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PCF, Full Abstraction

PCF [Plotkin77]:
m a call-by-name, simply-typed, higher-order

m no
m has
m fails ... except with additional por
Here, PCF plus specific effects:

m Will concentrate on angelic non-deterministic choice

m also probabilistic choice, + mixed
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Types

v u= Nat|S$S Ground types
o7 = vy|o—T] Types
Notes:
m S has only one (non-bottom) value
= unit type,
Not required in principle, but practical
m T7 type of computing value of type 7
a la [Moggiol]
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PCF(S) Terms

Language parameterized by set S C {A,D,P}
(angelic non-det., demonic non-det., probabilistic choice).

m PCF terms
(A-calculus + basic arithmetic 4+ ifz + fixpoint Y)
m At S type:
m[:S
m for every M : Nat, ignore M : S

m forall M:S, N: o, sequencing M; N : o
m At TT types:
for each M : 7, valM : Tt
forall M: o, N : Tr, letx<= Min N : TT
Non-det. choice © :Tr — Tr — Tr
Prob. choice & :Tr—>Tr > T7
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L Operational Semantics

Operational Semantics

Use E-M|™ a acQnlo0,1].
“The probability that E - M may terminate is > a"

m Redex discovery/computation rule C — C”:

Cc'l™a for each rule C — C’:
E-MN — E[_LN]-M
Cl"a E[LN]-Ax-P — E - P[x := N] etc.
- T ——(a€QnIo,1))
m Final state val_- T: val T |™a
m Choice:
E-Mimaya E-Nimaya E./\/I\l/maya E'N\Lmayb

(®)

E[LMN]-© 1™ a E[MN]-©@]™a E[MN] @™ %(a—i—b)
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L Operational Semantics

Termination Semantics

Pr(E-M]™) =sup{ac Q€ [0,1] | E- M |™¥ a derivable}

m Pr(val_-T|™)=1
m Pr(E[LMN] - &™) = L(Pr(E - M{™)+ Pr(E - NJ™))
m Pr(E[LMN] - @1™®) = max(Pr(E - M{™¥), Pr(E - N]™%))
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Denotational Semantics: Previsions

Let [T7] as spaces of over [7]s [JGL-CSLO7]

Definition (Prevision on X)

Let / = [0, 1], as a dcpo. A Scott-continuous functional
F:[X — 1] — | is a prevision iff:

m F(ah) = aF(h) for every a € |

m F(25h) = 1(a+ F(h)) (total mass = 1)
= F(5) < 5(F(h) + F(H))
m F(h) € {0,1} for every h: X — {0,1} (ifP&ZS)

Note: by representation theorems [JGLO8], match the usual
Hoare/Smyth powerdomains, as well as [MOWO03, TKPO05].
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Denotational Semantics

[Ax - Mg = (x = [M]s) W’Vﬂs (p) = M5 (INTs)
[[YHS - ( = Un -N ( ))
[valM :To]s = (h— h([[l\/l]]s))
[letx =MinN]s = (h— [M]s(x— [N]s(h))
H@]]S = (Fl,FQ,hI—) max(Fl(h) Fz(h))
[®]ls = (F,F,h— 2(F1(h)+F2(h))(n‘ PeS)



Full Abstraction for PCF with Choice
Lpcr(s)

L Denotational Semantics

Soundness

In usual PCF, states that if M —* V then [M] = [V].

Theorem (Soundness)

Let ¢ = xq7y:[S] = I map L to0, T tol
( -observing continuation).

m IfE-M|™ a then [E[M]]s (#) > a

Proof: induction. OJ

= [E[M]5 (#) = Pr(E - My™)
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Computational Adequacy

In usual PCF, M —* V iff [M] =[V], )
Here, use E = _ (empty context, of type TS I~ TS)

Theorem (Computational Adequacy)

n [M]s(#) = Pr(-- MI™)

Proof: The key point is the definition of a suitable logical relation. . .
and precisely there is a general definition of.. .
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Computational Adequacy

In usual PCF, M —* V iff [M] = [V], .
Here, use E = _ (empty context, of type TS I~ TS)

Theorem (Computational Adequacy)
m [M]s(#) = Pr(_- M{™)

Proof: Define a logical relation R, by (something like)

MRy, Fiff for all ERL h, Pr(E - M|™) > F(h)

ER:-h iff forall QR, v, Pr(E-val Q™) > h(v)

Then do some stuff and conclude. O
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Full Abstraction

Let M 2™ N iff Pr(E - M]™) < Pr(E - NJ™®) for every
E:7TFTS.

