf{B}_a = \{\text{formal balls of radius } \ge a \}$

- Proof: (continued)
 - \P If $(x, r) = \sup (x_i, r_i)_{i \in I}$ then $\sup (d(x_i, y) r_i) = d(x, y) r$.
 - $s \le d(x, y) r$ is easy. $d(x_i, y) - r_i \le s$ implies $(x_i, r_i + s) \le (y, o)$ Take sups.

By continuity of **translation** by s, $(x, r+s) \le (y, 0)$, that is, $d(x, y) \le r+s$. So $s \ge d(x, y) - r$.

Proof: (continued)

- Call that s
- \P If $(x, r) = \sup_{i \in I} (x_i, r_i)_{i \in I}$ then $\sup_{i \in I} (d(x_i, y) r_i) = d(x, y) r$.
- $s \le d(x, y) r$ is easy. $d(x_i, y) - r_i \le s$ implies $(x_i, r_i + s) \le (y, o)$ Take sups.
 - By continuity of **translation** by s, $(x, r+s) \le (y, 0)$, that is, $d(x, y) \le r+s$. So $s \ge d(x, y) r$.

- **Lemma 2.** If **B**(X) is a dcpo, the converse holds, namely, if $(x, r) = \sup (x_i, r_i)_{i \in I}$ then x = d-lim $(x_i)_{i \in I}$ and $r = \inf r_i$.
- Proof: (finished)
 - Φ If $(x, r) = \sup (x_i, r_i)_{i \in I}$ then $\sup (d(x_i, y) r_i) = d(x, y) r$.
 - \Leftrightarrow Hence sup $(d(x_i, y) + r r_i) = d(x, y)$ (translation).
 - Since $r=\inf r_i$, $\limsup d(x_i, y) = d(x, y)$, i.e., $x=d-\lim (x_i)_{i \in I}$.

THE K-W THEOREM

- We have proved:
- Theorem (Kostanek, Waszkiewicz 2010): X, d is Yoneda-complete iff $\mathbf{B}(X)$ is a **dcpo**.
- N Moreover, sup $(x_i, r_i)_{i \in I} = (d\text{-lim } (x_i)_{i \in I}, \text{ inf } r_i)$.
- And translation $(y, s) \mapsto (y, s+a)$ is Scott-continuous, for every $a \ge 0$.

OP AND SYM

- Φ $d^{\operatorname{op}}(x, y) = d(y, x)$
- $\Leftrightarrow d^{\text{sym}}(x, y) = \max(d(y, x), d^{\text{op}}(x, y))$
- & dsym is a metric
- Lemma: for Cauchy nets, $d^{\text{op-limit}} = d^{\text{sym-limit}} = \text{limit in the } d^{\text{sym-open ball topology}}.$
- Asymmetry stems from definition of Cauchy net

SMYTH-COMPLETENESS

- * X, d is **Smyth-complete** iff every Cauchy net has a dop-limit (equivalently, a dsym-limit)
- In general much stronger than Yoneda-completeness
- Example I: =usual notion of completeness for metrics
- **Example 2**: an ordering $(x \le y \text{ iff } d(x, y) = 0)$ is Smyth-complete iff it is **equality** (!)
- **Example 3**: \mathbb{R} , $d_{\mathbb{R}}$ is not Smyth-complete, neither are $\mathbb{R} \cup \{+\infty\}$ is, or $\mathbb{R}^+ \cup \{+\infty\}$ (!) but $\{a, b\}$ is.

THE R-V THEOREM

- Theorem (Romaguera, Valero 2010): X, d is Smyth-complete iff $\mathbf{B}(X)$ is a **continuous depo** and $(x, r) \ll (y, s)$ iff d(x, y) < r s
- Remember that $(x, r) \le (y, s)$ iff $d(x, y) \le r s$
- Proof: as for Kostanek-Waszkiewicz (with extra epsilons and deltas)
- \Leftrightarrow In general, let (x, r) < (y, s) iff d(x, y) < r s

X, d $d^{\text{sym-}}$ -compact

Smyth-complete

 $\mathbf{B}(X)$

cont. dcpo with ≪ = <

Yoneda-complete

 $\mathbb{R}, d_{\mathbb{R}}$

dcpo

mere poset?

