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METRICS

A metric 4 on a set X: , |
Center
* d(x, x)=0 XRad\lus
 if d(x,y)=0 then x=y S
An open ball

* dlx,2) <d(x,y) +dy,2)

o d(x,y)=d(y, x)
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QUASI- METRICS

A quasi-metric 4 on a set X:

d(x, x)=0

if d(x, y)=0 and d(y, x)=0 then x=y

dx, 2) < dx, y) +dly, 2)

)

)




 dlx, x)=0

QUASI METRI

r

A quasi-metric 4 on a set X:

o if d(x, y)=0 and d(y, x)=0 then x=y

* dlx,2) <d(x,y) +dy,2)

.

CS

Center

\

Radius /

An open ball

Specialization ordering of

the open ball topology:

x <y iff dlx,y) =0

[ — T——
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QUASI- METRICS

% «Classical theory»: R. Wilson (1931), H.-P. Kiinzi (1983), M.
Smyth (1989), M. Schellekens (1995), Ph. Stinderhauf (1993)

% «As enriched category theory»: F.W. Lawvere (1973), J.J.M.M.
Rutten (1996), M.M. Bonsangue, F. van Breugel (1998)

¢ and...
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FORMAL BALLS

& «Formal Balls»:

¢ discovered by K. Weihrauch and U. Schreiber (1981),

embedding metric spaces in cpos.
¢ studied further by A. Edalat and R. Heckmann (1998)

¢ New important developments (2009-2010) by P.
Waszkiewicz, M. Kostanek, S. Romaguera, O. Valero, M.
Ali-Akbari, B. Honari, M. Pourmahdian, M. M. Rezaii.

¢ Formal balls provide a unifying view, via domain theory

S
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A SHAMELESS AD

% In this talk: an excerpt of the
Book I .
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7 Completeness 253 balltL
7. i, ¢, arml @amey mes 253 Jean Goubault-Larrecq
7.2 A strong form of completeness: Smyth-completeness 260
7.3  Formal balls 271
7.4 A weak form of completeness: Yoneda-completeness 280
7.5  The formal ball completion 302
7.6  Choquet-completeness 313 I
7.7  Polish spaces 322 §| (Carurmon
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L4

OUTTLINI

-

% Notions of completeness
¢ Low-hanging fruit: fixed point theorems
% The formal ball completion

% Low-handing fruit: miscellanea
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L4

” OUTTLINI

% Notio
% Low-hanging fruit: fixed point theorems
% The formal ball completion

% Low-handing fruit: miscellanea
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CAUCHY NETS

@ A net (x);eis Cauchy iff for every €>0,
d(xi, x))<e for all 7</ large enough

¢ Example 1: for d metric, usual notion (7<f unimportant)

¢ Example 2: d is an ordering iff d(x, y) = 0 or +oo for all x, y
(x <y iff dlx, y) = 0)

Cauchy = eventually monotonic (xi<x; for all 7<j large enough)
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D-LIMITS

% A d-limit of a net (x); e/ is a point x such that,

for every y, d(x, y) = limsup d(x;, y)

% unique if it exists (contrarily to limits)
but not a limit (for the open ball topology)

¢ Example 1: if 4 is metric, d-limit = ordinary limit
¢ Example 2: if d ordering, d-lim of Cauchy(mono) net=sup

¢ Example 3: on R, let dr(x, y) = x — y if x>y, o otherwise

Then dR-limit (xi)i cl= limsup Xi
y
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YONEDA-COMPLETENESS

¢ X, dis Yoneda-complete iff every Cauchy net has a d-limit
¢ Example 1: =usual notion of completeness for metrics

¢ Example 2: an ordering (x < y iff d(x, y) = 0) is Yoneda-
; complete iff a depo

¢ Example 3: R, dg is not Yoneda-complete

... but R U {+eo} is, or R* U {+oo}
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THE K-W THEOREM

A
L (X) 4
v

¢ B(X) is the poset of formal balls (x, 7)
(x € X, r € Rt) with:

(x,7) < (y,s) iff dx,y) <r—s

(in particular, 7 > 5) I




PROOIF OF K-W (1)

% A net (x;, )i e is Cauchy-weighted iff
inf} ri=0
d(xi, x)< ri —rj for all 7<j
Then we say that (x;); e is Cauchy-weightable

% Cauchy-weightable implies Cauchy
Every Cauchy net has a Cauchy-weightable subnet {EH98]
Hence X, d Yoneda-complete ift
every Cauchy-weightable net has a 4-limit
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PROOIF OF K-W (2)

% A net (x;, )i e is Cauchy-weighted iff
inf} ri=0

d(xi, xj)< ri — rj for all i<f

Then we say that (x);e; is Cauchy-weightable




PROOF OF K-W (3)

% Proof: We first show 7 = inf 7;.

