The VJGL Lemma*

Jean Goubault-Larrecq

DMV/WQO - 25 sep. 2015

* Name found by Philippe Schnoebelen, 2009.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Our setting

- Verification of certain infinite state transition systems
- ... that use wqos in an essential way.

- The VJGL Lemma of the title is an easy observation
- ... and an excuse to introduce a larger field.

1 Well-Structured Transition Systems

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- 2 Valk and Jantzen 1985
- 3 The VJGL Lemma
- 4 Applications
- 5 Eligible Wqo Datatypes
- 6 Conclusion

Well-Structured Transition Systems

Well-structured transition systems

WSTS: an extremely successful paradigm [F87,FS01,AJ93,ACJY96], including Petri nets, lossy channel systems, etc.

Ingredients:

- \leq is wqo iff (equivalently):
 - no infinite descending chain, and no infinite antichain;
 - every upward-closed subset U is of the form $\uparrow A$, A finite

 \ldots A is called a **basis** of U.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Well-Structured Transition Systems

Example: Petri nets

Set P of places) + transitions shown as black rectangles
X = ℕ^P, transitions given by vectors in ℤ^p

• E.g., a state is $(n_{CO_2}, n_{RuDP}, n_{3PG}, n_{H_2O}, \cdots, n_{C_6H_{12}O_6}, n_{O_2})$

■ Exercise: spot the transition (-3, -3, +6, +3, 0, 0, ...).

-Well-Structured Transition Systems

Coverability is decidable

Let $Pre(U) = \{x \mid \exists y \in U \cdot x \xrightarrow{\delta} y\}$. Say that a WSTS is effective iff:

- $\blacksquare \leq decidable$
- one can compute a finite basis A of $Pre(\uparrow t)$ $(Pre(\uparrow t) = \uparrow A)$

Coverability

Input: states *s*, *t* **Q:** $\exists s', s \xrightarrow{\delta} s' \geq t$?

Theorem

Coverability is decidable for every effective WSTS.

Proof. Equivalently, $s \in \bigcup_k Pre^k(U)$ where $U = \uparrow t$.

Stabilizes at some k by wqo; computable by effectiveness.

1 Well-Structured Transition Systems

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 2 Valk and Jantzen 1985
- 3 The VJGL Lemma
- 4 Applications
- 5 Eligible Wqo Datatypes
- 6 Conclusion

└─Valk and Jantzen 1985

Valk and Jantzen's effective basis theorem

How do we compute a basis?

[for
$$X = \mathbb{N}^k$$
]

- \blacksquare By ad hoc algorithms, depending on δ
- Or by Valk-Jantzen's theorem:

Theorem (Valk-Jantzen, 1985)

Given $U \subseteq \mathbb{N}^k$ upward-closed, one can compute a finite basis for U if the following is decidable:

Input: $\vec{m} \in \mathbb{N}_{\omega}^{k}$ **Q:** *does* U *meet* $\downarrow \vec{m} \cap \mathbb{N}^{k}$?

Proof ... I'll prove a more general theorem later.

- -: not really a basis for implementation
- +: easy proofs that bases are computable

└─Valk and Jantzen 1985

Example: affine counter systems

Finitely many transitions $\vec{x} \in \mathbb{N}^k \mapsto A_i \vec{x} + \vec{b}_i$, with $A_i \in Mat_{\mathbb{N}}(k \times k)$, $\vec{b}_i \in \mathbb{Z}^k$ (Petri nets=special case $A_i = id$) ... enabled iff $A_i \vec{x} + \vec{b}_i \ge 0$.

- Compute Pre(\(\phi t)\) directly: feasible, will require you to make several cases;
- By Valk-Jantzen: $U = Pre(\uparrow t)$. Check that:

Input: $\vec{m} \in \mathbb{N}_{\omega}^{k}$ **Q:** *is there an i such that* $A_{i}\vec{m} + \vec{b}_{i} \geq t$?

is obviously decidable.

1 Well-Structured Transition Systems

- 2 Valk and Jantzen 1985
- 3 The VJGL Lemma
- 4 Applications
- 5 Eligible Wqo Datatypes
- 6 Conclusion

The VJGL lemma (1/4)

Fact (Finkel, JGL, STACS09; Pouzet and others earlier, I'm sure) Every wqo X, \leq embeds into a completion \widehat{X} so that: Downward closed subsets of $X \equiv \downarrow B \cap X$, B finite $\subset \widehat{X}$.