 $\mathbf{B}(X)$ X, d[a, b]dsym-compact cont. dcpo with ≪ = < Smyth-complete continuous depo $\mathbb{R}^+ \cup \{+\infty\}, d_{\mathbb{R}}$ Yoneda-complete dcpo

mere poset?

not complete

X, d $d^{\text{sym-}}$ compact

Smyth-complete

 $\mathbf{B}(X)$

cont. dcpo with ≪ = <

d-continuous Y.-c.Yoneda-complete

 $-\mathbb{R}, d_{\mathbb{R}}$

continuous depo depo

mere poset?

D-CONTINUITY

- Let us call X, d d-continuous Yoneda-complete iff $\mathbf{B}(X)$ is a continuous dcpo no constraint on $\ll \text{[KW2010]}$.
- **Proposition**. The Sorgenfrey line \mathbb{R}_{ℓ} is d_{ℓ} -continuous but not Smyth-complete.
- \mathfrak{P}_{ℓ} is just \mathbb{R} , $d_{\ell}(x, y) = x y$ if $x \ge y$, $+\infty$ (not o!) otherwise.
- Open ball topology has subbase of half-open intervals [a, b)

THE SORGENFREY LINE

- A famous counterexample in topology:
- Hausdorff, regular, zero-dimensional
- first-countable
- has a countable dense subset (Q)
- paracompact, hence normal
- Choquet-complete, hence Baire

- not locally compact (not even consonant)
- not second-countable
- not metrizable (although Hausdorff quasi-metric)
- not Smyth-complete
 (desym discrete)

RIS D-CONTINUOUS

- **Theorem**. \mathbb{R}_{ℓ} is d_{ℓ} -continuous Yoneda-complete.
- \bullet The map $\mathbf{B}(\mathbb{R}_{\ell}) \longrightarrow \mathbb{R} \times \mathbb{R}$

$$(x, r) \longmapsto (-x, x-r)$$

is an order isomorphism onto the subset $\{(a, b) \mid a+b \le 0\}$.

The latter is a continuous dcpo.

RIS D-CONTINUOUS

- **Theorem**. \mathbb{R}_{ℓ} is d_{ℓ} -continuous Yoneda-complete.
- \bullet The map $\mathbf{B}(\mathbb{R}_{\ell}) \longrightarrow \mathbb{R} \times \mathbb{R}$

$$(x, r) \longmapsto (-x, x-r)$$

is an order isomorphism onto the subset $\{(a, b) \mid a+b \le 0\}$.

The latter is a continuous dcpo.

Note:

$$(x, r) \ll (y, s)$$
 iff $x>y$ and $d_{\ell}(x, y) < r - s$
 $(x, r) < (y, s)$ iff $d_{\ell}(x, y) < r - s$
Hence \mathbb{R}_{ℓ} is indeed
not Smyth-complete
(Romaguera-Valero: $\ll \neq <$).

 $\mathbf{B}(X)$ X, d[a, b]dsym-compact cont. dcpo with ≪ = < Smyth-complete $\mathbb{R}^{+} \cup \{+\infty\}, d_{\mathbb{R}}$ continuous depo d-continuous Y.-c. Re Yoneda-complete dcpo not complete mere poset?

THE MEANING OF <

 \bullet **B**(X) is itself quasi-metric:

$$d^+((x, r), (y, s)) = \max(d(x, y) - r + s, 0)$$

... with specialization $(x, r) \le (y, s)$ iff $d(x, y) \le r - s$

Fact. (y, s) is in the interior of $\uparrow(x, r)$ [in open ball topol.] iff (x, r) < (y, s) [reminder: iff d(x, y) < r - s]

C-SPACES

- Fact. With its open ball topology, $\mathbf{B}(X)$ is a **c-space**: every open neighborhood \mathcal{U} of a point (y, s) contains a point (x, r) < (y, s) $\{< = \text{ (in the interior of upward closure of }\}$
- Notion due to [Ershov73, Erné91]

 Proof. \mathcal{U} contains an open ball B((y, s), R).

 Take x=y, and any r such that s < r < R+s.
- Fact. Continuous dcpos are sober c-spaces.
 A sober c-space is a continuous dcpo, has the Scott topology.
 Furthermore, « = <.</p>

R-V REVISITED

- Theorem (Romaguera, Valero 2010): X, d is Smyth-complete iff $\mathbf{B}(X)$ is a **continuous dcpo** and $\ll = <$.
- **©** Corollary.

X, d is Smyth-complete iff $\mathbf{B}(X)$ is **sober** in its open ball topology.