¢ Let ro= int 7.
*Since rizr for every z, 7 2 7.
Translate by r.: the net (x;, 7i — 7=); e has

¢ Lemma 1. Let (x;, 7); e ; be a monotone net in B(X).
If (x);i e 1 has a d-limit x and r=inf 7;, then (x, 7) = sup (x;, rdie;

¢ Lemma 2. If B(X) is a dcpo, the converse holds.

Voo

I'

By the same argument, inf (#; — 7<) > 7. So 7’=0.
(et Yol 1) =206, r)i2ocs 1) isonle )= i <t

A — e
a sup (¢, 7).
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PROOF OF K-W (3)

¢ Lemma 1. Let (x;, 7); e ; be a monotone net in B(X).
If (x);i e 1 has a d-limit x and r=inf 7;, then (x, 7) = sup (x;, rdie;

¢ Lemma 2. If B(X) is a dcpo, the converse holds_____

7

% Proof: We first show 7 = inf 7;.

% Let7r.=1inf7;.

Since 7; 2 r for every 7, 7« > 1.
B —— |

*Translate by re: the net (x;, 7i — r=)ie rhasa sup &', ).
By the same argument, inf (#; — 7<) > 7. So 7’=0.

(et Yol 1) =206, r)i2ocs 1) isonle )= i <t
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PROOF OF K-W (3)

% Proof: We first show 7 = inf 7;.

¢ Let r»= inf 7;.
Since 7; 2 r for every 7, 7« > 1.
Translate by r.: the net (x;, 7i — 7=); e has

¢ Lemma 1. Let (x;, 7); e ; be a monotone net in B(X).
If (x);i e 1 has a d-limit x and r=inf 7;, then (x, 7) = sup (x;, rdie;

¢ Lemma 2. If B(X) is a dcpo, the converse holds.

Voo

I'

By the same argument, inf (#; — 7<) > 7. So 7’=0.

i *(x’a r’)Z(Xi, ri_roo) = (x’) roo) 2 (xi, ri), SO (x,, roo) 2 (x, 7’): Vo< 7.

A — e
a sup (¢, 7).
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PROOF OF K-W (3)

¢ Proof: (continued)

¢ We claim that translation (y, 5) — (y, s+a)

is Scott-continuous, for every 4 = o.

% Since order isomorphism with
B, = {formal balls of radius = 4}

% and sups are computed in B, as in B(X)
... because B, Scott-closed, by previous slide.

mercredi 26 aolt 15




PROOF OF K-W (3)

¢ Proof: (continued)

o [ (v, 7) = sup (s, 7): e 1 then sup (@ O, 9) — 1) = dc 17!

¢ 5 <d(x,y) —ris easy.
d (xi, y) — ri< s implies (x;, 7i+s) < (y, 0)
Take sups.
By continuity of translation by s, (x, 7+s) < (y, 0),
that is, d(x, y) < r+s. Sos > d(x, y) — r.
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PROOF OF K-W (3)

¢ Proof: (continued) Call that s

2k
@ If (x, ) = sup (x;, 7); e 1 then RN /(, 1) — 7.

¢ 5 <d(x,y) —ris easy.
d (xi, y) — ri< s implies (x;, 7i+s) < (y, 0)
Take sups.
By continuity of translation by s, (x, 7+s) < (y, 0),
that is, d(x, y) < r+s. Sos > d(x, y) — r.
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PROOF OF K-W (3)

¢ Lemma 2. If B(X) is a dcpo, the converse holds, namely;
if (x, ) = sup (x;, 7)ie 1 then x=d-lim (x)); e ; and r=inf 7;.

¢ Proof: (finished)
@ 1If (x, r) = sup (x;, r)ie1 then sup (d (i, y) — 1) = dlx, y) —r.
¢ Hence sup (@ (x;, ) + r —r) = d(x, y) (translation).

