
Full Abstraction for PCF with Choice

Full Abstraction for Non-Deterministic and
Probabilistic Extensions of PCF

Jean Goubault-Larrecq

ANR Blanc CPP

PLC Festschrift – Sep. 2013

Full Abstraction for PCF with Choice

Outline

1 Introduction

2 PCF(S)
Syntax
Operational Semantics
Denotational Semantics

3 The Full Abstraction Problem
Full Abstraction
Definability
Full Abstraction in Angelic Cases

4 Conclusion

Full Abstraction for PCF with Choice

Introduction

Outline

1 Introduction

2 PCF(S)
Syntax
Operational Semantics
Denotational Semantics

3 The Full Abstraction Problem
Full Abstraction
Definability
Full Abstraction in Angelic Cases

4 Conclusion

Full Abstraction for PCF with Choice

Introduction

PCF, Full Abstraction

PCF [Plotkin77]:

a call-by-name, simply-typed, higher-order functional language

no side-effects

has computational adequacy

fails full abstraction. . . except with additional por

Here, PCF plus specific choice effects:

Will concentrate on angelic non-deterministic choice

also probabilistic choice, + mixed

Full Abstraction for PCF with Choice

Introduction

PCF, Full Abstraction

PCF [Plotkin77]:

a call-by-name, simply-typed, higher-order functional language

no side-effects

has computational adequacy

fails full abstraction. . . except with additional por

Here, PCF plus specific choice effects:

Will concentrate on angelic non-deterministic choice

also probabilistic choice, + mixed

Full Abstraction for PCF with Choice

PCF(S)

Outline

1 Introduction

2 PCF(S)
Syntax
Operational Semantics
Denotational Semantics

3 The Full Abstraction Problem
Full Abstraction
Definability
Full Abstraction in Angelic Cases

4 Conclusion

Full Abstraction for PCF with Choice

PCF(S)

Syntax

Types

γ ::= Nat | S Ground types
σ, τ ::= γ | σ → τ | Tτ Types

Notes:

S has only one (non-bottom) value
= unit type, termination type

Not required in principle, but practical

Tτ type of processes computing value of type τ

à la [Moggi91]

Full Abstraction for PCF with Choice

PCF(S)

Syntax

PCF(S) Terms

Language parameterized by set S ⊆ {A, D, P}
(angelic non-det., demonic non-det., probabilistic choice).

PCF terms
(λ-calculus + basic arithmetic + ifz + fixpoint Y)

At S type:

> : S
for every M : Nat, ignoreM : S
for all M : S, N : σ, sequencing M; N : σ

At Tτ types:

for each M : τ , valM : Tτ
for all M : σ, N : Tτ , let x ⇐ M in N : Tτ
Non-det. choice > : Tτ → Tτ → Tτ
Prob. choice ⊕ : Tτ → Tτ → Tτ

Full Abstraction for PCF with Choice

PCF(S)

Operational Semantics

Operational Semantics

Use judgments E ·M ↓may a, a ∈ Q ∩ [0, 1].

“The probability that E ·M may terminate is > a”

Redex discovery/computation rule C → C ′:

C ′ ↓m a

C ↓m a

for each rule C → C ′ :
E ·MN → E [N] ·M
E [N] · λx · P → E · P[x := N] etc.

Final state val · >: (a ∈ Q ∩ [0, 1))
val · > ↓m a

Choice:

E ·M ↓may a

E [MN] ·> ↓may a

E · N ↓may a

E [MN] ·> ↓may a

E ·M ↓may a E · N ↓may b
(⊕)

E [MN] · ⊕ ↓may 1

2
(a+b)

Full Abstraction for PCF with Choice

PCF(S)

Operational Semantics

Termination Semantics

Definition

Pr(E ·M↓may) = sup{a ∈ Q ∈ [0, 1] | E ·M ↓may a derivable}

Pr(val · >↓may) = 1

Pr(E [MN] · ⊕↓may) = 1
2 (Pr(E ·M↓may)+ Pr(E · N↓may))

Pr(E [MN] ·>↓may) = max(Pr(E ·M↓may),Pr(E · N↓may))

Full Abstraction for PCF with Choice

PCF(S)

Denotational Semantics

Denotational Semantics: Previsions

Let JTτKS as spaces of previsions over JτKS [JGL-CSL07]

Definition (Prevision on X)

Let I = [0, 1], as a dcpo. A Scott-continuous functional
F : [X → I]→ I is a prevision iff:

F (ah) = aF (h) for every a ∈ I

F (a+h
2) = 1

2 (a + F (h)) (total mass = 1)

F (h+h′
2) ≤ 1

2 (F (h) + F (h′))

F (h) ∈ {0, 1} for every h : X → {0, 1} (if P 6∈ S)

Note: by representation theorems [JGL08], match the usual
Hoare/Smyth powerdomains, as well as [MOW03, TKP05].