D-FINITENESS

- A point x is d-finite iff for every net $(y_i)_{i \in I}$ with d-limit y, $d(x, y) = \liminf d(x, y_i)$ [d-limit: for every z, $d(y, z) = \limsup d(y_i, z)$
- Example 1: in a metric space, every point is d-finite
- Example 2: in an ordering, d-finite = finite
- **Example 3**: in $\mathbb{R}^+ \cup \{+\infty\}$, $d_{\mathbb{R}}$, d-finite = all except $+\infty$.
- **Example 4**: in \mathbb{R}_{ℓ} , no point is d_{ℓ} -finite.

D-ALGEBRAICITY

- * X, d is **d-algebraic** Yoneda-complete iff every point is the *d*-limit of a Cauchy net of *d*-finite points. [BvBR1998]
- Example 1: every complete metric space is d-algebraic Y.-c.
- Example 2: in an ordering, d-algebraic Y.-c.= algebraic dcpo
- **Example 3**: $\mathbb{R}^+ \cup \{+\infty\}$, $d_{\mathbb{R}}$ is *d*-algebraic Y.-c.
- **Example 4**: \mathbb{R}_{ℓ} is not d-algebraic.

ALI-AKBARI ET AL.

- Theorem [Ali-Akbari, Honary, Pourmahdian, Rezaii 2009]. *X*, *d* is Smyth-complete iff *X*, *d* is Yoneda-complete and **every** point is *d*-finite.
- Hence Smyth-complete strictly stronger than Yoneda-complete d-algebraic.

FORMAL BALLS

- \bullet No point (x, r) in $\mathbf{B}(X)$ is finite, ever.
- Fact. A point x is d-finite iff the open ball centered at (x, r) with radius R is **Scott-open** [for some/for all r, R]
- \diamond Compare this with: in a dcpo, x is finite iff $\uparrow x$ is Scott-open.
- Corollary. X, d is d-algebraic Yoneda-complete iff there are enough open balls to generate the Scott topology on $\mathbf{B}(X)$.

 $\mathbf{B}(X)$ X, d[a, b] dsym-compact Smyth-complete cont. dcpo with ≪ = < continuous dcpo d-algebraic Y.-c. with enough open balls $\mathbb{R}^+ \cup \{+\infty\}, d_{\mathbb{R}}$ continuous depo d-continuous Y.-c. R Yoneda-complete dcpo not complete mere poset?

 $\mathbf{B}(X)$ X, d[a, b] dsym-compact Smyth-complete cont. dcpo with ≪ = < $\mathbb{R}^+ \cup \{+\infty\}, d_{\mathbb{R}}$ continuous dcpo d-algebraic Y.-c. with enough open balls d-continuous Y.-c. continuous depo R Yoneda-complete dcpo

mere poset?

not complete

X, d $d^{\text{sym-}}$ compact

Smyth-complete

d-algebraic Y.-c.

d-continuous Y.-c.Yoneda-completeChoquet-complete

not complete

 $\mathbf{B}(X)$

cont. dcpo with « = <

continuous dcpo with enough open balls

continuous depo depo

mere poset?

OUTLINE

- Notions of completeness
- Low-hanging fruit: fixed point theorems
- The formal ball completion
- Low-handing fruit: miscellanea

OUTLINE

- Notions of completeness
- Low-hanging fruit: fixed point theorems
- The formal ball completion
- Low-handing fruit: miscellanea

YONEDA-CONTINUITY

- A uniformly cont. map $f: X \longrightarrow \Upsilon$ is **Yoneda-continuous** iff f preserves d-limits of Cauchy nets [BvBR1998]
- ♦ Lipschitz ⇒ unif. continuity ⇒ continuity in metric spaces
- … not elsewhere! In orderings:

Lipschitz = unif. cont. = monotonic

Yoneda-continuous = Scott-continuous

YONEDA=SCOTT

- Φ f is c-Lipschitz iff $\mathbf{B}_c(f)$ is monotonic
- Φ f is c-Lipschitz Yoneda-continuous iff $\mathbf{B}_c(f)$ Scott-continuous

RUTTEN-KLEENE

- Remember? If g Scott-continuous on a dcpo and $x \le g(x)$, then g has a least fixed point above x [Kleene].
- **Theorem** [Rutten1996]. Let X, d be Y.-c., with $d(_,_) < +\infty$. Let $f: X \longrightarrow \Upsilon$ be c-Lipschitz Yoneda-continuous, c < 1. Then f has a unique fixed point.
- Fix x_0 in X. For r_0 large enough, $d(x_0, f(x_0)) \le (1-c) r_0$. That means $(x_0, r_0) \le (f(x_0), c.r_0) = \mathbf{B}_c(f) (x_0, r_0)$. Let (y, s) be the least fixed point of $\mathbf{B}_c(f)$ above (x_0, r_0) . In particular, y=f(y).