Conjecture (Full Abstraction)
M 3m1 N iff [M]5 < [N]s,

m Easy direction: If [M]s < [N]s at type 7, then
[E[M]]s < [E[N]]s for every context E : 7 - TS
So Pr(E - M{™®) < Pr(E - N|™¥) by computational
adequacy.

m Hard direction: assume [M]¢ £ [N]s, such that
Pr(E - M{™) > Pr(E - N|™)

m So hard that it is for PCF. ..
but true for PCF(A)!
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The Full Abstraction Problem
L Definability

Definability

Pierre-Louis has always told us that was the key to full

abstraction.

Definability and full abstraction

Pierre-Louis Curien'

PPS, CNRS and University Paris 7

Abstract
Game semantics has renewed denotational scmantics. It offers mong other things an attractive clasification

bunch of new definabilit; s. In parallel, in the dcnotauonal
results have b y
‘and full abstraction, and we put & few old and recent

of pi

nming features, an

he fll complet
ation between definability
results of this kind in perspective.

operational semantics, denotational semantics, sequentiality
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Definability. . . of Opens

So assume [M]¢ £ [N]s, of type 7.
m Since < is specialization ordering of (Scott) topology,
there is a open set U:

Mls e U [N]s ¢ U
m If we can U by a context E, then:
[EMls =T [E[Ns = L
so by computational adequacy
Pr(valE - M|™) =1> 0= Pr(val £ - N]™¥)

So M 2™ N.
m By contraposition, M 3™ N implies [M]¢ < [N]s.
So full abstraction will hold. O
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Definability. . . of Subbasic Opens
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So M 2™ N.
m By contraposition, M 3™ N implies [M]¢ < [N]s.
So full abstraction will hold. O



Full Abstraction for PCF with Choice
LThe Full Abstraction Problem
L Definability

Choosing the Right Subbase

Fortunately:

For every type 7, [7]s is a

(One of the nice CCCs of continuous domains.)

Proposition (Key result — coincidence of topologies)

If X and Y are bc-domains, then:

m Scott topology on [X — Y] =
Subbasis: [a€ V]| ={f|f(a)e V}, ac X, VopeninY

m Scott topology on previsions on X =
Subbasis: [h>r]|={F | F(h)>r}, he[X = 1], reQ
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Definability of Subbasic Opens

Miracle

All these subbasic opens are definable.

mEg,on[X—=Y]
Let a be defined by term t
Let V be defined by context E
Then [a € V] is defined by context E[_t].

Mission accomplished!

...almost.

We actually need to define a as well.

Eventually, this requires some additional constructions.

E.g., sup of maps requires @ (non-det. choice).

Worse: prob. choice & requires statistical termination testers.
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The Purely Angelic Case

Without probabilities, M 2™ N simplifies to:
for every context E, E - M|™ implies E - N]™¥.

Theorem (Case S ={ })

Full abstraction holds for PCF({A}):
M 3™ Nff [M] gy < [N] gy

Note 1: No need for parallel or ... which is in fact definable: M por N = (M || N) @ (N || M)
Note 2: Proof much simpler than Plotkin's for PCF+por. .. but language is different.

Note 3: Implies full abstraction for (isomorphic) semantics using Hoare powerdomains instead of previsions.
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The Angelic+Probabilistic Case

We now need Pr(M > b) to the language
(M :TS)

MU™p E-T ™,
E-Pr(M > b)|™ a

T if [M]s(#)>0b
1 otherwise

@x) Toe(v > 6)s = {
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The Angelic+Probabilistic Case

Let M <™ N iff Pr(_- E'[M]J™) < Pr(_- E'[N]J™)
for every context E’ E' :=...|Pr(_>b)

Theorem (Case S={ , })

Full abstraction holds for PCF({A,P}) + statistical testers:
M imay N iff [[M]]{A,P} = [[N]]{A,P}

Proof. As before, there is a subbasis of definable opens. O
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Conclusion

The angelic cases ... are angelic:
PCF({A}) is
PCF({A,P}) is

provided we add statistical termination testers

| cheated a bit: we need a bit of to define the
probabilistic contexts

Demonic/erratic cases slightly more difficult

Purely probabilistic case hopeless
unless we turn to random variables, maybe.
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