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The VJGL Lemma

Our setting

Verification of certain
infinite state transition
systems

. . . that use wqos in an
essential way. 0.5 0.5
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The VJGL Lemma of the title is an easy observation

. . . and an excuse to introduce a larger field.
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The VJGL Lemma

Well-Structured Transition Systems

Well-structured transition systems

WSTS: an extremely successful paradigm
[F87,FS01,AJ93,ACJY96], including Petri nets, lossy channel
systems, etc.

Ingredients:

A transition relation δ ⊆ X × X ;

A well quasi-ordering (wqo) ≤ on X ;

+ monotonicity:

x ≤ !!

δ

""

x′

δ
""

y ≤ !! y′

≤ is wqo iff (equivalently):

no infinite descending chain, and no infinite antichain;
every upward-closed subset U is of the form ↑A, A finite

. . . A is called a basis of U.
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Well-Structured Transition Systems

Example: Petri netsAngelic Non-Determinism, and The Hoare Powerdomain Non-Deterministic Choice
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Figure 2.1: A Petri Net Example in Biochemistry

2.1.2 An Example: Petri Nets

One of the most important examples of a (topological) well-structured transition system, with an
infinite state space, is given by Petri nets.

There are several ways of presenting Petri nets. The most concrete one is graphical, see Fig-
ure 2.1. This displays a collection of chemical reactions that are part of the mechanisms that
plants use to produce sugar (glucose C6H12O6) from carbon dioxide (CO2) and water (H2O),
and called the Calvin-Benson cycle. The circles, called places, correspond to chemical com-
pounds, while the fat, black bars are called transitions, and model chemical reactions. For
instance, there is a transition near the top right corner that takes 3 molecules of carbon diox-
ide CO2, 3 molecules of ribulose-1,5-diphosphate (nicknamed RuDP, and sometimes written
C5H8P2O11), and produces 6 molecules of 3-phosphoglycerate 3PG (C3H3PO6) and 3 molecules
of water (H2O). RuDP and CO2 are consumed in the process, but note that RuDP is regenerated
in the end by another transition that consumes 3 molecules of adenosine triphosphate ATP, 3
molecules of ribulose-5-phosphate Ru5P (C5H8PO7), and produces back 3 molecules of RuDP,
plus 3 molecules of adenosine diphosphate ADP. In the course of the process, there is a transi-
tion (shown leftmost) that generates 1 molecule of glucose C6H12O6, 3 of oxygen O2, and 1 of
phosphoric acid Pi.

Petri nets are used more pervasively in computer science (Reutenauer, 1993), and specifically
in the verification of complex, concurrent systems. But chemical examples probably convey the
idea more naturally.

Mathematically, Petri nets are transition systems on a state space of the form Nk, for some
k P N: k is the number of places (types of chemical compounds), and a state ~x P Nk specifies
how many molecules we have of each type. E.g., in the Calvin-Benson cycle example, k “ 17,
and states are of the form pnCO2 , nRuDP, n3PG, nH2O, . . . , nC6H12O6 , nO2q, where nCO2 is the number
of molecules of CO2 in the current state, nRuDP is the number of molecules of RuDP in the current

20 Preliminary version of December 18, 2011

Set P of places ○ + transitions shown as black rectangles

X = NP , transitions given by vectors in Zp

E.g., a state is (nCO2 , nRuDP, n3PG, nH2O, · · · , nC6H12O6 , nO2)

Exercise: spot the transition (−3,−3,+6,+3, 0, 0, · · · ).
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Well-Structured Transition Systems

Coverability is decidable

Let Pre(U) = {x | ∃y ∈ U · x δ−→ y}.
Say that a WSTS is effective iff:

≤ decidable

one can compute a finite basis A of Pre(↑ t) (Pre(↑ t) = ↑A)

Coverability

Input: states s, t

Q: ∃s ′, s
δ−→
∗

s ′ ≥ t?

Theorem

Coverability is decidable for every effective WSTS.

Proof. Equivalently, s ∈ ⋃
k Pre

k(U) where U = ↑ t.

Stabilizes at some k by wqo; computable by effectiveness.
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Valk and Jantzen 1985

Valk and Jantzen’s effective basis theorem

How do we compute a basis? [for X = Nk ]

By ad hoc algorithms, depending on δ

Or by Valk-Jantzen’s theorem:

Theorem (Valk-Jantzen, 1985)

Given U ⊆ Nk upward-closed, one can compute a finite basis for U
if the following is decidable:

Input: ~m ∈ Nk
ω

Q: does U meet ↓ ~m ∩ Nk?

Proof . . . I’ll prove a more general theorem later.