@ Since r=inf r;, limsup d (x;, y) = d(x, y), i.e., x=d-lim (x;); 1.
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THE K-W THEOREM

% We have proved:

¢ Theorem (Kostanek, Waszkiewicz 2010):
X, d is Yoneda-complete iff B(X) is a depo.

| © Moreover, sup (x;, 7)ier= (d-lim (x); e, inf 7).

% And translation (y, 5) — (y, s+@) is Scott-continuous,

for every a 2 o.
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A SPECTRUM OF COMPLETENESS

X,d B(X)

Yoneda-complete dcpo

mere poset?

‘ not complete
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{/

OP AND SYM

@ don(x, y) = d(y, x)
© dsym(x’ y) = max (d(y, x), dop(x’ )/))

€ 4Symig 3 metric

A
L (X
v

¢ Asymmetry stems from definition of Cauchy net

e
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SMY TH-COMPLETENESS

¢ X, dis Smyth-complete iff every Cauchy net
has a d°P-limit (equivalently, a Y™-limit)

% In general much stronger than Yoneda-completeness
¢ Example 1: =usual notion of completeness for metrics

¢ Example 2: an ordering (x < y iff d(x, y) = o) is Smyth-
complete iff it is equality (!)

¢ Example 3: R, dg is not Smyth-complete,
neither are R U {+oo} is, or R* U {+oo} () but [a, b}l is.
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THE R-V THEOREM

¢ Theorem (Romaguera, Valero 2010):
X, d is Smyth-complete iff B(X) is a continuous dcpo

and (x, ) < (y,5) iff dlx,y) <r—s

¢ Remember that

(x,7) < (y,s) iff dlx,y) <r—s

é Proof: as for Kostanek-Waszkiewicz

(with extra epsilons and deltas)

% In general, let

(x,7) < (@y,8) iff dlx,y) <r—s

e - — — S —— — e e
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A SPECTRUM OF COMPLETENESS

{1

%80

Smyth-complete

Yoneda-complete

not complete

B(X)

cont. dcpo with « = <

dcpo

mere poset?
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A SPECTRUM OF COMPLETENESS

%80

d*YM-compact

B(X)

Smyth-complete cont. dcpo with « = <

Yoneda-complete ; dcpo

not complete mere poset?

mercredi 26 aolt 15



A SPECTRUM OF COMPLETENESS

%80

d*YM-compact

B(X)

Smyth-complete cont. dcpo with « = <

?

continuous dcpo

Yoneda-complete ; dcpo

not complete mere poset?
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A SPECTRUM OF COMPLETENESS

%80

d*YM-compact

B(X)

Smyth-complete cont. dcpo with « = <

d-continuous Y.-C.

continuous dcpo

Yoneda-complete ; dcpo

not complete mere poset?
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D-CONTINUITY

a
>
4

@ Ry isjust R, d/x, y) =x —y if x>y, +oo (not o!) otherwise.

% Open ball topology has subbase of half-open intervals {a, b)




THE SORGENFREY JLIIN]

L4

% A famous counterexample in topology:

¢ Hausdorfl, regular, ¢ not locally compact
zero-dimensional (not even consonant)

A (§) -
G e S R PR not second-countable

é not metrizable

& has a countable dense subset (Q)
(although Hausdorff quasi-metric)

% paracompact, hence normal ® R/,2 not normal

¢ Choquet-complete, hence Baire
¢ not Smyth-complete

(dsym discrete)
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R, IS5 D-CONTINUOUS

¢ Theorem. R, is d;-continuous Yoneda-complete.

® The map B(R) — R X R

(x,7) +— (x, x7)
is an order isomorphism
onto the subset (g, &) | a+b < o}.

¢ The latter is a continuous dcpo.




R, IS5 D-CONTINUOUS

¢ Theorem. R, is d;-continuous Yoneda-complete.

® The map B(R) — R X R

(x,7) — (—x, x—7)
is an order isomorphism

onto the subset {(z, ) | a+6 < o}. Note:
(x, ) < (y, 5) iff x>y and d(x, y)<r—s

(x, ) < (y, 5) iff dx, y)<r—s
Hence R, is indeed

not Smyth-complete
(Romaguera-Valero: « # <).

¢ The latter is a continuous dcpo.

—
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A SPECTRUM OF COMPLETENESS

%80

d*YM-compact

B(X)

Smyth-complete cont. dcpo with « = <

d-continuous Y.-C.

