The VJGL Lemma*

Jean Goubault-Larrecq

DMV/WQO - 25 sep. 2015

* Name found by Philippe Schnoebelen, 2009.

Our setting

- Verification of certain infinite state transition systems
- ... that use wqos in an essential way.

■ The VJGL Lemma of the title is an easy observation
■ ... and an excuse to introduce a larger field.

Outline

1 Well-Structured Transition Systems
2 Valk and Jantzen 1985

3 The VJGL Lemma

4 Applications
5 Eligible Wqo Datatypes

6 Conclusion

Well-structured transition systems

- WSTS: an extremely successful paradigm
[F87,FS01,AJ93,ACJY96], including Petri nets, lossy channel systems, etc.
- Ingredients:
- A transition relation $\delta \subseteq X \times X$;
- A well quasi-ordering (wqo) \leq on X;
- + monotonicity:

- \leq is wqo iff (equivalently):
- no infinite descending chain, and no infinite antichain;
- every upward-closed subset U is of the form $\uparrow A, A$ finite
$\ldots A$ is called a basis of U.

Example: Petri nets

■ Set P of places $\bigcirc+$ transitions shown as black rectangles

- $X=\mathbb{N}^{P}$, transitions given by vectors in \mathbb{Z}^{p}
\square E.g., a state is $\left(n_{\mathrm{CO}_{2}}, n_{\mathrm{RuDP}}, n_{3 \mathrm{PG}}, n_{\mathrm{H}_{2} \mathrm{O}}, \cdots, n_{\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}, n_{\mathrm{O}_{2}}\right)$
- Exercise: spot the transition $(-3,-3,+6,+3,0,0, \cdots)$.

Coverability is decidable

Let $\operatorname{Pre}(U)=\{x \mid \exists y \in U \cdot x \xrightarrow{\delta} y\}$.
Say that a WSTS is effective iff:

- \leq decidable
- one can compute a finite basis A of $\operatorname{Pre}(\uparrow t) \quad(\operatorname{Pre}(\uparrow t)=\uparrow A)$

Coverability

Input: states s, t
$\mathbf{Q}: \exists s^{\prime}, s \xrightarrow{\delta} s^{\prime} \geq t$?

Theorem

Coverability is decidable for every effective WSTS.
Proof. Equivalently, $s \in \bigcup_{k} \operatorname{Pre}^{k}(U)$ where $U=\uparrow t$.
Stabilizes at some k by wqo; computable by effectiveness.

Outline

1 Well-Structured Transition Systems

2 Valk and Jantzen 1985

3 The VJGL Lemma

4 Applications

5 Eligible Wqo Datatypes

6 Conclusion

Valk and Jantzen's effective basis theorem

How do we compute a basis?
$\left[\right.$ for $\left.X=\mathbb{N}^{k}\right]$
■ By ad hoc algorithms, depending on δ
■ Or by Valk-Jantzen's theorem:

Theorem (Valk-Jantzen, 1985)

Given $U \subseteq \mathbb{N}^{k}$ upward-closed, one can compute a finite basis for U if the following is decidable:

Input: $\vec{m} \in \mathbb{N}_{\omega}^{k}$
\mathbf{Q} : does U meet $\downarrow \vec{m} \cap \mathbb{N}^{k}$?

Proof ... I'll prove a more general theorem later.
■ -: not really a basis for implementation
■ +: easy proofs that bases are computable

Example: affine counter systems

Finitely many transitions $\vec{x} \in \mathbb{N}^{k} \mapsto A_{i} \vec{x}+\vec{b}_{i}$,
with $A_{i} \in \operatorname{Mat} t_{\mathbb{N}}(k \times k), \vec{b}_{i} \in \mathbb{Z}^{k} \quad$ (Petri nets=special case $A_{i}=\mathrm{id}$) \ldots enabled iff $A_{i} \vec{x}+\vec{b}_{i} \geq 0$.

■ Compute $\operatorname{Pre}(\uparrow t)$ directly: feasible, will require you to make several cases;

- By Valk-Jantzen: $U=\operatorname{Pre}(\uparrow t)$. Check that:

Input: $\vec{m} \in \mathbb{N}_{\omega}^{k}$
$\mathbf{Q}:$ is there an i such that $A_{i} \vec{m}+\vec{b}_{i} \geq t$?
is obviously decidable.

Outline

1 Well-Structured Transition Systems

2 Valk and Jantzen 1985

3 The VJGL Lemma

4 Applications
5 Eligible Wqo Datatypes

6 Conclusion

The VJGL lemma (1/4)

Fact (Finkel, JGL, STACS09; Pouzet and others earlier, I'm sure)

Every wqo X, \leq embeds into a completion \widehat{X} so that:
Downward closed subsets of $X \equiv \downarrow B \cap X, B$ finite $\subseteq \widehat{X}$.