Note: \widehat{X} =ideal completion of X(=sobrification of X, in the more general case of Noetherian spaces). E.g., for $X = \mathbb{N}^k$, $\widehat{X} = \mathbb{N}^k_{\omega}$.

The VJGL lemma (1/4)

Fact (Finkel, JGL, STACS09; Pouzet and others earlier, I'm sure) Every wqo X, \leq embeds into a completion \widehat{X} so that: Downward closed subsets of $X \equiv \downarrow B \cap X$, B finite $\subseteq \widehat{X}$.

Note: \hat{X} =ideal completion of X(=sobrification of X, in the more general case of Noetherian spaces). E.g., for $X = \mathbb{N}^k$, $\hat{X} = \mathbb{N}^k_{\omega}$.

The VJGL lemma (1/4)

Fact (Finkel, JGL, STACS09; Pouzet and others earlier, I'm sure) Every wqo X, \leq embeds into a completion \widehat{X} so that: Downward closed subsets of $X \equiv \downarrow B \cap X$, B finite $\subseteq \widehat{X}$.

[Here $B = \{x_1, \ldots, x_4\}$]

Note: \hat{X} =ideal completion of X(=sobrification of X, in the more general case of Noetherian spaces). E.g., for $X = \mathbb{N}^k$, $\hat{X} = \mathbb{N}^k_{\omega}$.

The VJGL lemma (2/4)

[I now assume effective representations for points in X, and X r.e.]

For $E \subseteq X$, complement of $\uparrow A$ is of the form $\downarrow \{\vec{m}_1, \cdots, \downarrow \vec{m}_n\} \cap X$, with $\vec{m}_i \in \hat{X}$.

Definition (Effective Complement)

Say X has effective complement iff $\{\vec{m}_1, \cdots, \vec{m}_n\}$ is computable from A.

Example:
$$X = \mathbb{N}^k$$
, $\widehat{X} = \mathbb{N}^k_{\omega}$
E.g., let $A = \{1 \ 3 \ 2, 4 \ 1 \ 3\} \subseteq \mathbb{N}^3$
 $\widehat{C} \uparrow A = \widehat{C} \uparrow 1 \ 3 \ 2 \cap \widehat{C} \uparrow 4 \ 1 \ 3$
 $= \downarrow \{0 \ \omega \ \omega, \omega \ 2 \ \omega, \omega \ \omega \ 1\} \cap \downarrow \{3 \ \omega \ \omega, \ \omega \ 0 \ \omega, \ \omega \ 2\}$
 $= \downarrow \{0 \ \omega \ \omega, \ 3 \ 2 \ \omega, \ \omega \ 0 \ \omega, \ \omega \ 2 \ 2, \ \omega \ \omega \ 1\}.$

└─ The VJGL Lemma

The VJGL lemma (3/4)

Theorem (JGL, RR 05/2009)

Let X have effective complement. Given $U \subseteq X$ upward-closed, one can compute a finite basis A for U (i.e., $U = \uparrow A$) if the following is decidable:

Input: $\vec{m} \in \hat{X}$ **Q:** *does* U *meet* $\downarrow \vec{m} \cap X$?

Proof. Note: we can test $\vec{a} \in U$ for $\vec{a} \in X$ (take $\vec{m} = \vec{a}$).

- Start with $A := \emptyset$.
- Enumerate $\vec{a} \in X$: for each, if $\vec{a} \in U$, add it to A.
- A will eventually contain all the finitely many minimal elements of U, so $U = \uparrow A$. We check this by ...

└─ The VJGL Lemma

The VJGL lemma (4/4)

Theorem (JGL, RR 05/2009)

Let X have effective complement. Given $U \subseteq X$ upward-closed, one can compute a finite basis A for U (i.e., $U = \uparrow A$) if the following is decidable:

Input: $\vec{m} \in \hat{X}$ **Q:** does U meet $\downarrow \vec{m} \cap X$?

