The VJGL Lemma

The VJGL Lemma*

Jean Goubault-Larrecq

DMV/WQO - 25 sep. 2015

* Name found by Philippe Schnoebelen, 2009.



The VJGL Lemma

Our setting

m Verification of certain
infinite state transition
systems

m ... that use wqos in an
essential way.

start

m The VJGL Lemma of the title is an easy observation

m ... and an excuse to introduce a larger field.
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Well-structured transition systems

m WSTS: an extremely successful paradigm
[F87,FS01,AJ93,ACJY96], including Petri nets, lossy channel
systems, etc.

m Ingredients:

. : T—<—4
m A transition relation § C X x X;
m A well quasi-ordering (wgo) < on X; 0 d
®m + monotonicity: yoo< >yV/

m < is wqo iff (equivalently):
m no infinite descending chain, and no infinite antichain;
m every upward-closed subset U is of the form 1 A, A finite
. As called a basis of U.
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Example: Petri nets

NADPH+H " ATP CO;

02 Pi NADP' ADP

m Set P of places () + transitions shown as black rectangles
m X = NP, transitions given by vectors in ZP

n Egv a state is (nC027 NRuDP, N3PG, MH,0, " " * nCeleoaa nOQ)
m Exercise: spot the transition (—3,—-3,+6,+3,0,0,---).
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Coverability is decidable

Let Pre(U) = {x | Iy € U-x -2 y}.
Say that a WSTS is effective iff:
m < decidable
m one can compute a finite basis A of Pre(Tt) (Pre(tt) =1A)

Coverability

Input: states s, t
6 *
Q:3s', s — s >t?

Theorem
Coverability is decidable for every effective WSTS.

Proof. Equivalently, s € |J, Pre*(U) where U = 1 t.
Stabilizes at some k by wqo; computable by effectiveness. O
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Valk and Jantzen's effective basis theorem

How do we compute a basis? [for X = N¥]
m By ad hoc algorithms, depending on ¢
m Or by Valk-Jantzen's theorem:

Theorem (Valk-Jantzen, 1985)

Given U C N¥ upward-closed, one can compute a finite basis for U
if the following is decidable:

Input: m € N

Q: does U meet | m N Nk?

Proof ... I'll prove a more general theorem later. 0J
m —: not really a basis for implementation

m +: easy proofs that bases are computable
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Example: affine counter systems

Finitely many transitions X € N¥ i A;X + b;,
with A; € Maty(k x k), b; € 7k (Petri nets=special case A; =id)
. enabled iff A;X+ b; > 0.
m Compute Pre(1 t) directly: feasible, will require you to make
several cases;
m By Valk-Jantzen: U = Pre(1t). Check that:
Input: m € NXK
Q: is there an i such that A;m + b; > t?

is obviously decidable.
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The VJGL lemma (1/4)

Fact (Finkel, JGL, STACS09; Pouzet and others earlier, I'm sure)
Every wgo X, < embeds into a completion X so that:

Downward closed subsets of X = | BN X, B finite C X.

Note: X=ideal completion of X
(=sobrification of X, in the more general case of Noetherian spaces).

E.g., for X = Nk, X = Nk,
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The VJGL lemma (1/4)

Fact (Finkel, JGL, STACS09; Pouzet and others earlier, I'm sure)
Every wgo X, < embeds into a completion X so that:

Downward closed subsets of X = | BN X, B finite C X.

X X3

X x>

[Here B = {x1,...,xs4}]

Note: X=ideal completion of X
(=sobrification of X, in the more general case of Noetherian spaces).

E.g., for X = Nk, X = Nk,
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The VJGL lemma (2/4)

[I now assume effective representations for points in X, and X r.e.]

For E C X, complement of 1 A is of the forL‘n
Wy, - lmpp N X, with m; € X.

Definition (Effective Complement)

Say X has effective complement iff
{m1,---,mp} is computable from A.

Example:X:Nk,)A(:NfJ
Eg.,let A={132413} CN3
C+tA = Cr132nC1413
= {ww,w2wwwl}N{{8ww, wlw, ww?2}
Howw, 32w, wlw, w22, wwl}.
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The VJGL lemma (3/4)

Theorem (JGL, RR 05/2009)

Let X have effective complement.
Given U C X upward-closed, one can compute a finite basis A for
U (i.e., U=1A) if the following is decidable:

Input: m € X
Q: does U meet | mN X7

Proof. Note: we can test 3 € U for 3 € X (take m = 3).
m Start with A := 0.
m Enumerate 3 € X: for each, if 3 € U, add it to A.

m A will eventually contain all the finitely many minimal
elements of U, so U =1 A. We check this by ...
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The VJGL lemma (4/4)

Theorem (JGL, RR 05/2009)

Let X have effective complement.
Given U C X upward-closed, one can compute a finite basis A for
U (i.e., U="1A) if the following is decidable:

Input: m € X
Q: does U meet fmnN X7

Proof. We check that 1A = U by:

m computing C1 A as [{my, -, mM,} N X (eff. complement)
m and testing whether = (U meets some | m; N X).
Indeed, tA=U iff UCTA
ifft UNCTrA=10
iff Un{{m, -, Im}nX)=10
iff  for every i, U meets | m; 0 X. [
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Ph. Schnoebelen's original motivation

[Schnoebelen, Chambart, DLT10] rely on it for X = ~*, not Nk,
Corollary (JGL, RR 05/2009; Abdulla, Mayr, LICS'11)

Let X be a finite alphabet.
Given U C ¥* upward-closed w.r.t. subword, one can compute a
finite basis A for U (i.e., U =1 A) if the following is decidable:

Input: R regular expression over ¥
Q: does U meet R?