.dy continuous dcpo

Yoneda-complete dcpo

not complete mere poset?
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THE MEANING O]

TLJ
AN

¢ B(X) is itself quasi-metric:
d*((x, r), (y, 5)) = max (d(x, y)—r+s, 0)
... with specialization (x, 7) < (y, s) iff d(x, y) <7 —35

¢ Fact. (y, s) is in the interior of 1(x,7) [in open ball topol.}

iff (x, 7) < (y, $) [reminder: iff d(x, y) < r — s}
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C-SPACES

A
L X
v

% Notion due to [Ershov73, Ernéor}l
Proof. 7 contains an open ball B((y, 5), R).
Take x=y, and any 7 such that s <7 < R+s.

¢ Fact. Continuous dcpos are sober c-spaces.
A sober c-space is a continuous dcpo, has the Scott topology:.
Furthermore, « = <.

\

e
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R-V REVISITED

¢ Theorem (Romaguera, Valero 2010):
X, d is Smyth-complete iff B(X) is a continuous dcpo

and « = <.




D-FINITENESS

% A point x is d-finite ift
for every net (y); e with d-limit y, d(x, y) = liminf d(x, y;)
[d-limit: for every z, d(y, 2) = limsup d(y;, 2)}

¢ Example 1: in a metric space, every point is d-finite
¢ Example 2: in an ordering, 4-finite = finite

¢ Example 3: in Rt U {+oo},dR, d-finite = all except +oo.

@ Example 4: in R,, no point is d,-finite.
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D-ALGEBRAICITY

¢ X, dis d-algebraic Yoneda-complete ift every point is
the d-limit of a Cauchy net of d-finite points. [BvBR1998]

¢ Example 1: every complete metric space is d-algebraic Y.-c.
¢ Example 2: in an ordering, d-algebraic Y.-c.= algebraic dcpo

¢ Example 3: R* U {+co},dy is d-algebraic Y.-c.

¢ Example 4: R, is not d-algebraic.
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ALIFAKBARI ET AlL.

¢ Hence Smyth-complete strictly stronger than
Yoneda-complete d-algebraic.




FORMAL BALLS

A
()
v

P
L (X
v

\

% No point (x, 7) in B(X) is finite, ever.

{for some/for all r, R}

% Compare this with: in a dcpo, x is finite ift {x is Scott-open.

e
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A SPECTRUM OF COMPLETENESS

%80

d*YM-compact

B(X)

Smyth-complete cont. dcpo with « = <

continuous dcpo
with enough open balls

d-algebraic Y.-c.

d-continuous Y.-C.

.dy continuous dcpo

Yoneda-complete dcpo

not complete mere poset?
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A SPECTRUM OF COMPLETENESS

%80

d*YM-compact

B(X)

Smyth-complete cont. dcpo with « = <

continuous dcpo
with enough open balls

d-algebraic Y.-c.

d-continuous Y.-C. continuous dcpo

Yoneda-complete dcpo

not complete mere poset?
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A SPECTRUM OF COMPLETENESS

%80

d*YM-compact

B(X)

Smyth-complete cont. dcpo with « = <

continuous dcpo
with enough open balls

d-algebraic Y.-c.

d-continuous Y.-C.

continuous dcpo

Yoneda-complete dcpo

Choquet-complete

not complete mere poset?
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A SPECTRUM OF COMPLETENESS

W)

d*Y™M-compact

B(X)

Smyth-complete

d-algebraic Y.-c.

C

d-continuo. PA‘&“ cof

continuous dcpo

Yoneda-com, dcpo
Choquet-complete
not complete R mere poset?
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L4

OUTTLINI

-

% Notions of completeness
¢ Low-hanging fruit: fixed point theorems
% The formal ball completion

% Low-handing fruit: miscellanea
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OUTTLINI

L4

% Notions of completeness
% Low-har
% The formal ball completion

% Low-handing fruit: miscellanea
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YONEDA-CONTINUITY

¢ A uniformly cont. map f: X — 7 is Yoneda-continuous
iff f preserves d-limits of Cauchy nets [BvBR1998]

% Lipschitz = unif. continuity = continuity in metric spaces

% ... not elsewhere! In orderings:
Lipschitz = unif. cont. = monotonic
Yoneda-continuous = Scott-continuous
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YONEDA=5COTT

¢ Let B.() : B(X) — B(Q)
(x, ) — (flx), c.r)

% fis c-Lipschitz iff B.(f) is monotonic

A
L (X) 4
v




RUTTEN=KLEEN]

L4

¢ Remember? If g Scott-continuous on a dcpo and x < g(x),
then g has a least fixed point above x [Kleenel.