CARISTI-WASZKIEWICZ =BOURBAKI-WITT

- **Theorem** [Bourbaki 1949, Witt 1951]. Let Υ be a dcpo, $g: \Upsilon \longrightarrow \Upsilon$ be inflationary $\{y \le g(y) \text{ for every } y\}$. Then g has a fixed point above any y in Υ .
- Apply Kostanek-Waszkiewicz again, and obtain:
- Theorem [Waszkiewicz2010].

 Let X, d be Yoneda-complete, and $f: X \longrightarrow X$ be any map.

 Assume f has a d-lsc. **potential** $\varphi: X \longrightarrow \mathbb{R}^+$ $[\varphi(f(x)) + d(x, f(x)) \le \varphi(x) \quad \text{for every } x]$ Then f has a fixed point.

CARISTI-WASZKIEWICZ

- Φ is **d-1sc.** iff $\varphi(d-\text{limit }x_i) \leq \text{liminf } \varphi(x_i)$ for every Cauchy net
- **Theorem** [Waszkiewicz 2010]. Let X, d be Yoneda-complete, and $f: X \longrightarrow X$ be **any** map. Assume f has a d-lsc. potential $\varphi: X \longrightarrow \mathbb{R}^+$. Then f has a fixed point.
- Consider $g(x, r) = (f(x), r \varphi(x) + \varphi(f(x)))$ g is inflationary on subdcpo $\{(x, r) \in \mathbf{B}(X) \mid r \ge \varphi(x)\}.$
- Generalizes [Caristi 1976] on complete metric spaces.

OUTLINE

- Notions of completeness
- Low-hanging fruit: fixed point theorems
- The formal ball completion
- Low-handing fruit: miscellanea

OUTLINE

- Notions of completeness
- Low-hanging fruit: fixed point theorems
- The formal ball completion
- Low-handing fruit: miscellanea

CAUCHY COMPLETION

- In metric spaces, a simple notion of completion:
 - Take the space of Cauchy nets [OK, sequences, really]
 - Define a «metric» d' on it
 - Quotient by the «at d'-distance zero» relation
- We can replace the quotient by a canonical representative: next slide.

CAUCHY COMPLETION REVISITED

- Recall abstract basis (x, r) < (y, s) iff d(x, y) < r s
- Let S(X) be the space of all rounded ideals D in B(X) with aperture zero.
- \Leftrightarrow aperture = inf $\{r \mid (x, r) \in D\}$... so D is a Cauchy-weighted net

 $\mathbf{B}(X)$

= sobrification of **B**(*X*)/open ball topology by [Lawson 1997]: good start!

CAUCHY COMPLETION REVISITED

- Recall abstract basis (x, r) < (y, s) iff d(x, y) < r s
- Let S(X) be the space of all rounded ideals D in B(X) with aperture zero.
- \Leftrightarrow aperture = inf $\{r \mid (x, r) \in D\}$... so D is a Cauchy-weighted net

 $\mathbf{B}(X)$

= sobrification of **B**(*X*)/open ball topology by [Lawson 1997]: good start!

CAUCHY COMPLETION REVISITED

- Define $d^+\mathcal{H}$ on $\mathbf{S}(X)$ by the 1/2-Hausdorff metric formula $d^+\mathcal{H}(D,D')=\sup_{B\in D}\inf_{B'\in D'}d^+(B,B')$ [recall $d^+((x,r),(y,s))=\max(d(x,y)-r+s,0)$]
- Theorem. $\mathbf{B}(\mathbf{S}(X))$ is isomorphic to $\mathbf{RI}(\mathbf{B}(X))$ through $(D, s) \longmapsto D + s = \{(x, r + s) \mid (x, r) \in D\}$
- **Corollary.** S(X) is **Yoneda-complete** $d^+\mathcal{A}$ -continuous. ... in fact $d^+\mathcal{A}$ -algebraic with $d^+\mathcal{A}$ -finite elements $\downarrow(x, 0)$.