Proof. We check that $\uparrow A = U$ by: • computing $\complement \uparrow A$ as $\downarrow \{\vec{m}_1, \dots, \downarrow \vec{m}_n\} \cap X$ (eff. complement) • and testing whether \neg (U meets some $\downarrow \vec{m}_i \cap X$). Indeed, $\uparrow A = U$ iff $U \subseteq \uparrow A$ iff $U \cap \complement \uparrow A = \emptyset$ iff $U \cap (\downarrow \{\vec{m}_1, \dots, \downarrow \vec{m}_n\} \cap X) = \emptyset$ iff for every i, U meets $\downarrow \vec{m}_i \cap X$, \Box

1 Well-Structured Transition Systems

- 2 Valk and Jantzen 1985
- 3 The VJGL Lemma
- 4 Applications
- 5 Eligible Wqo Datatypes
- 6 Conclusion

Applications

Ph. Schnoebelen's original motivation

[Schnoebelen, Chambart, DLT10] rely on it for $X = \Sigma^*$, not \mathbb{N}^k .

Corollary (JGL, RR 05/2009; Abdulla, Mayr, LICS'11)

Let Σ be a finite alphabet. Given $U \subseteq \Sigma^*$ upward-closed w.r.t. subword, one can compute a finite basis A for U (i.e., $U = \uparrow A$) if the following is decidable:

Input: R regular expression over Σ **Q:** does U meet R?

Proof. For $X = \Sigma^*$, with subword, $\hat{X} = \{$ word-products $P\}$ [Jullien 69; Abdulla *et al.* 04; Finkel, JGL 09].

$$P ::= \epsilon \mid a^{?}P \mid A^{*}P \qquad (A \neq \emptyset, A \subseteq \Sigma) \quad \Box$$

Note: In fact only need word-products, not general regexps, for *R*.

Used in:

 Computing blocker sets for the Regular Post Embedding Problem [Schnoebelen, Chambart, DLT10]
 PEP: Given two semigroup morphisms u, v: A* → B*, a regular language R ⊆ A*, decide whether u(x) ≤ v(x) for some x ∈ R.
 Decidable [Schnoebelen, Chambart].
 A coblocker is a word w such that u(x) ≤ w.v(x) for some x ∈ R.
 Coblockers are upward-closed, hence computable by VJGL.

 On Reachability for Unidirectional Channel Systems Extended with Regular Tests [Jančar, Karandikar,

Schnoebelen 2015]

Verification of certain lossy channel systems with one lossy and one non-lossy channel.

With emptiness test on second channel, decidable.

 VJGL allows us to show that decidability is preserved with

emptiness tests on *both* channels, reducing to previous case.

More words

Easily generalizes to infinite alphabets Σ , working by \leq .

Corollary (JGL, RR 05/2009)

Let Σ, \leq be wqo. Given $U \subseteq \Sigma^*$ upward-closed w.r.t. embedding, one can compute a finite basis A for U (i.e., $U = \uparrow A$) if the following is decidable:

Input: R word-product over Σ **Q:** does U meet R?

Proof. For $X = \Sigma^*$, $\hat{X} = \{$ word-products $P\}$ [Kabil, Pouzet, 92; Finkel, JGL, STACS 09]. $P ::= \epsilon \mid a^? P \mid A^* P$ where $a^? = \{\epsilon, b \mid b \leq a\}$, $A^* = \{$ words with letters $\in \downarrow A\}$ $(a \in \hat{\Sigma}, A \text{ finite non-empty } \subseteq \hat{\Sigma}).$

1 Well-Structured Transition Systems

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 2 Valk and Jantzen 1985
- 3 The VJGL Lemma
- 4 Applications
- 5 Eligible Wqo Datatypes
- 6 Conclusion

A catalogue of wqo datatypes

Here is an infinite list of spaces X where VJGL applies:

Χ	::=	A	(finite poset; e.g., states of automata)
		\mathbb{N}	(natural numbers)
		$X_1 \times X_2 \times \ldots \times X_n$	(product; e.g., \mathbb{N}^k)
		$X_1 + X_2 + \ldots + X_n$	(disjoint sum)
		X*	(finite words/word embedding)
		<i>X</i> *	(finite multisets/multiset embedding)
		$\mathcal{T}(X)$	(finite trees/tree embedding)
		X^* X^{\circledast} $\mathcal{T}(X)$	(finite words/word embedding) (finite multisets/multiset embedding (finite trees/tree embedding)

Fact

Each of these (wqo) spaces X has:

- an effectively representable completion \widehat{X}
- with decidable ordering
- and the effective complement property.

A catalogue of wqo datatypes: finite words (1/2)

Finite posets, \mathbb{N} , products, sums are easy. We have already seen $X^*...$ at least partly. Let $Y = X^* = \{$ finite sequences of elements of $X \}$.