¢ Theorem {Rutten1996}. Let X, d be Y.-c., with d(_, _) < +co.
Let f: X — 7 be c-Lipschitz Yoneda-continuous, c<1.
Then f has a unique fixed point.

% Fix xo in X. For o large enough, d(xo, flxo)) < (1-¢) ro.
That means (xo, 70) < (f{xo), c.70) = B.(f) (xo, 70).
Let (y, s) be the least fixed point of B.(f) above (xo, 70).
In particular, y=fy).
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CARISTI-WASZKIEWICZ
=BOURBAKI-WITT

¢ Theorem {Bourbaki 1949, Witt 1951}. Let 7 be a dcpo,
g2:Y — 7T be inflationary [y < g(y) for every yL
Then g has a fixed point above any y in 7.

¢ Apply Kostanek-Waszkiewicz again, and obtain:

A
L (X) 4
v

fqL
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CARISTI-WASZKIEWICZ

@ @ is d-Isc. iff p(d-limit x;) < liminf @(x;) for every Cauchy net

% Theorem {Waszkiewicz 20101
Let X, d be Yoneda-complete, and f : X — X be any map.

Assume f has a d"Isc. potential ¢ : X — R*.
Then f has a fixed point.

% Consider glx, ) = (flx), 7 — ) + p(fx)))
g is inflationary on subdcpo {(x, ) € B(X) | > ¢(x)}.

¢ Generalizes {Caristi 1976} on complete metric spaces.
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L4

OUTTLINI
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% Notions of completeness
¢ Low-hanging fruit: fixed point theorems
% The formal ball completion

% Low-handing fruit: miscellanea
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L4

” OUTTLINI

% Notions of completeness

% Low-hanging fruit: fixed point theorems

% The

% Low-handing fruit: miscellanea
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CAUCHY COMPLETION

¢ In metric spaces, a simple notion of completion:
% Take the space of Cauchy nets [OK, sequences, really]
% Define a «<metric» & on it
¢ (Quotient by the «at &-distance zero» relation

% We can replace the quotient by a
canonical representative: next slide.
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CAUCHY COMPLETION REVISITED

B(X)

& Recall abstract basis

(x,7) < (y,s5) iff dx,y) <r—s

¢ Let S(X) be the space of all
rounded ideals D in B(X) with
aperture zero.

% aperture = inf | (x, r) € D}

... s0 D is a Cauchy-weighted net

¢ 8(X) is a subset of the rounded

ideal COIIlplCtiOIl RI(B(X)) = sobrification of B(X)/open ball topology
i by {Lawson 19971: good start! |
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CAUCHY COMPLETION REVISITED

B(X)

& Recall abstract basis

(x,7) < (@, iff dx,y) <r—s
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rounded ideals D in B(X) with
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CAUCHY COMPLETION REVISITED

¢ S(X) = {rounded ideals D in B(X) with aperture zero}

® Define d*% on S(X) by the 4-Hausdorff metric formula
d*-(D, D’)=suppep infpep d*(B, B’)
[recall &*((x, ), (y, 5)) = max (d(x, y)—7+s, 0)]

¢ Theorem. B(S(X)) is isomorphic to RI(B(X))
through (D, 5) — D-+s = {(x, r+5) | (x, r) € D}

@ Corollary. S(X) is Yoneda-complete d*4-continuous.

.. in fact d*4-algebraic with d*-finite elements | (x, o).
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FREE YONEDA-C. SPACI]

¢ Let YCQMet.: Yoneda-complete quasi-metric spaces
+ c-Lipschitz Yoneda-continuous maps

¢ Let QMet.: quasi-metric spaces + ¢-Lipschitz maps
¢ Theorem. QMet, : S - Forget : YCQMet..