Note: $\widehat{X}=$ ideal completion of X
(=sobrification of X, in the more general case of Noetherian spaces).
E.g., for $X=\mathbb{N}^{k}, \widehat{X}=\mathbb{N}_{\omega}^{k}$.

The VJGL lemma (1/4)

Fact (Finkel, JGL, STACS09; Pouzet and others earlier, I'm sure)

Every wqo X, \leq embeds into a completion \widehat{X} so that: Downward closed subsets of $X \equiv \downarrow B \cap X, B$ finite $\subseteq \widehat{X}$.

Note: $\widehat{X}=$ ideal completion of X
(=sobrification of X, in the more general case of Noetherian spaces).
E.g., for $X=\mathbb{N}^{k}, \widehat{X}=\mathbb{N}_{\omega}^{k}$.

The VJGL lemma ($1 / 4$)

Fact (Finkel, JGL, STACS09; Pouzet and others earlier, I'm sure)

Every wqo X, \leq embeds into a completion \hat{X} so that: Downward closed subsets of $X \equiv \downarrow B \cap X, B$ finite $\subseteq \widehat{X}$.

[Here $B=\left\{x_{1}, \ldots, x_{4}\right\}$]
Note: $\widehat{X}=$ ideal completion of X
(=sobrification of X, in the more general case of Noetherian spaces).
E.g., for $X=\mathbb{N}^{k}, \widehat{X}=\mathbb{N}_{\omega}^{k}$.

The VJGL lemma (2/4)

[I now assume effective representations for points in X, and X r.e.]
For $E \subseteq X$, complement of $\uparrow A$ is of the form

$$
\downarrow\left\{\vec{m}_{1}, \cdots, \downarrow \vec{m}_{n}\right\} \cap X, \quad \text { with } \vec{m}_{i} \in \widehat{X}
$$

Definition (Effective Complement)

Say X has effective complement iff $\left\{\vec{m}_{1}, \cdots, \vec{m}_{n}\right\}$ is computable from A.

Example: $X=\mathbb{N}^{k}, \widehat{X}=\mathbb{N}_{\omega}^{k}$
E.g., let $A=\left\{\begin{array}{lllll}1 & 3 & 2,4 & 1 & 3\end{array}\right\} \subseteq \mathbb{N}^{3}$

$$
\begin{aligned}
\complement \uparrow A & =\complement \uparrow 132 \cap \complement \uparrow 413 \\
& =\downarrow\{0 \omega \omega, \omega 2 \omega, \omega \omega 1\} \cap \downarrow\{3 \omega \omega, \omega 0 \omega, \omega \omega 2\} \\
& =\downarrow\{0 \omega \omega, 32 \omega, \omega 0 \omega, \omega 22, \omega \omega 1\} .
\end{aligned}
$$

The VJGL lemma (3/4)

Theorem (JGL, RR 05/2009)

Let X have effective complement.
Given $U \subseteq X$ upward-closed, one can compute a finite basis A for U (i.e., $U=\uparrow A$) if the following is decidable:

Input: $\vec{m} \in \widehat{X}$
Q: does U meet $\downarrow \vec{m} \cap X$?

Proof. Note: we can test $\vec{a} \in U$ for $\vec{a} \in X$ (take $\vec{m}=\vec{a})$.

- Start with $A:=\emptyset$.

■ Enumerate $\vec{a} \in X$: for each, if $\vec{a} \in U$, add it to A.

- A will eventually contain all the finitely many minimal elements of U, so $U=\uparrow A$. We check this by ...

The VJGL lemma (4/4)

Theorem (JGL, RR 05/2009)

Let X have effective complement.
Given $U \subseteq X$ upward-closed, one can compute a finite basis A for U (i.e., $U=\uparrow A$) if the following is decidable:

Input: $\vec{m} \in \widehat{X}$
Q: does U meet $\downarrow \vec{m} \cap X$?

Proof. We check that $\uparrow A=U$ by:

- computing $\complement \uparrow A$ as $\downarrow\left\{\vec{m}_{1}, \cdots, \downarrow \vec{m}_{n}\right\} \cap X$ (eff. complement)
- and testing whether $\neg\left(U\right.$ meets some $\left.\downarrow \vec{m}_{i} \cap X\right)$.