- Let YCQMet_c: Yoneda-complete quasi-metric spaces
 + c-Lipschitz Yoneda-continuous maps
- Let QMet_c: quasi-metric spaces + c-Lipschitz maps
- \bullet Theorem. QMet_c: S \dashv Forget: YCQMet_c.

$$\psi(x, o)$$
 $\mathbf{S}(X)$ isometric embedding 1

- Let YCQMet_c: Yoneda-complete quasi-metric spaces
 + c-Lipschitz Yoneda-continuous maps
- Let QMet_c: quasi-metric spaces + c-Lipschitz maps
- **Theorem.** QMet_c: $S \rightarrow Forget : YCQMet_c$.

- Let YCQMet_c: Yoneda-complete quasi-metric spaces
 + c-Lipschitz Yoneda-continuous maps
- Let QMet_c: quasi-metric spaces + c-Lipschitz maps
- \bullet Theorem. QMet_c: S \dashv Forget: YCQMet_c.

- Let YCQMet_u: Yoneda-complete quasi-metric spaces
 + uniformly Yoneda continuous maps
- Let QMet_u: quasi-metric spaces + uniformly cont. maps
- **Theorem.** QMet_u: $S \rightarrow Forget : YCQMet_u$.

$$\psi(x, o)$$
 $\mathbf{S}(X)$ isometric embedding 1

- Let YCQMet_u: Yoneda-complete quasi-metric spaces
 + uniformly Yoneda continuous maps
- Let QMet_u: quasi-metric spaces + uniformly cont. maps
- **Theorem.** QMet_u: $S \rightarrow Forget : YCQMet_u$.

- Let YCQMet_u: Yoneda-complete quasi-metric spaces
 + uniformly Yoneda continuous maps
- Let QMet_u: quasi-metric spaces + uniformly cont. maps
- **Theorem.** QMet_u: $S \rightarrow Forget : YCQMet_u$.

- Let YCQMet_u: Yoneda-complete quasi-metric spaces
 + uniformly Yoneda continuous maps
- Let QMet_u: quasi-metric spaces + uniformly cont. maps
- \bullet Theorem. QMet_u: S \dashv Forget: YCQMet_u.

On orderings, uniformly continuous = monotonic
 Yoneda continuous = Scott-continuous
 Yoneda-complete = dcpo

Theorem. For posets X, S(X) ...

- On orderings, uniformly continuous = monotonic
 Yoneda continuous = Scott-continuous
 Yoneda-complete = dcpo
- **Theorem.** For posets X, $S(X) \cong$ ideal completion I(X)

YONEDA COMPLETION

 \bullet The Yoneda map Yon: $X \longrightarrow [X \to \mathbb{R}^+ \cup \{+\infty\}]_{\text{r-Lipschitz}}$

$$x \longmapsto d(\underline{\ }, x)$$

Let $\mathbf{Y}(X) = d$ -closure of image of Yon.

Theorem [BvBR1998]. QMet_u: $Y \rightarrow Forget : YCQMet_u$.

$$d(\underline{\ },x)$$
 $Y(X)$ f (Yoneda-complete) isometric embedding f (uniformly continuous)

mercredi 26 août 15

X

YONEDA COMPLETION

 \bullet The Yoneda map Yon: $X \longrightarrow [X \to \mathbb{R}^+ \cup \{+\infty\}]_{\text{r-Lipschitz}}$

$$x \longmapsto d(\underline{\ }, x)$$

Let $\mathbf{Y}(X) = d$ -closure of image of Yon.

Theorem Hence $\mathbf{Y}(X) \cong \mathbf{S}(X)$

 \dashv Forget : **YCQMet**_u.

 $d(\underline{\ }, x)$ Y(X) (Yoneda-complete)

isometric tembedding

 \widehat{f} (uniformly continuous)

 \boldsymbol{x}

OUTLINE

- Notions of completeness
- Low-hanging fruit: fixed point theorems
- The formal ball completion
- Low-handing fruit: miscellanea

OUTLINE

- Notions of completeness
- Low-hanging fruit: fixed point theorems
- The formal ball completion
- Low-handing fruit: miscellanea

IDEMPOTENCE

- $\ \$ Cauchy completion is idempotent: $\ \$ Cauchy(Cauchy(X)) $\ \ \simeq \$ Cauchy(X)
- Formal ball completion **S** is **not**: $S(S(X)) \cong S(X)$... unless *X* is metric for example Counterexample: orderings (**I** is not idempotent)
- What are the fixed points of \$?
 ... at least the complete metric spaces,
 but there are more.