I, 0) S&X)

1Isometric I

embedding

5 X

—~
4
-

O




FREE YONEDA-C. SPACE

¢ Let YCQMet;: Yoneda-complete quasi-metric spaces

+ c-Lipschitz Yoneda-continuous maps

¢ Let QMet.: quasi-metric spaces + ¢-Lipschitz maps

¢ Theorem. QMet, : S - Forget : YCQMet..

lx, 0 S&X)

1Isometric

embedding

I

X

X
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FREE

YONEDA-C. SPACE

¢ Let YCQMet;: Yoneda-complete quasi-metric spaces

+ c-Lipschitz Yoneda-continuous maps

¢ Let QMet.: quasi-metric spaces + ¢-Lipschitz maps

¢ Theorem. QMet, : S - Forget : YCQMet..

A
U(X O) S(X) """""""""""""""" f """"""""""""""""" ) (Yoneda-complete)
(unique ¢-Lipschitz Y-cont. )
1ISsometric
embedding I

f (c-Lipschitz)

O
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¢ Let YCQMet,: Yoneda-complete quasi-metric spaces

FREE YONEDA-C. SPACI]

+ uniformly Yoneda continuous maps

N
-

¢ Let QMet,: quasi-metric spaces + uniformly cont. maps

¢ Theorem. QMet, : S - Forget : YCQMet..

I, 0) S&X)

1Isometric

embedding

I

X

X




FREE YONEDA-C. SPACI]

¢ Let YCQMet,: Yoneda-complete quasi-metric spaces
+ uniformly Yoneda continuous maps

N
-

¢ Let QMet,: quasi-metric spaces + uniformly cont. maps

¢ Theorem. QMet, : S - Forget : YCQMet..

U(x : 0) S(X) 94 (Yoneda-complete)
1

1Isometric I

embedding

f (uniformly continuous)

5 X
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FREE YONEDA-C. SPACES

¢ Let YCQMet,: Yoneda-complete quasi-metric spaces
+ uniformly Yoneda continuous maps

¢ Let QMet,: quasi-metric spaces + uniformly cont. maps

¢ Theorem. QMet, : S - Forget : YCQMet..

A

U(x 0) S(X) """""""""""""""" f """"""""""""""""" Y (Yoneda-complete)

(unique Yoneda contmuous)

1Isometric I

embedding

f (uniformly continuous)
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FREE YONEDA-C. SPACES

¢ Let YCQMet,: Yoneda-complete quasi-metric spaces
+ uniformly Yoneda continuous maps

¢ Let QMet,: quasi-metric spaces + uniformly cont. maps

¢ Theorem. QMet, : S - Forget : YCQMet..

A

U(x O) S(X) """""""""""""""" f """"""""""""""""" e (Yoneda-complete)
: (unique Yoneda contlnuou“\
e I In particular S(X)
embedding F (aniformiy| [ Cauchy completion

On metric spaces

T——

5 X
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YONE
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DA-C, SPACE

% On orderings, uniformly continuous = monotonic

Yoneda continuous = Scott-continuous

Yoneda-complete = dcpo

¢ Theorem. For posets X, S(X) ...

A

U(x 0) S(X) """"""""""""""" f """"""""""""""""" ; Y (dcpo)

(unique Scott continuous)

X

X (poset)

f (monotonic)

O
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% On orderings, uniformly continuous = monotonic
Yoneda continuous = Scott-continuous
Yoneda-complete = dcpo

¢ Theorem. For posets X, S(X) = ideal completion I(X)

A

I (0 f """"""""""""""""""" - Y (dcpo)

(unique Scott continuous)

X X (poset)

;:

f (monotonic)

FREE YONEDA-C. SPACE

O
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YONEDA COMPLETION

©® The Yoneda map Yon : X — [X — R* U {+oo} L ipsctics

x —> d(_, x)

Let Y(X) = d-closure of image of Yon.

¢ Theorem [BvBR1998l. QMet, : Y - Forget : YCQMet,.

A

d(_ X) Y(X) """""""""""""""" f """"""""""""""""" ) (Yoneda-complete)
r (unique Yoneda contmuous)
1ISsometric I
gsidine f(uniformly continuous)

X

X




YONEDA COMPLETION

©® The Yoneda map Yon : X — [X — R* U {+oo} L ipsctics

x — d(, x)
Let Y(X) = d-closure of image of Yon.

¢ Theorem | ‘- Forget : YCQMet,.