Full Abstraction for PCF with Choice

PCF(S)

Denotational Semantics

Denotational Semantics

Jλx ·MKS = (x 7→ JMKS) JMNKS (ρ) = JMKS (JNKS)
JY KS = (f 7→ ⋃

n∈N f n(⊥))
JvalM : TσKS = (h 7→ h(JMKS))

Jlet x ⇐ M in NKS = (h 7→ JMKS (x 7→ JNKS (h))
J>KS = (F1,F2, h 7→ max(F1(h),F2(h))
J⊕KS = (F1,F2, h 7→ 1

2 (F1(h)+F2(h))(if P ∈ S)

Full Abstraction for PCF with Choice

PCF(S)

Denotational Semantics

Soundness

In usual PCF, soundness states that if M →∗ V then JMK = JV K.

Theorem (Soundness)

Let � = χ{>} : JSK→ I map ⊥ to 0, > to 1
(termination-observing continuation).

If E ·M ↓may a then JE [M]KS (�) > a

Proof: induction.

Corollary

JE [M]KS (�) ≥ Pr(E ·M↓may)

Full Abstraction for PCF with Choice

PCF(S)

Denotational Semantics

Computational Adequacy

In usual PCF, M →∗ V iff JMK = JV K, at ground types.
Here, use E = (empty context, of type TS ` TS)

Theorem (Computational Adequacy)

JMKS (�) = Pr(·M↓may)

Proof: The key point is the definition of a suitable logical relation. . .
and precisely there is a general definition of. . .

Under consideration for publication in Math. Struct. in Comp. Science

Logical Relations for Monadic Types†

JEAN GOUBAULT-LARRECQ1‡

and S !LAWOMIR LASOTA1,2§

and DAVID NOWAK1¶

1 LSV/CNRS UMR 8643 & INRIA Futurs projet SECSI & ENS Cachan,
61, avenue du président-Wilson, 94235 Cachan Cedex, France

2 Institute of Informatics, Warsaw University, ul. Banacha 2, 02-097 Warszawa, Poland

Received May 2004

Logical relations and their generalizations are a fundamental tool in proving properties

of lambda-calculi, e.g., yielding sound principles for observational equivalence. We

propose a natural notion of logical relations able to deal with the monadic types of

Moggi’s computational lambda-calculus. The treatment is categorical, and is based on

notions of subsconing, mono factorization systems, and monad morphisms. Our approach

has a number of interesting applications, including cases for lambda-calculi with

non-determinism (where being in logical relation means being bisimilar), dynamic name

creation, and probabilistic systems.

Keywords: logical relations, monads, semantics, typed lambda-calculus.

Contents

1 Introduction 3

1.1 Motivation and context. 3

1.2 Outline. 4

2 Preliminaries 5

2.1 Related work. 5

3 Lifting of a Monad to a Scone 6

† A preliminary version of this paper was presented at the 11th Annual Conference of the European Asso-
ciation for Computer Science Logic (CSL’02), Edinburgh, Scotland, 22–25 September 2002 (Goubault-
Larrecq et al., 2002).

‡ Work partially supported by the RNTL project EVA, and the ACI jeunes chercheurs “Sécurité infor-
matique, protocoles cryptographiques et détection d’intrusions”.

§ Work partially supported by the Polish KBN grant 7 T11C 002 21.
¶ Work partially supported by the ACI jeunes chercheurs “Sécurité informatique, protocoles cryp-

tographiques et détection d’intrusions”.

which is
absolutely

not
what we need

Full Abstraction for PCF with Choice

PCF(S)

Denotational Semantics

Computational Adequacy

In usual PCF, M →∗ V iff JMK = JV K, at ground types.
Here, use E = (empty context, of type TS ` TS)

Theorem (Computational Adequacy)

JMKS (�) = Pr(·M↓may)

Proof: The key point is the definition of a suitable logical relation. . .
and precisely there is a general definition of. . .

Under consideration for publication in Math. Struct. in Comp. Science

Logical Relations for Monadic Types†

JEAN GOUBAULT-LARRECQ1‡

and S !LAWOMIR LASOTA1,2§

and DAVID NOWAK1¶

1 LSV/CNRS UMR 8643 & INRIA Futurs projet SECSI & ENS Cachan,
61, avenue du président-Wilson, 94235 Cachan Cedex, France

2 Institute of Informatics, Warsaw University, ul. Banacha 2, 02-097 Warszawa, Poland

Received May 2004

Logical relations and their generalizations are a fundamental tool in proving properties

of lambda-calculi, e.g., yielding sound principles for observational equivalence. We

propose a natural notion of logical relations able to deal with the monadic types of

Moggi’s computational lambda-calculus. The treatment is categorical, and is based on

notions of subsconing, mono factorization systems, and monad morphisms. Our approach

has a number of interesting applications, including cases for lambda-calculi with

non-determinism (where being in logical relation means being bisimilar), dynamic name

creation, and probabilistic systems.