Indeed, $\uparrow A=U$ iff $\quad U \subseteq \uparrow A$
iff $U \cap C \uparrow A=\emptyset$
iff $\quad U \cap\left(\downarrow\left\{\vec{m}_{1}, \cdots, \downarrow \vec{m}_{n}\right\} \cap X\right)=\emptyset$
iff for every i, U meets $\downarrow \vec{m}_{i} \cap X$,

ŁApplications

Outline

1 Well-Structured Transition Systems

2 Valk and Jantzen 1985

3 The VJGL Lemma

4 Applications

5 Eligible Wqo Datatypes

6 Conclusion

Ph. Schnoebelen's original motivation

[Schnoebelen, Chambart, DLT10] rely on it for $X=\Sigma^{*}$, not \mathbb{N}^{k}.
Corollary (JGL, RR 05/2009; Abdulla, Mayr, LICS'11)
Let Σ be a finite alphabet.
Given $U \subseteq \Sigma^{*}$ upward-closed w.r.t. subword, one can compute a finite basis A for U (i.e., $U=\uparrow A$) if the following is decidable:

Input: R regular expression over Σ
Q: does U meet R ?
Proof. For $X=\Sigma^{*}$, with subword, $\hat{X}=\{$ word-products $P\}$
[Jullien 69; Abdulla et al. 04; Finkel, JGL 09].

$$
P::=\epsilon\left|a^{?} P\right| A^{*} P \quad(A \neq \emptyset, A \subseteq \Sigma)
$$

Note: In fact only need word-products, not general regexps, for $\underset{\underline{\underline{\underline{E}}}}{ }$.

Used in:

■ Computing blocker sets for the Regular Post Embedding Problem [Schnoebelen, Chambart, DLT10]
PEP: Given two semigroup morphisms $u, v: A^{*} \rightarrow B^{*}$, a regular language $R \subseteq A^{*}$, decide whether $u(x) \leq v(x)$ for some $x \in R$. Decidable [Schnoebelen, Chambart].
A coblocker is a word w such that $u(x) \leq w . v(x)$ for some $x \in R$.
Coblockers are upward-closed, hence computable by VJGL.
■ On Reachability for Unidirectional Channel Systems Extended with Regular Tests [Jančar, Karandikar, Schnoebelen 2015]
Verification of certain lossy channel systems with one lossy and one non-lossy channel.
With emptiness test on second channel, decidable.
VJGL allows us to show that decidability is preserved with
emptiness tests on both channels, reducing to previous case.

More words

Easily generalizes to infinite alphabets Σ, wqo by \leq.
Corollary (JGL, RR 05/2009)
Let Σ, \leq be wqo.
Given $U \subseteq \Sigma^{*}$ upward-closed w.r.t. embedding, one can compute a finite basis A for U (i.e., $U=\uparrow A$) if the following is decidable:

Input: R word-product over Σ
Q: does U meet R ?
Proof. For $X=\Sigma^{*}, \hat{X}=\{$ word-products $P\}$ [Kabil, Pouzet, 92; Finkel, JGL, STACS 09].

$$
P::=\epsilon\left|a^{?} P\right| A^{*} P
$$

where $a^{?}=\{\epsilon, b \mid b \leq a\}, A^{*}=\{$ words with letters $\in \downarrow A\}$
$(a \in \widehat{\Sigma}, A$ finite non-empty $\subseteq \widehat{\Sigma})$.

Outline

1 Well-Structured Transition Systems

2 Valk and Jantzen 1985

3 The VJGL Lemma

4 Applications

5 Eligible Wqo Datatypes

6 Conclusion

A catalogue of wqo datatypes

Here is an infinite list of spaces X where VJGL applies:

$X \quad::=$	A	(finite poset; e.g., states of automata)
+	\mathbb{N}	(natural numbers)
\|	$X_{1} \times X_{2} \times \ldots \times X_{n}$	(product; e.g., \mathbb{N}^{k})
\|	$X_{1}+X_{2}+\ldots+X_{n}$	(disjoint sum)
\|	χ^{*}	(finite words/word embedding)
	X^{\circledast}	(finite multisets/multiset embedding)
\|	$\mathcal{T}(X)$	(finite trees/tree embedding)

Fact

Each of these (wqo) spaces X has:

- an effectively representable completion \widehat{X}
- with decidable ordering

■ and the effective complement property.