Hence Y(X) = S(X)

T

d(_ X) Y(X) """""""""""""""" f """"""""""""""""" Y (Yoneda- complete)

: (unique Yoneda contmuous)
1Isometric I
beddi
R s f(uniformly continuous)

5 X




L4

OUTTLINI

-

% Notions of completeness
¢ Low-hanging fruit: fixed point theorems
% The formal ball completion

% Low-handing fruit: miscellanea
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L4

” OUTTLINI

% Notions of completeness
% Low-hanging fruit: fixed point theorems

% The formal ball completion

a B
% Low-hz
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L4

[IDEMPOTENC]

% Cauchy completion is idempotent:

Cauchy(Cauchy(X)) = Cauchy(X)

¢ Formal ball completion S is not: S(S(X)) = S(X)

... unless X is metric for example
Counterexample: orderings (I is not idempotent)

¢ What are the fixed points of S?
... at least the complete metric spaces,
but there are more.

mercredi 26 aolt 15



FIXED POINTS OF S

¢ Theorem {Flagg Stinderhauf 1996; Kiinzi Schellekens 2002}
S(X) = X if and only if X is Smyth-complete.

¢ If X Smyth-complete, then B(X) sober  [remember?]
So B(S(X)) = RI(B(X)) = sobrification of B(X) = B(X),

because sobrification is idempotent.
In particular, looking at elements of radius O, S(X) = X.

& If S(X) = X, then
B(X) = B(S(X)) = RI(B(X)) = sobrification of B(X)

is sober, so X is Smyth-complete.
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THE D-5COTT TOPOLOGY

% Let the d-Scott topology on X
be induced by Scott topology on B(X)

through embedding 1 : X — B(X)

x — (x, 0)
¢ Example 1: = open ball topology

it X metric, or if X Smyth-complete

B ——

¢ Example 2: = Scott topology if X, 4 ordering

¢ Ex. 3: base of open balls with d-finite centers if Y.-c. d-algebr.

¢ Ex. 4:=generalized Scott topology {BvBR1998} if Y.-c. d-cont.

e — e
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SOBRIETY

¢ Among sober spaces, we find Hausdorft spaces,
continuous dcpos, and:

¢ Theorem. Every Yoneda-complete d-continuous space X
is sober in its d-Scott topology.

¢ Proof. B(X) is continuous hence sober in its Scott topology.

radius
X T] § B(X) A R+0p
0
shows 1 as an equalizer map ((x, ) € Im 1 iff 7=0) in Top.

Subspaces of sober spaces obtained as equalizers are sober.
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SOBRIETY

¢ Among sober spaces, we find Hausdorft spaces,
continuous dcpos, and:

¢ Theorem. Every Yoneda-complete d-continuous space X
is sober in its d-Scott topology:.

¢ Corollary. Every Smyth-complete space
is sober in its open ball topology.

% Because in that case d-Scott = open ball

(every point d-finite {Ali-Akbari et al.20091)).
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RETRACTS

& A I-Lipschitz Y.-continuous retraction: 7 0

(ros=id) X
B()

% induces a Scott-continuous retraction: B.(») B.()

:

(B:() 0 B:») =id) B(X)

-
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RETRACTS OF D-CONT. SPACES

% If 7 is Y.-c. d-continuous, then
B(7) is a continuous dcpo

¢ If B(X) is a continuous dcpo, then
X is Y.-c. d-continuous. Hence:

¢ Proposition.
Every 1-Lipschitz Y.-continuous retract of
a Yoneda-complete d-continuous space
is Yoneda-complete d-continuous.

BI(r) BI(S)

B(X)
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CONTINUITY/ALGEBRAICITY

D=(x;, r)ic1SX) {(x, 0)

|~

d—lim X'

24

i

X
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CONTINUITY/ALGI

CBRAICITY

¢ Theorem. The d-continuous Y.-comp. spaces are exactly

the 1-Lipschitz Y.-continuous retracts of

d-algebraic Yoneda-complete spaces.

D=(x;, r)i e 1SX)

|~

a’-lim X'

0

24

-B(S(X)) = RI(B(X)) | (x, )

sup I
- BX)  (x,7)
familiar

domain-theoretic

~ retraction here
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CONCLUSION

% Formal balls provide
a unifying view of quasi-metric theory
through domain theory

¢ Plenty of opportunities of generalization of theorems
on continuous dcpos
to Yoneda-complete d-continuous spaces

.
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% Plenty of opportunities of generalization of theorems
on continuous dcpos
to Yoneda-complete d-continuous spaces
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