−: not really a basis for implementation

+: easy proofs that bases are computable
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Valk and Jantzen 1985

Example: affine counter systems

Finitely many transitions ~x ∈ Nk 7→ Ai~x + ~bi ,
with Ai ∈ MatN(k × k), ~bi ∈ Zk (Petri nets=special case Ai =id)

. . . enabled iff Ai~x + ~bi ≥ 0.

Compute Pre(↑ t) directly: feasible, will require you to make
several cases;

By Valk-Jantzen: U = Pre(↑ t). Check that:

Input: ~m ∈ Nk
ω

Q: is there an i such that Ai ~m + ~bi ≥ t?

is obviously decidable.
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The VJGL Lemma

The VJGL lemma (1/4)

Fact (Finkel, JGL, STACS09; Pouzet and others earlier, I’m sure)

Every wqo X ,≤ embeds into a completion X̂ so that:

Downward closed subsets of X ≡ ↓B ∩ X , B finite ⊆ X̂ .

X

Note: X̂ =ideal completion of X
(=sobrification of X , in the more general case of Noetherian spaces).

E.g., for X = Nk , X̂ = Nk
ω.
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The VJGL Lemma

The VJGL lemma (1/4)

Fact (Finkel, JGL, STACS09; Pouzet and others earlier, I’m sure)

Every wqo X ,≤ embeds into a completion X̂ so that:

Downward closed subsets of X ≡ ↓B ∩ X , B finite ⊆ X̂ .

X
X

x1
x2

x3 x4

[Here B = {x1, . . . , x4}]

Note: X̂ =ideal completion of X
(=sobrification of X , in the more general case of Noetherian spaces).

E.g., for X = Nk , X̂ = Nk
ω.
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The VJGL lemma (2/4)

[I now assume effective representations for points in X , and X r.e.]

For E ⊆ X , complement of ↑A is of the form
↓{~m1, · · · , ↓ ~mn} ∩ X , with ~mi ∈ X̂ .

Definition (Effective Complement)

Say X has effective complement iff
{~m1, · · · , ~mn} is computable from A.

Example: X = Nk , X̂ = Nk
ω

E.g., let A = {1 3 2, 4 1 3} ⊆ N3

{ ↑A = { ↑ 1 3 2 ∩ { ↑ 4 1 3

= ↓{0 ω ω, ω 2 ω, ω ω 1} ∩ ↓{3 ω ω, ω 0 ω, ω ω 2}
= ↓{0 ω ω, 3 2 ω, ω 0 ω, ω 2 2, ω ω 1}.



The VJGL Lemma

The VJGL Lemma

The VJGL lemma (3/4)

Theorem (JGL, RR 05/2009)

Let X have effective complement.
Given U ⊆ X upward-closed, one can compute a finite basis A for
U (i.e., U = ↑A) if the following is decidable:

Input: ~m ∈ X̂
Q: does U meet ↓ ~m ∩ X ?

Proof. Note: we can test ~a ∈ U for ~a ∈ X (take ~m = ~a).

Start with A := ∅.
Enumerate ~a ∈ X : for each, if ~a ∈ U, add it to A.

A will eventually contain all the finitely many minimal
elements of U, so U = ↑A. We check this by . . .
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The VJGL lemma (4/4)

Theorem (JGL, RR 05/2009)

Let X have effective complement.
Given U ⊆ X upward-closed, one can compute a finite basis A for
U (i.e., U = ↑A) if the following is decidable:

Input: ~m ∈ X̂
Q: does U meet ↓ ~m ∩ X ?

Proof. We check that ↑A = U by:

computing { ↑A as ↓{~m1, · · · , ↓ ~mn} ∩ X (eff. complement)
and testing whether ¬ (U meets some ↓ ~mi ∩ X ).

Indeed, ↑A = U iff U ⊆ ↑A
iff U ∩ { ↑A = ∅
iff U ∩ (↓{~m1, · · · , ↓ ~mn} ∩ X ) = ∅
iff for every i , U meets ↓ ~mi ∩ X .
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Applications

Ph. Schnoebelen’s original motivation

[Schnoebelen, Chambart, DLT10] rely on it for X = Σ∗, not Nk .

Corollary (JGL, RR 05/2009; Abdulla, Mayr, LICS’11)

Let Σ be a finite alphabet.
Given U ⊆ Σ∗ upward-closed w.r.t. subword, one can compute a
finite basis A for U (i.e., U = ↑A) if the following is decidable:

Input: R regular expression over Σ
Q: does U meet R?

Proof. For X = Σ∗, with subword, X̂ = {word-products P}
[Jullien 69; Abdulla et al. 04; Finkel, JGL 09].