• Order multisets *Y* by word embedding:

- \widehat{Y} : word-products $P ::= \epsilon \mid a^{?}P \mid A^{*}P$
- Ordering \sqsubseteq decidable, using the following rules:

$$\frac{e\boldsymbol{P} \equiv^{\mathrm{w}} \boldsymbol{P}'}{e\boldsymbol{P} \equiv^{\mathrm{w}} e'\boldsymbol{P}'} (\mathrm{w1}) \quad \frac{a \equiv a' \quad \boldsymbol{P} \equiv^{\mathrm{w}} \boldsymbol{P}'}{a^{?}\boldsymbol{P} \equiv^{\mathrm{w}} a'^{?}\boldsymbol{P}'} (\mathrm{w2}) \quad \frac{\boldsymbol{P} \equiv^{\mathrm{w}} \boldsymbol{P}'}{a^{?}\boldsymbol{P} \equiv^{\mathrm{w}} a^{?}\boldsymbol{P}'} (\mathrm{w3})$$
$$\frac{\forall i \cdot e_{i} \equiv^{\mathrm{e}} A'^{*} \quad \boldsymbol{P} \equiv^{\mathrm{w}} \boldsymbol{P}'}{e_{1} \dots e_{k}\boldsymbol{P} \equiv^{\mathrm{w}} A'^{*}\boldsymbol{P}'} (\mathrm{w4}) \qquad \frac{\boldsymbol{P} \equiv^{\mathrm{w}} \boldsymbol{P}'}{A^{*}\boldsymbol{P} \equiv^{\mathrm{w}} A^{*}\boldsymbol{P}'} (\mathrm{w5})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

A catalogue of wqo datatypes: finite words (2/2)

Complements obtained by $C \uparrow A = \bigcap_{w \in A} C \uparrow w$, where:

$$\begin{array}{rcl} \mathbb{C}\uparrow_{X^*}a_0a_1\cdots a_n &=& (\mathbb{C}\uparrow_Xa_0)^*X^?(\mathbb{C}\uparrow_Xa_1)^*X^?\cdots X^?(\mathbb{C}\uparrow_Xa_n)^* \\ &=& \bigcup_{b_1,\cdots,b_{n-1}}A_0^*b_1^2A_1^*b_2^2\cdots b_{n-1}^2A_n^* \end{array}$$

where $A_i = \max$ elements of $U \uparrow_X a_i$ in X and b_1, \ldots, b_{n-1} range over max elements of \hat{X}

■ The outer intersection is computed by computing binary intersections P ∩ P', by induction on the sizes of P and P' (exercice).

A catalogue of wqo datatypes: multisets

Let $Y = X^{\circledast} = \{$ finite multisets of elements of $X \}$.

• Order multisets Y by Parikh image of word embedding:

Ŷ: "linear logic contexts" m ::= A[®], a₁[?], · · · , a_n[?]
 m = set of multisets containing at most one element ≤ a_i for each i, plus as many in ↓ A as you wish

• Ordering on Y, intersection, complements: exercise.

A catalogue of wqo datatypes: finite trees

Let $Y = \{$ finite trees with nodes labeled by elements of $X \}$.

- Order trees by tree embedding.

$$P ::= \epsilon \mid f^{?}(\vec{P}) \mid \mathcal{F}^{*} \cdot_{\Box}(P_{1} \mid \cdots \mid P_{n})$$

where $f \in \widehat{X}$,

 \vec{P} is word-product over \widehat{Y} ,

 ${\cal F}$ is a finite sum of depth-1 "contexts" with hole $\Box,$ and subject to certain normalization conditions.

 Ordering on Y, intersection, complements: as for words, only more complicated.

1 Well-Structured Transition Systems

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 2 Valk and Jantzen 1985
- 3 The VJGL Lemma
- 4 Applications
- 5 Eligible Wqo Datatypes

6 Conclusion

Conclusion

- VJGL is easy,
- has a growing base of applications (e.g., R. Bonnet's PhD thesis, where he uses it on N^k_ω)
- Giving effective representations of X is an interesting, independent problem.
 - Already done for a rich class of wqos X
 - ... in fact for the larger class of Noetherian spaces (including new constructions: powerset, Hoare powerdomain, Q^k with Zariski topology, words with prefix topology)
 - Still a few other wqos not yet worked out: graphs/minor embedding, trees/nested word embedding (with appl. to bounded path graphs)