Keywords: logical relations, monads, semantics, typed lambda-calculus.

Contents

1 Introduction 3

1.1 Motivation and context. 3

1.2 Outline. 4

2 Preliminaries 5

2.1 Related work. 5

3 Lifting of a Monad to a Scone 6

† A preliminary version of this paper was presented at the 11th Annual Conference of the European Asso-
ciation for Computer Science Logic (CSL’02), Edinburgh, Scotland, 22–25 September 2002 (Goubault-
Larrecq et al., 2002).

‡ Work partially supported by the RNTL project EVA, and the ACI jeunes chercheurs “Sécurité infor-
matique, protocoles cryptographiques et détection d’intrusions”.

§ Work partially supported by the Polish KBN grant 7 T11C 002 21.
¶ Work partially supported by the ACI jeunes chercheurs “Sécurité informatique, protocoles cryp-

tographiques et détection d’intrusions”.

which is
absolutely

not
what we need

Full Abstraction for PCF with Choice

PCF(S)

Denotational Semantics

Computational Adequacy

In usual PCF, M →∗ V iff JMK = JV K, at ground types.
Here, use E = (empty context, of type TS ` TS)

Theorem (Computational Adequacy)

JMKS (�) = Pr(·M↓may)

Proof: Define a logical relation Rσ by (something like)
double orthogonality:

M RTσ F iff for all E R⊥
σ h, Pr(E ·M↓m) ≥ F (h)

E R⊥
σ h iff for all Q Rσ v , Pr(E · valQ↓m) ≥ h(v)

Then do some stuff and conclude.

Full Abstraction for PCF with Choice

The Full Abstraction Problem

Outline

1 Introduction

2 PCF(S)
Syntax
Operational Semantics
Denotational Semantics

3 The Full Abstraction Problem
Full Abstraction
Definability
Full Abstraction in Angelic Cases

4 Conclusion

Full Abstraction for PCF with Choice

The Full Abstraction Problem

Full Abstraction

Full Abstraction

Let M -may N iff Pr(E ·M↓may) ≤ Pr(E · N↓may) for every
E : τ ` TS.

Conjecture (Full Abstraction)

M -may N iff JMKS ≤ JNKS , at all types.

Easy direction: If JMKS ≤ JNKS at type τ , then
JE [M]KS ≤ JE [N]KS for every context E : τ ` TS
So Pr(E ·M↓may) ≤ Pr(E · N↓may) by computational
adequacy.

Hard direction: assume JMKS 6≤ JNKS , find E such that
Pr(E ·M↓may) > Pr(E · N↓may)
So hard that it is wrong for PCF. . .
but true for PCF(A)!

Full Abstraction for PCF with Choice

The Full Abstraction Problem

Definability

Definability

Pierre-Louis has always told us that definability was the key to full
abstraction.

GDP Festschrift ENTCS, to appear

Definability and full abstraction

Pierre-Louis Curien1

PPS, CNRS and University Paris 7

Abstract

Game semantics has renewed denotational semantics. It o↵ers among other things an attractive classification
of programming features, and has brought a bunch of new definability results. In parallel, in the denotational
semantics of proof theory, several full completeness results have been shown since the early nineties. In
this note, we review the relation between definability and full abstraction, and we put a few old and recent
results of this kind in perspective.

Keywords: operational semantics, denotational semantics, sequentiality.

1 Introduction

In the semantics of programming languages, full abstraction studies started with the

two papers on PCF by Robin Milner [44] and Gordon Plotkin [49], respectively (see

also [50]). Milner showed the uniqueness (up to isomorphism) of the fully abstract

(cpo) model of PCF, and constructed it as a suitable quotient of syntax. Plotkin

showed that the continuous model of PCF (the only one available at the time) is not

fully abstract, but he showed that it becomes fully abstract for an extension of PCF

with “parallel or” (actually, originally, “parallel if”, see [18] for the more natural

variant with parallel or). From there on, two choices were open for investigations

on full abstraction:

• vary the language to fit an intended model,

• vary the model to fit an intended language.

Plotkin’s result was a result of the first kind. It was followed by a result of Berry

and Curien [10], who showed that their model of sequential algorithms [9] (devel-

oped with the motivation of solving the full abstraction problem for the original

language PCF) is fully abstract for the (kernel CDS01 of the) language CDS – a

1 Email: curien@pps.jussieu.fr

Full Abstraction for PCF with Choice

The Full Abstraction Problem

Definability

Definability. . . of Opens

So assume JMKS 6≤ JNKS , of type τ .