P ::= ε | a?P | A∗P (A 6= ∅,A ⊆ Σ)

Note: In fact only need word-products, not general regexps, for R.
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Applications

Used in:

Computing blocker sets for the Regular Post Embedding
Problem [Schnoebelen, Chambart, DLT10]
PEP: Given two semigroup morphisms u, v : A∗ → B∗, a regular
language R ⊆ A∗, decide whether u(x) ≤ v(x) for some x ∈ R.
Decidable [Schnoebelen, Chambart].
A coblocker is a word w such that u(x) ≤ w .v(x) for some x ∈ R.

Coblockers are upward-closed, hence computable by VJGL.

On Reachability for Unidirectional Channel Systems
Extended with Regular Tests [Jančar, Karandikar,
Schnoebelen 2015]
Verification of certain lossy channel systems with one lossy and one
non-lossy channel.
With emptiness test on second channel, decidable.

VJGL allows us to show that decidability is preserved with

emptiness tests on both channels, reducing to previous case.
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Applications

More words

Easily generalizes to infinite alphabets Σ, wqo by ≤.

Corollary (JGL, RR 05/2009)

Let Σ,≤ be wqo.
Given U ⊆ Σ∗ upward-closed w.r.t. embedding, one can compute a
finite basis A for U (i.e., U = ↑A) if the following is decidable:

Input: R word-product over Σ
Q: does U meet R?

Proof. For X = Σ∗, X̂ = {word-products P}
[Kabil, Pouzet, 92; Finkel, JGL, STACS 09].

P ::= ε | a?P | A∗P

where a? = {ε, b | b≤a}, A∗ = {words with letters ∈ ↓A}
(a ∈ Σ̂, A finite non-empty ⊆ Σ̂).
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Eligible Wqo Datatypes

A catalogue of wqo datatypes

Here is an infinite list of spaces X where VJGL applies:

X ::= A (finite poset; e.g., states of automata)
| N (natural numbers)
| X1 × X2 × . . .× Xn (product; e.g., Nk)
| X1 + X2 + . . .+ Xn (disjoint sum)
| X ∗ (finite words/word embedding)
| X~ (finite multisets/multiset embedding)
| T (X ) (finite trees/tree embedding)

Fact

Each of these (wqo) spaces X has:

an effectively representable completion X̂

with decidable ordering

and the effective complement property.
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Eligible Wqo Datatypes

A catalogue of wqo datatypes: finite words (1/2)

Finite posets, N, products, sums are easy.
We have already seen X ∗. . . at least partly.
Let Y = X ∗ = {finite sequences of elements of X}.

Order multisets Y by word embedding:

Forward Analysis for WSTS I. Completions

Completions of Datatypes

A Library of Completions

Completions: 5. D = D∗
1

D = {words over a possibly infinite alphabet D1}.
Order words by embedding:

≤ ≤ ≤

b4 b5b3b2b1

a1 a2 a4 a5

≤ ≤≤

a3

Then D̂ is a domain of regular expressions called products:

P ::= ϵ | d?P | (d1 | . . . | dn)∗P

where:
↓D d? = words with at most one letter ≤ d ∈ D̂1;
↓D(d1 | . . . | dn)∗ = words whose letters are in
↓D1 d1 ∪ . . . ∪ ↓D1 dn.

Ŷ : word-products P ::= ε | a?P | A∗P

Ordering v decidable, using the following rules:

est relation such that x1 § y1, . . . , xn § yn imply x1 . . . xn § w0y1w1 . . . wn´1

ynwn, where w0, w1, . . . , wn´1, wn are arbitrary words in X˚. In other words,
to go down in §˚, remove some letters and replace the others by smaller ones.
Higman’s Lemma states that if § is wqo, then so is §˚. The topological Higman
Lemma states that if X is a Noetherian topological space, then X˚ with the
word topology is Noetherian, too. We have already discussed this in Section 2.

Step (A) of our proof plan consists in discovering an S-representation of
X˚, for X Noetherian. (Step (A) is not constructive.) In [22], we defined an S-
representation of a Noetherian space X as a tuple pS, S J_K ,⇥, ⌧, ^q, where S is a
set of elements, meant to denote the irreducible closed subsets of X, through the
denotation map J_K, ⇥ denotes inclusion, ⌧ represents the whole space, and ^
implements intersection. We change this slightly, and replace ⇥ by its strict part
Ä 2. Hence, call S-representation of a Noetherian space X any tuple pS, Ä, ⌧, ^q,
where S is a set, J_K : S Ñ SpXq is a bijective denotation function, Ä is a binary
relation on S denoting strict inclusion (i.e., a Ä b iff JaK Ä JbK), ⌧ is a finite subset
of S denoting the whole of X (J⌧K “ X, where we extend the notation JaK for
a P S to JAK for A P PpSq, by letting JAK “ î

aPA JaK), and for all a, b P S, a ^ b
is a finite subset of S denoting their intersection (Ja ^ bK “ JaKXJbK). When X is
Noetherian, Ä will be well-founded (property pÓq), ⌧ will exist by property pT q,
and ^ will make sense because of property pW q.