Proof. For X = ¥* with subword, X = {word-products P}
[Jullien 69; Abdulla et al. 04; Finkel, JGL 09].

P:i=ec|a’P|A*P (A#0,ACY) [

Note: In fact only need word-products, not general regexps, for R.
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Used in:

m Computing blocker sets for the Regular Post Embedding
Problem [Schnoebelen, Chambart, DLT10]
PEP: Given two semigroup morphisms u, v: A* — B*, a regular
language R C A*, decide whether u(x) < v(x) for some x € R.
Decidable [Schnoebelen, Chambart].
A coblocker is a word w such that u(x) < w.v(x) for some x € R.

Coblockers are upward-closed, hence computable by VJGL.

m On Reachability for Unidirectional Channel Systems
Extended with Regular Tests [Jancar, Karandikar,
Schnoebelen 2015]

Verification of certain lossy channel systems with one lossy and one
non-lossy channel.
With emptiness test on second channel, decidable.

VJGL allows us to show that decidability is preserved with
emptiness tests on both channels, reducing to previous case.
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More words

Easily generalizes to infinite alphabets ¥, wqo by <.

Corollary (JGL, RR 05/2009)

Let >, < be wqo.
Given U C ¥* upward-closed w.r.t. embedding, one can compute a
finite basis A for U (i.e., U =1 A) if the following is decidable:

Input: R word-product over ¥
Q: does U meet R?

Proof. For X = ¥*, X = {word-products P}
[Kabil, Pouzet, 92; Finkel, JGL, STACS 09].

Pu=¢c|a’P|AP

whereAa? = {¢,b| b<a}, A* = {words with letters € | A}
(a € X, A finite non-empty C ¥). O
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A catalogue of wqo datatypes

Here is an infinite list of spaces X where VJGL applies:

X = A (finite poset; e.g., states of automata)
| N (natural numbers)

| XixXax...xX, (product; e.g., NK)

| X1+ Xo+...+ X, (disjoint sum)

| X* (finite words/word embedding)

| X® (finite multisets/multiset embedding)
| T(X) (finite trees/tree embedding)

Each of these (wqo) spaces X has:

m an effectively representable completion X
m with decidable ordering

m and the effective complement property.
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A catalogue of wqo datatypes: finite words (1/2)

Finite posets, N, products, sums are easy.
We have already seen X*... at least partly.
Let Y = X* = {finite sequences of elements of X}.

m Order multisets Y by word embedding:

m Y: word-products P ::=¢ | a’P | A*P
m Ordering C decidable, using the following rules:
ePc" P’ acd PcVP PV P

ePcV P (1) JdPcYd P (w2)

- = w3
aPcYad'P (w3)

Vi-e; = A PcY P PcY P

= (w4) —— (wh)
61.4.616P =" A/ Pl A*P =" A*Pl
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A catalogue of wqo datatypes: finite words (2/2)

Complements obtained by 01 A =

[
Ctx+a0ar---an = (Ctxa0)* X’ (Ctxar) X" - X'(C1xan)*
= Uby by ASbIATDS -+ bi 1 A;
where A; = max elements of ETX a; in X
and by, ..., b,_1 range over max elements of X

wEA C1+w, where:

m The outer intersection is computed by computing binary
intersections P N P’, by induction on the sizes of P and P’
(exercice).
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A catalogue of wqo datatypes: multisets

Let Y = X® = {finite multisets of elements of X}.

m Order multisets Y by Parikh image of word embedding:
[ ERE R

<

|
A

v . - ? ?
m Y: “linear logic contexts” m = A® al,---  a

m = set of multisets containing at most one element < a; for each
i, plus as many in | A as you wish

m Ordering on Y, intersection, complements: exercise.
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A catalogue of wqo datatypes: finite trees

Let Y = {finite trees with nodes labeled by elements of X}.
m Order trees by tree embedding.

m Y: certain regular tree expressions called tree-products
[Finkel, JGL, unpublished, 2012]

Pu=c|f(P)|Fa(Pi|--|Pn)

where f € )?

Pis word-product over \A/

F is a finite sum of depth-1 “contexts” with hole [J,
and subject to certain normalization conditions.

m Ordering on Y/, intersection, complements: as for words, only
more complicated.
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Conclusion

m VJGL is easy,

m has a growing base of applications (e.g., R. Bonnet's PhD
thesis, where he uses it on NX)

m Giving effective representations of X is an interesting,
independent problem.

m Already done for a rich class of wqos X

m ... in fact for the larger class of Noetherian spaces (including
new constructions: powerset, Hoare powerdomain, Q% with
Zariski topology, words with prefix topology)

m Still a few other wqos not yet worked out: graphs/minor
embedding, trees/nested word embedding (with appl. to
bounded path graphs)
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