A catalogue of wqo datatypes: finite words (1/2)

Finite posets, \mathbb{N}, products, sums are easy.
We have already seen $X^{*} \ldots$ at least partly.
Let $Y=X^{*}=\{$ finite sequences of elements of $X\}$.
■ Order multisets Y by word embedding:

- \widehat{Y} : word-products $P::=\epsilon\left|a^{?} P\right| A^{*} P$

■ Ordering \sqsubseteq decidable, using the following rules:

$$
\begin{array}{cc}
\frac{e \boldsymbol{P} \sqsubseteq^{\mathrm{w}} \boldsymbol{P}^{\prime}}{e \boldsymbol{P} \sqsubset^{\mathrm{w}} e^{\prime} \boldsymbol{P}^{\prime}}(\mathrm{w} 1) \frac{a \sqsubset a^{\prime} \quad \boldsymbol{P} \sqsubseteq^{\mathrm{w}} \boldsymbol{P}^{\prime}}{a^{?} \boldsymbol{P} \sqsubset^{\mathrm{w}} a^{\prime ?} \boldsymbol{P}^{\prime}}(\mathrm{w} 2) & \frac{\boldsymbol{P} \sqsubset^{\mathrm{w}} \boldsymbol{P}^{\prime}}{a^{?} \boldsymbol{P} \sqsubset^{\mathrm{w}} a^{?} \boldsymbol{P}^{\prime}}(\mathrm{w} 3) \\
\frac{\forall i \cdot e_{i} \sqsubset^{\mathrm{e}} A^{\prime *} \quad \boldsymbol{P} \sqsubseteq^{\mathrm{w}} \boldsymbol{P}^{\prime}}{e_{1} \ldots e_{k} \boldsymbol{P} \sqsubset^{\mathrm{w}} A^{\prime *} \boldsymbol{P}^{\prime}}(\mathrm{w} 4) & \frac{\boldsymbol{P} \sqsubset^{\mathrm{w}} \boldsymbol{P}^{\prime}}{A^{*} \boldsymbol{P} \sqsubset^{\mathrm{w}} A^{*} \boldsymbol{P}^{\prime}}(\mathrm{w} 5)
\end{array}
$$

A catalogue of wqo datatypes: finite words (2/2)

Complements obtained by $\complement \uparrow A=\bigcap_{w \in A} \complement \uparrow w$, where:

$$
\begin{aligned}
C \uparrow x^{*} a_{0} a_{1} \cdots a_{n} & =\left(\complement \uparrow x a_{0}\right)^{*} x^{?}\left(C \uparrow x a_{1}\right)^{*} X^{?} \cdots x^{?}\left(\complement \uparrow x a_{n}\right)^{*} \\
& =\bigcup_{b_{1}, \cdots, b_{n-1}} A_{0}^{*} b_{1}^{?} A_{1}^{*} b_{2}^{b} \cdots b_{n-1}^{?} A_{n}^{*}
\end{aligned}
$$

where $A_{i}=$ max elements of $\mathrm{C} \uparrow_{X} a_{i}$ in \hat{X} and b_{1}, \ldots, b_{n-1} range over max elements of \widehat{X}

- The outer intersection is computed by computing binary intersections $P \cap P^{\prime}$, by induction on the sizes of P and P^{\prime} (exercice).

A catalogue of wqo datatypes: multisets

Let $Y=X^{\circledast}=\{$ finite multisets of elements of $X\}$.
■ Order multisets Y by Parikh image of word embedding:

- \widehat{Y} : "linear logic contexts" $m::=A^{\circledast}, a_{1}^{?}, \cdots, a_{n}^{?}$ $m=$ set of multisets containing at most one element $\leq a_{i}$ for each
i, plus as many in $\downarrow A$ as you wish
■ Ordering on Y, intersection, complements: exercise.

A catalogue of wqo datatypes: finite trees

Let $Y=\{$ finite trees with nodes labeled by elements of $X\}$.

- Order trees by tree embedding.
- \widehat{Y} : certain regular tree expressions called tree-products [Finkel, JGL, unpublished, 2012]

$$
P::=\epsilon\left|f^{?}(\vec{P})\right| \mathcal{F}^{*} \cdot \square\left(P_{1}|\cdots| P_{n}\right)
$$

where $f \in \widehat{X}$,
\vec{P} is word-product over \widehat{Y},
\mathcal{F} is a finite sum of depth-1 "contexts" with hole \square, and subject to certain normalization conditions.
■ Ordering on Y, intersection, complements: as for words, only more complicated.

Outline

1 Well-Structured Transition Systems

2 Valk and Jantzen 1985

3 The VJGL Lemma

4 Applications

5 Eligible Wqo Datatypes

6 Conclusion

Conclusion

- VJGL is easy,
- has a growing base of applications (e.g., R. Bonnet's PhD thesis, where he uses it on \mathbb{N}_{ω}^{k})
- Giving effective representations of \widehat{X} is an interesting, independent problem.
- Already done for a rich class of wqos X
- ... in fact for the larger class of Noetherian spaces (including new constructions: powerset, Hoare powerdomain, \mathbb{Q}^{k} with Zariski topology, words with prefix topology)
- Still a few other wqos not yet worked out: graphs/minor embedding, trees/nested word embedding (with appl. to bounded path graphs)