Since Ja1K is irreducible for every a1 P A1, the inclusion JAK Ñ JA1K is equiv-
alent to A Ñ5 A1, where we write Ñ for the union of Ä and “, and the Hoare
quasi-ordering Ñ5 is defined by: for every a P A, there is an a1 P A1 such that
a Ñ a1. Since A, A1 are antichains, one can encode them as multisets. A mo-
ment’s notice shows that the strict part of Ñ5 is just Ämul

`. This will be used
to compare antichains A, A1 below.

eP Ñw P 1
pw1q

eP Äw e1P 1
a Ä a1 P Ñw P 1

pw2q
a?P Äw a1?P 1

P Äw P 1
pw3q

a?P Äw a?P 1

@i ¨ ei Äe A1˚
P Ñw P 1

pw4q
e1 . . . ekP Äw A1˚

P 1
P Äw P 1

pw5q
A˚P Äw A˚P 1

Fig. 1. Deciding strict inclusion between word-products

Given an S-representation pS, S J_K , Ä, ⌧, ^q of X, Theorem 6.14 of [22] gives
us an S-representation pSw, S J_Kw , Äw, ⌧w, ^wq of X˚. Sw is a set of so-called
2 In all rigor, we should also include the associated congruence ”, defined by a ” b

iff a ⇥ b and b ⇥ a. We silently assume we are working in the quotient of the S-
representation by ”. In proof assistants such as Coq, this is not an option, and the
standard solution is to use setoid types. In any case, considering ” explicitly would
make our exposition too complex, and we shall therefore avoid it. We also change
the notation from ⇥ to Ä to avoid a conflict with the relations ô of Section 3
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A catalogue of wqo datatypes: finite words (2/2)

Complements obtained by { ↑A =
⋂

w∈A { ↑w , where:

{ ↑X∗ a0a1 · · · an = ({ ↑X a0)∗X ?({ ↑X a1)∗X ? · · ·X ?({ ↑X an)∗

=
⋃

b1,··· ,bn−1
A∗0b?

1A∗1b?
2 · · · b?

n−1A∗n
where Ai = max elements of { ↑X ai in X̂
and b1, . . . , bn−1 range over max elements of X̂

The outer intersection is computed by computing binary
intersections P ∩ P ′, by induction on the sizes of P and P ′

(exercice).
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Eligible Wqo Datatypes

A catalogue of wqo datatypes: multisets

Let Y = X~ = {finite multisets of elements of X}.
Order multisets Y by Parikh image of word embedding:

Forward Analysis for WSTS I. Completions

Completions of Datatypes

A Library of Completions

Completions: 6. D = D!1

D = {finite multisets over a possibly infinite set D1}.
Order multisets by the Parikh image of embedding:

≤

a1 a2 a4 a5a3

b1b2
≤

≤
{|

{| b4 b5 b3

≤ ≤ ≤

|}

|}

Note: not the usual multiset ordering—but the right
ordering in all model-checking instances we know of.
(E.g., see timed Petri nets [ADMN04], or MVASS (later).)

Ŷ : “linear logic contexts” m ::= A~, a?1, · · · , a?n
m = set of multisets containing at most one element ≤ ai for each

i , plus as many in ↓A as you wish

Ordering on Y , intersection, complements: exercise.
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Eligible Wqo Datatypes

A catalogue of wqo datatypes: finite trees

Let Y = {finite trees with nodes labeled by elements of X}.
Order trees by tree embedding.

Ŷ : certain regular tree expressions called tree-products
[Finkel, JGL, unpublished, 2012]

P ::= ε | f ?(~P) | F∗.�(P1 | · · · | Pn)

where f ∈ X̂ ,
~P is word-product over Ŷ ,
F is a finite sum of depth-1 “contexts” with hole �,

and subject to certain normalization conditions.

Ordering on Y , intersection, complements: as for words, only
more complicated.
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Conclusion

VJGL is easy,

has a growing base of applications (e.g., R. Bonnet’s PhD
thesis, where he uses it on Nk

ω)

Giving effective representations of X̂ is an interesting,
independent problem.

Already done for a rich class of wqos X
. . . in fact for the larger class of Noetherian spaces (including
new constructions: powerset, Hoare powerdomain, Qk with
Zariski topology, words with prefix topology)
Still a few other wqos not yet worked out: graphs/minor
embedding, trees/nested word embedding (with appl. to
bounded path graphs)
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