FIXED POINTS OF S

- Theorem [Flagg Sünderhauf 1996; Künzi Schellekens 2002] $S(X) \cong X$ if and only if X is **Smyth-complete**.
- ❖ If X Smyth-complete, then $\mathbf{B}(X)$ sober [remember?] So $\mathbf{B}(\mathbf{S}(X)) \cong \mathbf{RI}(\mathbf{B}(X)) \cong$ sobrification of $\mathbf{B}(X) \cong \mathbf{B}(X)$, because sobrification is idempotent. In particular, looking at elements of radius O, $\mathbf{S}(X) \cong X$.
- ♦ If $S(X) \cong X$, then $B(X) \cong B(S(X)) \cong RI(B(X)) \cong \text{sobrification of } B(X)$ is sober, so X is Smyth-complete.

THE D-SCOTT TOPOLOGY

- Let the *d*-Scott topology on *X* be induced by Scott topology on $\mathbf{B}(X)$ through embedding $\eta: X \longrightarrow \mathbf{B}(X)$ $x \longmapsto (x, 0)$
- Example 1: = open ball topology
 if X metric, or if X Smyth-complete

- **Example 2**: = Scott topology if X, d ordering
- Ex. 3: base of open balls with d-finite centers if Y.-c. d-algebr.
- Ex. 4:=generalized Scott topology [BvBR1998] if Y.-c. d-cont.

SOBRIETY

- Among sober spaces, we find Hausdorff spaces, continuous dcpos, and:
- Theorem. Every Yoneda-complete *d*-continuous space *X* is sober in its *d*-Scott topology.
- Proof. B(X) is continuous hence sober in its Scott topology.

$$X \xrightarrow{\eta} \mathbf{B}(X) \xrightarrow{\text{radius}} \mathbb{R}^{+\text{op}}$$

shows η as an equalizer map $((x, r) \in \text{Im } \eta \text{ iff } r=0)$ in **Top**. Subspaces of sober spaces obtained as equalizers are sober.

SOBRIETY

- Among sober spaces, we find Hausdorff spaces, continuous dcpos, and:
- ❖ Theorem. Every Yoneda-complete *d*-continuous space *X* is sober in its *d*-Scott topology.
- Corollary. Every Smyth-complete space is sober in its open ball topology.
- Because in that case *d*-Scott = open ball (every point *d*-finite [Ali-Akbari et al.2009]).

RETRACTS

A 1-Lipschitz Y.-continuous retraction:

$$(r \circ s = id)$$
 X

$$\mathbf{B}(\gamma)$$

induces a Scott-continuous retraction:

$$\mathbf{B}_{\mathrm{I}}(r)$$
 $\mathbf{B}_{\mathrm{I}}(s)$

$$(\mathbf{B}_{\mathrm{I}}(r) \circ \mathbf{B}_{\mathrm{I}}(s) = \mathrm{id}) \quad \mathbf{B}(X)$$

RETRACTS OF D-CONT. SPACES

- $\textcircled{B}(\Upsilon)$ is Y.-c. *d*-continuous, then $\mathbf{B}(\Upsilon)$ is a continuous dcpo
- \bullet If **B**(*X*) is a continuous dcpo, then *X* is Y.-c. *d*-continuous. Hence:
- Proposition.

Every 1-Lipschitz Y.-continuous retract of a Yoneda-complete *d*-continuous space is Yoneda-complete *d*-continuous.

CONTINUITY/ALGEBRAICITY

Theorem. The *d*-continuous Y.-comp. spaces are exactly the 1-Lipschitz Y.-continuous retracts of *d*-algebraic Yoneda-complete spaces.

CONTINUITY/ALGEBRAICITY

Theorem. The *d*-continuous Y.-comp. spaces are exactly the 1-Lipschitz Y.-continuous retracts of *d*-algebraic Yoneda-complete spaces.

$$D=(x_i, r_i)_i \in I$$
 $S(X)$ $\downarrow (x, o)$

$$\downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \uparrow \qquad \qquad d$$
-lim x_i X x

CONTINUITY/ALGEBRAICITY

Theorem. The *d*-continuous Y.-comp. spaces are exactly the 1-Lipschitz Y.-continuous retracts of *d*-algebraic Yoneda-complete spaces.

CONCLUSION

Formal balls provide a unifying view of quasi-metric theory through domain theory

 Plenty of opportunities of generalization of theorems on continuous dcpos
 to Yoneda-complete d-continuous spaces

CONCLUSION

Formal balls provide

a unifying view of quasi-metric theory
through domain theory

 Plenty of opportunities of generalization of theorems on continuous dcpos
 to Yoneda-complete d-continuous spaces