Since ≤ is specialization ordering of (Scott) topology,
there is a separating open set U:

JMKS ∈ U JNKS 6∈ U

If we can define U by a context E , then:

JE [M]KS = > JE [N]KS = ⊥

so by computational adequacy

Pr(valE ·M↓may) = 1 > 0 = Pr(valE · N↓may)

So M 6-may N.

By contraposition, M -may N implies JMKS ≤ JNKS .
So full abstraction will hold.

Full Abstraction for PCF with Choice

The Full Abstraction Problem

Definability

Definability. . . of Subbasic Opens

So assume JMKS 6≤ JNKS , of type τ .

Since ≤ is specialization ordering of (Scott) topology,
there is a separating open set U in a given subbase Bτ :

JMKS ∈ U JNKS 6∈ U

If we can define U by a context E , then:

JE [M]KS = > JE [N]KS = ⊥

so by computational adequacy

Pr(valE ·M↓may) = 1 > 0 = Pr(valE · N↓may)

So M 6-may N.

By contraposition, M -may N implies JMKS ≤ JNKS .
So full abstraction will hold.

Full Abstraction for PCF with Choice

The Full Abstraction Problem

Definability

Choosing the Right Subbase

Fortunately:

Lemma

For every type τ , JτKS is a bc-domain.

(One of the nice CCCs of continuous domains.)

Proposition (Key result — coincidence of topologies)

If X and Y are bc-domains, then:

Scott topology on [X → Y] = pointwise convergence
Subbasis: [a ∈ V] = {f | f (a) ∈ V }, a ∈ X , V open in Y

Scott topology on previsions on X = weak topology
Subbasis: [h > r] = {F | F (h) > r}, h ∈ [X → I], r ∈ Q

Full Abstraction for PCF with Choice

The Full Abstraction Problem

Definability

Definability of Subbasic Opens

Miracle

All these subbasic opens are definable.

E.g., on [X → Y],
Let a be defined by term t
Let V be defined by context E
Then [a ∈ V] is defined by context E [t].

Mission accomplished!

. . . almost.
We actually need to define elements a as well.

Eventually, this requires some additional constructions.
E.g., sup of maps requires > (non-det. choice).

Worse: prob. choice ⊕ requires statistical termination testers.

Full Abstraction for PCF with Choice

The Full Abstraction Problem

Definability

The Purely Angelic Case

Without probabilities, M -may N simplifies to:
for every context E , E ·M↓may implies E · N↓may.

Theorem (Case S = {A})
Full abstraction holds for PCF({A}):

M -may N iff JMK{A} ≤ JNK{A}
Note 1: No need for parallel or . . . which is in fact definable: M por N = (M || N) > (N || M)
Note 2: Proof much simpler than Plotkin’s for PCF+por. . . but language is different.

Note 3: Implies full abstraction for (isomorphic) semantics using Hoare powerdomains instead of previsions.

Full Abstraction for PCF with Choice

The Full Abstraction Problem

Definability

The Angelic+Probabilistic Case

We now need termination testers Pr(M > b) to the language
(M : TS)

·M ↓may b E · > ↓may a
(Pr)

E · Pr(M > b) ↓may a
JPr(M > b)KS =

{
> if JMKS (�) > b
⊥ otherwise

Full Abstraction for PCF with Choice

The Full Abstraction Problem

Full Abstraction in Angelic Cases

The Angelic+Probabilistic Case

Let M <
∼
m N iff Pr(· E ′[M]↓m) ≤ Pr(· E ′[N]↓m)

for every extended context E ′ E ′ ::= . . . | Pr(> b)

Theorem (Case S = {A, P})
Full abstraction holds for PCF({A, P}) + statistical testers:

M <
∼

may N iff JMK{A,P} ≤ JNK{A,P}

Proof. As before, there is a subbasis of definable opens.

Full Abstraction for PCF with Choice

Conclusion

Outline

1 Introduction

2 PCF(S)
Syntax
Operational Semantics
Denotational Semantics

3 The Full Abstraction Problem
Full Abstraction
Definability
Full Abstraction in Angelic Cases

4 Conclusion

Full Abstraction for PCF with Choice

Conclusion

Conclusion

The angelic cases . . . are angelic:

PCF({A}) is fully abstract

PCF({A, P}) is fully abstract
provided we add statistical termination testers

I cheated a bit: we need a bit of call-by-value to define the
probabilistic contexts

Demonic/erratic cases slightly more difficult

Purely probabilistic case hopeless
unless we turn to random variables, maybe.

	Introduction
	PCF(S)
	Syntax
	Operational Semantics
	Denotational Semantics

	The Full Abstraction Problem
	Full Abstraction
	Definability
	Full Abstraction in Angelic Cases

	Conclusion

